
We would like to thank the handling editor and reviewers for highly constructive and helpful 

comments and feedback. We have carefully addressed each question/comment and made changes 

where we agree that this would improve the manuscript. We have provided an itemized list below 

detailing our responses (in italic font) to the reviewer’s suggestions. Line numbers mentioned in 

this document refers to the tracked changes version of the manuscript. All new supplementary 

figures in the revised version of the manuscript were added based on the reviewers’ feedback, and 

the justification and explanation of the additional figures are provided within the responses to the 

reviewers below.  

 

Response to RC1  

 

I have some reservations about the way the authors have used their method. 

 

I would expect a more quantitative estimate of the magnitude of the differences potentially detected 

between the different experiments performed. 

 

The results and discussion of the decadal variability of the oceanic CO2 sink need to be improved 

(see specific comments).  

 

Specific comments: 

3) To calculate the residual pCO2, the authors used the equation in line 160. In this equation, 

the term pCO2mean came from “surface ocean pCO2 […] using all 1°x1° grid cells from the 

testbed” (line 162). But in the original publication of the methodology (equation 2 in 

Bennington et al., 2022a), the term pCO2mean comes from an initial reconstruction of pCO2. 

Therefore, in this submitted manuscript, by using model outputs instead of an initial 

reconstruction of pCO2 fields, the authors assumed that their method would be able to 

perfectly reconstruct the long-term average pCO2 at each grid cell. It seems to me that to 

obtain a more accurate evaluation of their method (i.e., more accurate observing system 

simulation experiments) the authors should follow the steps as they were originally 



published. If this is not possible, could the authors explain why and prove that this 

assumption does not influence their results. 

 

The reviewer raises a valid question that the method used here varies slightly in this way from the 

method presented in Bennington et al. (2022), given the testbed approach utilized here. However, 

previous work has found that this small difference in methodology does not have a large impact 

on the result. Bennington et al. (2022) did a sensitivity test of the pCO2-Residual reconstruction to 

the source of mean pCO2, by experimenting using the Takahashi pCO2 climatology (Takahashi et 

al., 2009) as well as the mean pCO2 of the SeaFlux observation-based products (Fay et al., 2021; 

Gregor & Fay, 2021). They found that alternative sources of the initial pCO2 map had little 

influence on the reconstruction. For this reason, we have chosen to increase the efficiency of our 

data processing pipeline by using the full model field as our mean pCO2 to calculate pCO2-T and 

pCO2-Resisudal.  

 
 
2) To calculate the net sea–air CO2 flux, authors used (line 272): “EN4.2.2 salinity (Good et al., 

2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 

(OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the 

European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure 

(Hersbach et al., 2020)”. But as mentioned in line 95: “The goal here is to assess the accuracy with 

which an ML algorithm can reconstruct the ‘model truth’”. Therefore, I would expect the model 

outputs (some of which have already been used for pCO2 reconstruction) to be used to calculate 

the CO2 flux, rather than observational data which may have different variabilities and/or trends 

to those simulated. The authors could then compare this calculated CO2 flux to the simulated 

CO2 flux (and not to a “model truth” CO2 flux from simulated pCO2 fields mixed with 

observational data). This is particularly important when the authors are discussing the ability of 

their method to reprodu“e CO2 flux variability (see my next comment). 

We completely understand the reviewer’s point of using model output instead of observational 

data to calculate flux. However, it is the winds that have the largest impact on flux calculations 

(Fay et al., 2021), and temporally high-resolution output is not available for the testbed. Only 



monthly model output is available, and this is not sufficient for the flux calculation due to the 

square dependency of wind speed. We therefore used the ERA5 wind product, a choice consistent 

with Gloege et al. (2021) who also used the Large Ensemble Testbed to reconstruct pCO2. Given 

the necessity to use observed winds, we also use observations for all necessary variables for the 

flux calculation (Fay et al., 2021), instead of mixing model output and observations.  

Further, we wish to emphasize that the goal of this project is not to calculate real-world fluxes, 

but, instead, to better understand how sampling impacts the resulting pCO2 fields and from pCO2, 

the flux. For our study, the most important factor is to calculate consistently for all the 

experimental runs so that we can make direct comparisons. Therefore, using the same inputs to 

the flux calculation for each of the three models is also desirable to isolate this comparison. It 

would certainly be interesting to compare fluxes calculated by different methods (observations vs. 

model output), however this would be beyond the scope of this paper as we are not evaluating 

methods of flux calculation, but rather evaluating the impacts of sampling.  

3) Authors wrote line 531: “The SOCAT baseline demonstrates a weakening of the global and 

Southern Ocean carbon sink in the 2000s (Figs. 10, S12), which is in agreement with various data 

products using real-world SOCAT data”. The weakening of the Southern Ocean carbon sink 

occurred in the 1990s (Le Quéré et al., 2007), while a reinvigoration of the sink was observed 

during the 2000s (Landschützer et al., 2015). The authors therefore need to revise their text. More 

importantly, this study focuses on the ability of the authors’ method to reproduce “model-truth” 

variability and not the “real-world” variability. Consequently, I would suggest calculating certain 

metrics of variability (for example, the size of decadal variability or trends) from simulated 

CO2 fluxes (and not from recalculated “model-truth” CO2 fluxes, see my previous comment) and 

comparing the values of these metrics with the values that would be obtained when reconstructed 

CO2 fluxes are used. Because, otherwise, it assumes that all models perfectly reproduce the 

variability of the ‘real world’, which might not be the case. 

We were referring to the distinct “peak” of the weakening of the sink that can be seen around the 

year 2000, however, we have re-phrased this sentence as suggested by the reviewer (lines 954-

956):  



“The ‘SOCAT-baseline’ demonstrates a weakening of the global and Southern Ocean carbon sink 

starting in the 1990s with a peak around year 2000 (Figs. 10, S18), which is in broad agreement 

with various data products using real-world SOCAT data (e.g., Gruber et al., 2019; Landschützer 

et al., 2015; Bushinsky et al., 2019; Bennington et al., 2022; Gloege et al., 2022)”. 

We agree with the reviewer that diving deeper into understanding the flux variability, and 

comparing fluxes based on the testbed vs. observations would be valuable and we appreciate their 

suggestion. We believe however that this deserves a more in-depth discussion that will be best 

presented as an individual paper, and we are planning to explore this further in a future study 

(this is mentioned in the discussion (lines 1009-1010): “we will further explore this issue in future 

work”). To avoid a lengthy discussion, we would like to restrict the main focus of this study to 

assessing the impacts of sampling by using the testbed.    

4) The LET has 75 members (i.e., simulations). For each experiment, the values given in the 

manuscript and in the figures are for the most part averages calculated over the 75 members of the 

ensemble. But no information is given on the dispersion (or confidence interval) around these 

averages. It is therefore not possible to assess whether the differences mentioned between the 

experiments are significant or not. 

For example: 

• The interpretation of Figure 5 (line 335): “The ‘one-latitude’ ‘high-sampling’ run 

‘x13_10Y_J-A’ (44,250 observations) show similar bias or is outperformed by all 

‘zigzag’ runs as well as the ‘one-latitude’-runs that restrict sampling to southern 

hemisphere winter months (i.e., ‘x5_5Y_W’ and ‘x13_10Y_W’).” How similar or 

superior is the performance? Is it true for all members? 

• Line 346: “Run ‘Z_x10_5Y_W’, which has the lowest bias out of the ‘zigzag’ runs (Fig. 

5), shows improvement even further back in time, until the beginning of the testbed 

period (Fig. S6).” Is it really significant? 

I would therefore suggest not only reporting the averages over the 75 members, but also taking 

advantage of the study of the spread around these averages. 



We thank the reviewer for this suggestion, and in the revised version we have included additional 

supplementary figures showing the spread amongst ensemble members (Figs. S8, S10, S14, S16 

– these are shown below). Since we are comparing several experiments, it would be difficult to 

interpret figures showing the spread of 75 members of 10 different experiments, so we chose to 

keep the figures showing the testbed mean in the main text. It is important to note that in order to 

fairly compare sampling experiments, it is critical to compare the same ensemble member for each 

experiment. By that we mean that performance metrics must be calculated based on the same 

member’s ‘reconstruction vs. truth pair’ for each of the 10 sampling experiments. For example, 

the ‘reconstruction vs. truth pair’ for CESM member 001 for experiment 1 must be compared to 

the ‘reconstruction vs. truth pair’ for CESM member 001 for experiment 2 and so on. There are 75 

members in our testbed, and thus, for each experiment, there are 75‘reconstruction vs. truth pairs’. 

As shown by our supplementary figures (and additional figures below), overall, the mean 

calculations reflect the majority of individual members in terms of how the different experiments 

compare to each other.   

 

However, we agree with the reviewer that it is important to show the spread. We have tried to make 

it more clear throughout the text that we are comparing mean values, but that there is a spread. 

We added this sentence to Section 2.3 (Statistical Analysis in the Testbed, lines 250-253): “We 

focus our discussion on the mean across 75 members of the testbed for bias and RMSE. The spread 

across testbed ensemble members is non-negligible and will be the focus of future work; here, we 

present the testbed spread primarily in the Supplement”. 

 

Further, a recent study by Hauck et al. (2023) performed similar sampling experiments, but used 

a different type of reconstruction method and testbed (i.e., a single hindcast model), and show that 

additional autonomous sampling leads to a weakened Southern Ocean sink, which is the opposite 

to our findings. This study was not published when we submitted our initial manuscript, but in the 

revised version we have added a paragraph to the discussion which touches upon the potential 

importance of the testbed spread (lines 940-953):  

 

“Bushinsky et al. (2019) and Hauck et al. (2023) performed similar sampling experiments as 

presented here, by comparing ML surface ocean pCO2 reconstructions based on SOCAT vs. 



additional SOCCOM or ideal virtual floats. These studies showed that SOCAT sampling alone 

overestimates the CO2 uptake in the Southern Ocean, and that additional floats reduce this 

overestimation, leading to a decreased (weakened) ocean carbon sink.  In contrast, we find that 

the pCO2-Residual method underestimates the CO2 uptake with only SOCAT sampling, and that 

adding USVs increased (strengthened) the Southern Ocean and global ocean sink by up to 0.1 Pg 

C yr-1 (Figs. 10, S18; Table S2).  

Going forward, additional studies are needed to better understand why these results 

suggest a different direction of the sink change with additional sampling. These differences could 

stem from the use of different reconstruction methods assessed. Hauck et al. (2023) used the MPI-

SOM-FFN and CarboScope/Jena-MLS reconstruction methods, while we use the pCO2-Residual 

method. Another substantial difference between the studies is the models and numbers of ensemble 

members used as the testbed. Hauck et al. (2023) use a single hindcast model, while we use 25 

members each from three Earth System Models. We find substantial spread across these 75 

members (Figs. S8, S10, S14, S16), indicating that model structure and internal variability 

significantly impact results. Our study and Hauck et al. (2023) use different approaches for the 

calculation of fluxes, which could also be a factor. Targeted, coordinated studies using multiple 

reconstruction approaches with consistent testbed structures and experimental approaches are 

clearly needed (Rödenbeck et al., 2015). Despite this need for this additional work, studies do 

agree that additional Southern Ocean observations could significantly improve reconstructions of 

air-sea CO2 fluxes”.  

 

 

Answers to the reviewer’s specific questions above: 

1. Below, we show the bias (over the Southern Ocean for the period of 2006-2010) of each 

individual member of the models in the testbed, comparing the high-sampling run ‘x13_10Y_J-A’ 

with the equivalent run that restricts sampling to southern hemisphere winter months 

(‘x13_10Y_W’). As shown by the figure below, the majority (~ 80%) of members for run 

‘x13_10Y_W’ (winter sampling) outperform (i.e., have a bias closer to zero) those of run 

‘x13_10Y_J-A’ (Jan-Aug sampling), reflecting the ensemble means shown in Figure 5.  
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2A. Below, we present zonal annual mean Hovmöller plots showing the change in bias when 

comparing run ‘Z_x10_5Y_W’ to the ‘SOCAT-baseline’. As shown by the figure below, all models 

show improvement back in time beyond the additional sampling duration (2012-2016), reflecting 

the ensemble mean shown in previous Figure S6 (new Figure S9), but there is less improvement 

for GFDL members compared to CESM and CanESM2.  

 

 

  



2B. To examine individual members, we plot time series of bias for run ‘Z_x10_5Y_W’ and the ‘SOCAT-baseline’ averaged over the area of highest 

improvement shown in previous Fig. S6 (between 50° S and 35° S; new Figure S9). These figures show improvement in bias compared to the ‘SOCAT-

baseline’ already in the beginning of the testbed period for the majority of members, but more so for CESM and CanESM2 compared to GFDL.  

 



 
 

 
 
 
Overview of new supplementary figures showing the ensemble spread (S8, S10, S14, S16): 
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New Fig S10 



 New Fig S10 cont.
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 New Fig S16 



 New Fig S16 cont. 

 New Fig S16 cont. 



Technical corrections: 

5) Line 37, Please explain the acronym "fCO2". Note that the term "pCO2" is also used in the 

manuscript. Although understandable to researchers working on this topic, it is less clear to a wider 

audience. Therefore, authors should be more careful about the terms they use, especially in the 

Abstract and Introduction sections. 

In the revised version we have defined fCO2 (line 46), which is the fugacity of carbon dioxide 

(fCO2) as opposed to pCO2 which is the partial pressure of CO2 in the ocean. The fCO2 is equal 

to the pCO2 corrected for non-ideality of CO2 solubility in water using the virial equation of state 

(Weiss 1974). The fugacity correction for surface water is 0.996 and 0.997 at 0 °C and 30 °C 

respectively (Dickson et al. 2007), or 0.7 to 1.2 μatm lower than the corresponding pCO2, and 

depends primarily on temperature for the conversion, although pressure is also included in the 

conversion equation. It is common practice in the observational community to report values as 

fCO2 as this is what is released in the SOCAT database, but model output is typically reported as 

pCO2 which is why we have chosen to go with that variable in this study. 

6) Line 178, Why aren't the number of decision trees and depth levels different for each 

reconstruction? 

The depth levels and decision trees are fixed, which we have now stated in the main text (line 222). 

The depth levels and decision trees used represent the optimized parameters for this type of 

reconstruction. The dominating input for all experiments is based on the SOCAT coverage, and 

the different USV experiments represent a small increase in the data density. Further, increasing 

the maximum depth level would make each decision more complex, making the final algorithm less 

generalizable. Adding more trees is not necessarily going to improve the overall algorithm. 

Finally, as we are comparing how sampling impacts the reconstruction, changing the decision 

trees and depth levels for each experiment would make it difficult to assess whether or not potential 

changes in bias and RMSE are due to the different sampling strategies or the optimization process.      

7) Line 188, After reading this sentence, I wasn't sure whether the authors were always going to 

use the "unseen" values. Could the authors be clearer? 



This should have been communicated more clearly, and we have now revised this sentence and 

added some more information (lines 231-236): “Here, we calculate error statistics based on the 

full reconstruction (pCO2 from all 1°x1° grid cells of the testbed, except for those masked or filtered 

out). In the full reconstruction, ~ 99 % of the data do not correspond to SOCAT or Saildrone USV 

observations used to train the algorithm (Fig. S1). Training data would ideally be removed before 

performance evaluation, but since the training data represent only ~ 1 %, the impact of not 

removing them is negligible (Fig. S2)”.  

8) Line 203: “2) potential future meridional USV observations (‘zigzag’ track)”. Are they realistic? 

I found some elements of response later in the text, but it would be good to know here whether all 

the experiments are realistic or not. 

The reviewer raises an important question, and as pointed out, we touch upon this in Section ‘2.4.2 

Zigzag runs’ and in the discussion. The potential future meridional USV track has been developed 

in collaboration with experts from the ocean observing community to test realistic sampling. Due 

to the USV technology, Saildrones can sample meridional gradients, as opposed to other 

autonomous platforms. Further, we account for limiting incoming solar radiation to power the 

Saildrone below 55° S. Section 2.4 is meant to provide an overview of the different type of 

experiments we have performed. This section already provides a lot of information, and in order 

not to exhaust the reader with details, we chose to focus on the details under Section ‘2.4.2 Zigzag 

runs’ instead. However, we added the word “realistic” (line 259) and refer to further information 

in Section 2.4.2 (line 260). We also added some more information under section ‘2.4.2 Zigzag 

runs’ (lines 290-294): “Saildrone USVs can operate at a speed capable of covering the spatial 

extent of meridional gradients in the Southern Ocean (Djeutchouang et al., 2022). However, 

Saildrone USVs are solar powered, and thus their range is restricted by the availability of solar 

radiation. To account for this and maintain a realistic sampling scenario, sampling occurs only to 

a maximum latitude of 55° S in these experiments”.     

9) Table 1: I suggest replacing table 1 with table S1. This is because the information in table 1 is 

repeated in table S1, and table S1 contains important values that the reader should be able to access 

easily. 



This has been replaced in the revised manuscript.  

10) Line 268, Why not use the same method across all models to calculate pCO2atm? Do all the 

values obtained take into account the contribution of water vapor pressure? 

The reviewer raises a valid question. The reason for this is that the GFDL model output that we 

have access to includes the pCO2atm variable, while for CanESM2 and CESM we do not have this 

output variable. Therefore, the atmospheric value had to be calculated for these two models. Each 

individual model defines its own atmosphere concentration, and some models account for water 

vapor pressure and others do not when running their model. In GFDL and CESM, the contribution 

of water vapor pressure is taken into account, but this is not the case for CanESM2. Thus, when 

calculating pCO2atm for CanESM2 and CESM, the contribution of water vapor pressure was taken 

into account for only CESM. We now specify that “the contribution of water vapor pressure was 

corrected for in CESM and GFDL” (lines 380-381).   

11) Line 293: “where algorithm generally overestimates pCO2”. This is not the case for the Atlantic 

sector of the Southern Ocean. 

With this statement we were just trying to convey that, overall, pCO2 is generally overestimated in 

the Southern Ocean, however, the reviewer is correct that parts of the Atlantic section show an 

underestimation. We have revised this sentence (lines 407-409): “RMSE is highest in the Eastern 

Tropical and Southeastern Pacific Ocean and in the Southern Ocean, where the algorithm 

generally overestimates pCO2 (i.e., positive bias; Fig. 3a), with some exceptions in the Atlantic 

section”. 

12) Figure 3, colour scale: The colour scales need to be harmonised. In panel a, a white colour 

means a good value, whereas in panel b, it means a bad value. 

We agree with the reviewer, and we tested several different colormaps, however, if we switch the 

colors in Fig. 3 (i.e., dark color equals “worse”), we would have the same problem in our maps 

showing our main results (Figs. 4, 6, 7, 9). These maps do not show RMSE for each USV 

experiment, but rather the difference in RMSE between the experiments and the ‘SOCAT-baseline’. 



We could choose a completely different colormap for RMSE in Fig. 3, but for consistency, chose 

to use the same range of colors for RMSE (and bias) throughout the paper.   

13) Figure 3, line 301 to 307: All this information is already present in the text. Please write shorter 

figure captions. This is a general comment, not just on figure 3. 

Noted, and revised.  

14) Line 318 and wherever necessary in the text: “…where the baseline reconstruction…” Please, 

use the expression "SOCAT baseline" that was introduced in the method section. 

Noted, and revised.  

15) Line 384, Please delete the reference to "bias". This was introduced in the previous section. 

Noted, and revised.  

16) Line 493, why not excluding the hypothetical data points that would be covered by sea ice? 

The seasonal ice coverage in high latitudes varies, and the sea-ice fraction is uncertain. We chose 

to show the map of the global sea-ice extent as defined by the SeaFlux product, which is from 

NOAA OISSTv2 (Reynolds et al., 2002) as an example. Since the sea-ice fraction is uncertain and 

varies by month, we chose to show where reconstructions could significantly improve regardless 

of potential ice coverage. If current/future technology allows for sampling in these high-latitude 

areas it is important to know the extent of the potential improvement. 

17) Figure 10: The figure starts in 1985 and not 1982, why? 

The flux calculations begin in 1985 because this corresponds to the earliest SeaFlux inputs. We 

now add mention of the 1985 start in Section 2.5 (line 369).  

18) Figure S3: Because you focused on the open-ocean (line 123), non-open-ocean data should be 

removed as they were not use for the training, is it right? Does this drastically modified the data 

availability and explain why better results are obtained from 1990? 



Testbed output for coastal areas, the Arctic Ocean and marginal seas were removed before 

training in all experimental runs, and also when comparing the experiments to the testbed truth 

when calculating bias, RMSE and air-sea flux. As shown in Figs. 3, 4 and 7 (and equivalent figures 

in the supplement) the white areas represent areas of no data as this was removed. Better results 

are likely obtained from 1990 because, as shown by previous Fig. S3 (new Fig. S5c in the revised 

version), SOCAT observations start to drastically increase from these times. This was mentioned 

in the manuscript (lines 494-496): “Considering the change in bias from year-to-year, the 

‘SOCAT-baseline’ shows positive bias at all latitudes in the beginning of the testbed period, before 

improvement occurs around 1990 (Fig. 6a). This is consistent with increasing SOCAT sampling 

with time for the period considered here (i.e., up to 2016; Fig. S5c)”. 
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Response to RC2 

 

Despite appreciating the author’s efforts in this study, Reviewer has not been convinced by its 

originality. Based on ESM output, numerous existing research works have shown additional data 

sampling (e.g., bgcArgo, SOCCOM, Sailboat,...) critical for error reduction in pCO2 and flux 

estimation over the Southern Ocean and/or the global ocean [Bushinsky et al., 2019, Denvil-

Sommer et al., 2021, Hauck et al., 2023, Landschützer et al., 2023]. One suggestion that would 

add value to the manuscript’s findings is an analysis of spatial and temporal variations of flux 

estimates: to what extent their variability changes subject to the additional data. Some other major 

concerns are listed below.  

 

Our study presents new findings that provide more insight into the number of additional samples 

and spatial pattern, consistent with current technology, that could reduce uncertainty in the ocean 

carbon sink, particularly in the Southern Ocean. There is no other study quantifying the impacts 

of meridional sampling by comparing different USV sampling tracks (also taking winter vs. 

summer sampling into account) in the Southern Ocean by using a Large Ensemble Testbed. 

Bushinsky et al. (2019) base their experiments on real-world SOCCOM float observations and use 

the SOM-FFN product for reconstruction. This is an important contribution. However, float-based 

estimates of pCO2 are not incorporated into the SOCAT database and there are concerns about 

bias. It is therefore important to test the impact of realistic USV sampling, that can take direct 

pCO2 observations with low uncertainties, can cover meridional gradients in the Southern Ocean, 

and are already incorporated into the SOCAT database.  

 

The study by Hauck et al. (2023) uses GOBM output from one single model and reconstructs using 

two reconstruction methods (SOM-FFN and CarboScope), while we use ESM output from 75 

different members and the pCO2-Residual method. We also test a very different sampling pattern 

https://doi.org/10.1016/0304-4203(74)90015-2


compared to the “idealized” sampling in Hauck et al. (2023). We do find the study by Hauck et al. 

(2023) interesting, but note that it was not published when we submitted our initial manuscript. In 

the revised version we have added a paragraph discussing this study and comparing their results 

to ours (lines 933-954). A key point made is that both Bushinsky et al. (2019) and Hauck et al. 

(2023) show an overestimation of the ocean sink with current sampling, while we show the opposite 

– an underestimation of the ocean sink. This further suggests that our study complements previous 

studies and adds value to this pertinent topic of ocean carbon research. It is important to present 

studies with different types of testbeds and reconstruction methods, so that we can better 

understand the impact of adding autonomous observations.    

 

The study by Denvil-Sommer et al. (2021) is different to ours as it assesses sampling in the Atlantic 

Ocean, whereas our study focuses on sampling in the Southern Ocean and we show global 

reconstructions. Further, their study uses a different reconstruction method and assumes sampling 

from floats, not USVs.  

   

Lines 149-153: "To build reconstruction algorithms through the data-driven training that occurs in 

ML, the statistics in all other algorithms developed to date must identify a function that 

disentangles these competing effects of SST on pCO2. Here, the algorithm is assisted by removing 

this known temperature effect, and it must therefore only learn the pCO2 impacts from 

biogeochemical drivers": there exist many other ML approaches [Friedlingstein et al., 2022] which 

do not separate the SSTeffects from others on pCO2 but succeeds in estimate pCO2. The major 

concerns are how to assess the uncertainty derived from SST effect removal and impacts on the 

experiment outputs.  

 

Our study is not an evaluation of different ML approaches, but rather an assessment of how 

sampling impacts pCO2 reconstructions. An evaluation of the method itself has already been 

performed by Bennington et al. (2022). They demonstrated that the pCO2-Residual method 

performs better compared to other products when evaluating against independent data. They also 

showed improved skill when using pCO2-Residual as the target variable as opposed to pCO2. We 

want to assess how different sampling patterns affect the pCO2 reconstruction. As we use the same 



method for all experiments, we can directly compare them and evaluate how sampling impacts the 

reconstructions. 

 

2. Figure 3: Relatively small bias and RMSE values have shown their imprints on the SOCAT track 

compared to "unseen" model truth. This evidences the problems of model overfitting. The authors 

can double-check whether model overfitting comes from the cross-validation technique or the 

pCO2-Residual method. As the key findings of this manuscript are based on the data reconstruction 

results, Reviewer suggests the authors to carefully verify their methods and solve the problems of 

model overfitting before further consideration for publication. 

 

We would argue that the global mean bias and RMSE for the SOCAT reconstruction is comparable 

to values shown for pCO2 reconstructions using other methods (e.g., Stamell et al., 2020; Gregor 

et al., 2019). For example, as shown in Figure 3, bias generally ranges between -10 to +10 µatm, 

which is comparable to the study by Hauck et al. (2023). However, after carefully evaluating our 

calculations following the reviewer’s feedback, we noticed an error in our code that calculates the 

RMSEs. After fixing this error, the mean RMSE values increased by ~ 3-4 µatm.   

 

Editorial and specific comments:  

 

1. Lines 11-12: "anthropogenic" can be removed. The SO has taken up atmospheric CO2 without 

specifying natural or anthropogenic sources.  

 

The Southern Ocean actively cycles natural and absorbs anthropogenic carbon. Gruber et al. 

(2009) demonstrate that the Southern Ocean is a source for natural carbon. The ocean sink for 

anthropogenic carbon is what we wish to focus on in this discussion.  

 

2. Line 37: "fCO2" is not defined. "uncertainty of < 5 µatm": this holds only for the measurements 

chosen to provide gridded SOCAT datasets.  

 

Noted and revised (lines 43-46): “The Surface Ocean CO2 ATlas (SOCAT; Bakker et al., 2016) is 

the largest global database of surface ocean CO2 observations, with data starting in 1957. The 



main synthesis and gridded products contain over 33 million high-quality direct shipboard 

measurements of fCO2 (fugacity of CO2) with an uncertainty of < 5 μatm (Bakker et al., 2022)”. 

 

3. Line 42: "Observation-based data products" −→ "Data mapping methods".  

 

We wish to use the term ‘observation-based data products’ consistently following recent literature 

(e.g., Fay et al., 2021; Crisp et al., 2022; Friedlingstein et al., 2023).  

 

4. Line 45: "These data products" −→ "These methods".  

 

See above comment.  

 

5. Lines 46-47: please remove or change ";" in the brackets to facilitate reading. You can use "-" 

instead. Line 47: "xCO2; atmospheric CO2" −→ "atmospheric CO2 - xCO2"  

 

Noted and revised. 

 

6. Line 48: "where these are co-located" −→ "where their available data are colocated".  

 

We chose to keep the original sentence.   

 

7. Lines 50-51: "Since the data products rely on observations to train the algorithms and thus 

produce these relationships": please rephrase this sentence. Data products do not train algorithms 

and produce relationships, but the ML-based methods themselves estimate the function between 

predictors and target data!  

 

Noted and revised (lines 59-61): “Since the data products rely on pCO2 observations to estimate 

functions between the target and driver variables, data sparsity remains a fundamental limitation 

to this technique”. 

 



8. Line 57: "indirect pCO2 estimates": can you define this term? Are they computed from float 

measurements of other carbonate variables?  

 

Noted and revised. We added this sentence (lines 83-86): “These large uncertainties and biases 

arise when pCO2 is not measured directly as in the observations included in SOCAT, but is rather 

estimated using measurements of pH combined with a regression-derived alkalinity estimate 

(Williams et al., 2017; Gray et al., 2018). SOCAT includes only direct pCO2 observations”. 

 

9. Lines 67-68: "Such improvements in sampling are critically important in the undersampled 

Southern Ocean": USVs with low measurement uncertainty would prompt to be employed for 

observing network systems of pCO2 but to draw this statement, it requires to provide the 

availability of USVs to sample pCO2 by showing the sampling frequency and data coverage area 

over the SO?  

 

Additional high-accuracy observations from the sparsely sampled Southern Ocean, such that can 

be obtained by USVs, are key to provide further constraints on the ocean carbon sink and air-sea 

flux. We do not believe it is necessary to go into detail about the data coverage over the Southern 

Ocean, as we reference studies such as Bakker et al. (2016, 2022) describing the SOCAT coverage 

(which includes the Saildrone observations from Sutton et al. (2021) in the latest version). We also 

mention that the SOCAT coverage is shown in supplementary previous Fig. S3 (new Fig. S5 in 

the revised version). 

 

10. Line 86: "actual observations": should be clarified. If you used the SOCAT grided data tracks 

in your LET experiments, please change to "SOCAT observation-based data" or "SOCAT gridded 

data".  

 

We have revised the sentence (lines 115-118): “However, instead of using real-world observations, 

we sample the target (i.e., surface ocean pCO2) and driver variables (i.e., SST, SSS, MLD, Chl-a 

and xCO2) from our Large Ensemble Testbed (LET) of Earth System Models (ESMs) (e.g., Stamell 

et al., 2020; Gloege et al., 2021; Bennington et al., 2022a)”. 

 



11. Lines 89-90: "in an ESM, surface ocean pCO2 is known at all times and locations": not precise 

enough. It depends on which approximations and computational resources. So far, the models have 

been derived at 1 ◦ or 0.25◦ and monthly resolutions?  

 

We are just aiming to convey that an ESM will not have huge gaps like in the real ocean. We have 

revised the sentence (lines 119-120): “First, in an ESM, the surface ocean pCO2 field is provided 

precisely at all model times and 1°x1° points”. The models used in our study have a 1°x1° 

resolution, which is stated multiple times throughout the manuscript (lines 120, 152, 154, 174, 

198, 232, 263, 324, 449, 450).  

 

12. Lines 161-162: "where pCO2 mean and SST mean is the long-term mean of surface ocean 

pCO2 and temperature, respectively, using all 1°x1° grid cells from the testbed": pCO2 mean is 

different regionally, why you don’t compute a global map of pCO2 mean?  

 

We do compute a mean of pCO2 globally (see line 197), which is the pCO2mean and this is used to 

calculate the residual.    

 

13. Lines 165-168: Please clarify. The authors have excluded pCO2-Residual which have values 

below −250 µatm or over 250 µatm. They mention that such outliers correspond to model values 

higher than the maximum SOCAT data (816 µatm) and that do not reflect reality. It is not correct. 

First, both negative and positive pCO2- Residual values cannot represent the upper bound of 

SOCAT data. Second, SOCAT only covers a tiny portion of the global ocean at a monthly time 

scale, and there might exist unobserved pCO2 values higher than 816 µatm (e.g., over permanently 

or seasonally strong upwelling regions: Eastern Equatorial Pacific, Western Arabian Sea, 

Benguela, etc).  

 

We are not saying that both negative and positive pCO2-Residual values represent the upper bound 

of SOCAT data. Our statement is “These pCO2-Residual values generally correspond to high 

pCO2, above the maximum value in SOCAT (816 µatm)”. By this we mean that the majority of the 

pCO2-Residual values that have been filtered out represent pCO2 values that are larger than 816 

µatm. However, since this seemed to be unclear, we have re-phrased this sentence (lines 208-210): 



“Prior to algorithm processing, pCO2-Residual values > 250 μatm and < -250 μatm from the 

testbed were filtered out targeting values that are not representative of the real ocean. The majority 

of the pCO2-Residual values that were filtered out correspond to high pCO2, above the maximum 

value in SOCAT (816 μatm; Stamell et al., 2020)”. 

 

14. Lines 310-311: "Our presentation of global maps is limited to runs ‘x5_5Y_W’ (5022 

observations) and 311 ‘Z_x4_10Y_YR’ (7600 observations)". The information of gridded data 

used in the experiments should be declared in addition to the number of observations by USVs.  

 

We revised the sentence (lines 449-450): “Our presentation of global maps is limited to runs 

‘x5_5Y_W’ (5,022 monthly 1°x1° observations) and ‘Z_x4_10Y_YR’ (7,600 monthly 1°x1° 

observations)”.  

 

15. Lines 319-321: How did the authors compute Bias (and RMSE) over the global ocean? In order 

to fairly compare the results of two or more runs (e.g., zigzag vs one-latitude, SOCAT vs 

SOCAT+USV), error statistics are computed on modelbased data excluding all used in ML 

training. Specifically, the evaluation should not consider ‘zigzag+one-latitude’ (‘SOCAT+USV’) 

pCO2 data.  

 

The reviewer is correct - the training data should ideally be removed before computing error 

statistics. When using actual observations, one would evaluate the reconstruction based on the test 

set alone. However, since we are using a model testbed, we have the opportunity to evaluate against 

pCO2 values from “unseen” grid cells as well. In our study, we compute error statistics based on 

the full reconstruction, however this should have been communicated more clearly. The training 

data represents only about 1% of the full reconstruction (see new Fig. S1 below). Below, we show 

the 75-member testbed spread in bias and RMSE calculated based on the full reconstruction (what 

we present in our study) vs. ‘unseen’ grid cells for the ‘SOCAT-baseline’. The difference in mean 

bias and RMSE between the full and ‘unseen’ reconstruction is only 0.01 μatm and 0.08 μatm, 

respectively (see new Fig. S2 below). The results from the different runs can therefore be compared 

even though the full reconstruction is taken into account. We agree however with the reviewer that 

the training data should have been removed. Considering that we would have to re-run all 



experiments, and it would not change the error statistics significantly or change our conclusions, 

we chose not to move forward with this for this study. However, for future studies using the testbed, 

the training set will be removed before calculating statistical metrics.  

 

We now add mention of this (lines 231-236): “Here, we calculate error statistics based on the full 

reconstruction (pCO2 from all 1°x1° grid cells of the testbed, except for those masked or filtered 

out). In the full reconstruction, ~ 99 % of the data do not correspond to SOCAT or Saildrone USV 

observations used to train the algorithm (Fig. S1). Training data would ideally be removed before 

performance evaluation, but since the training data represent only ~ 1 %, the impact of not 

removing them is negligible (Fig. S2)”.  

 

Figs. S1 and S2 are shown below. 

 



  
Figure S1: Maps of the full pCO2-Residual reconstruction (all 1°x1° grid cells of the testbed, 
except for those masked or filtered out; see Section 2.1 and 2.2), ‘unseen’ reconstruction (all 1°x1° 
grid cells that do not correspond to SOCAT observations), and training data from the testbed. The 
maps show data from CESM member 001 for the month of March 2016 for the ‘SOCAT-baseline’. 

14,200,255

13,979,526

175,606



Numbers on panels represent the total monthly 1°x1° grid cells for the entire testbed period (1982-
2016) for each group of data.  
 

     
Figure S2: Spread of bias (a) and RMSE (b) for the 75 members of the Large Ensemble Testbed 
for the ‘unseen’ and full reconstruction for the ‘SOCAT-baseline’. The ‘unseen’ reconstruction 
represents independent data, i.e., all 1°x1° grid cells that do not correspond to SOCAT or Saildrone 
USV observations, and is not part of the training set.   
 

 

16. Figures S4 and S5 show cyclic marks (it would be exposed clearly if the authors use a discrete 

colormap with a low number of colors). Would they be imprints of a driver variable?  

 

These “cyclic marks” are likely imprints of the three-component n-vector that replaces the 

longitude and latitude coordinates to continuous values between 0 and 1 (i.e., to avoid the 

algorithm interpreting 0 and 360 degrees to be far apart; see figure below). 

A

B



  
 

Bennington et al. (2022) present global maps (their Fig. 4) of the feature importance of various 

driver variables used in the surface ocean pCO2 reconstruction (MLD, SST, Chl-a, location and 

day of year). Such “cyclic marks” are apparent for “geographic location” and “day of year”, but 

none of the other drivers. We did two test runs (using only one member from the testbed), removing 

day of year (DOY) and geographic location (n-vector; A, B and C) as inputs for the reconstruction. 

As shown by the figure below, the “cyclic” marks disappear when the n-vector is removed. When 

removing the n-vector transformation, however, the reconstruction shows significantly higher bias 

in the Southern Ocean, so we chose to keep these driver variables.    

 

 
  

 

17. Figures 5 and 8: The author should report the number of data gridded from USV observations 

used in ML training. And the error statistics must be computed on the evaluation data (i.e., model-

truth-based data excluding all the training data). Figure 8’s caption: The mean of RMSEs here is 

computed with respect to space or time? Instead, the author should compute the mean of squared 

errors over the global ocean and the periods of interest and then report its square root.  



 

The number of monthly 1°x1° observations for each experiment is described in Table 1 as well as 

shown on the x-axis of Figure 5 and 8. This was specified in the Table 1 caption, but we now 

specify this in the figure captions as well (lines 538-539 and 661-662):‘# additional observations’ 

= number of monthly 1°x1° USV observations in addition to SOCAT. We state in the manuscript 

that (lines 217-218): “The test and validation set each account for 20 % of the data, leaving 60 % 

for training”. For both Fig. 5 and 8, the mean is computed with respect to both space (top figure 

shows global and bottom figure shows Southern Ocean, which in our study is defined as south of 

35° S) and time, which is 2006-2016 (for the 10-year sampling) and 2012-2016 (for the five-year 

sampling). This information is stated in the figure headlines.   

 

Regarding comment about error statistics, please see answer #15.  

 

18. Line 386: ‘’Z_x10_5Y_YR  

 

Noted and revised.  

 

19. Lines 497-499: "Although run ‘x13_10Y_W’ demonstrates the highest reduction in bias out of 

all runs, the ‘zigzag’ runs still reduce bias in the Southern Ocean by 44-65 % (vs. 77 % for run 

‘x13_10Y_W’)". The evaluation should not put high confidence on the bias reduction since this 

statistic is computed as the mean of negative and positive differences between pCO2 estimates and 

model truth. Reviewer agrees that the bias can be used to assess model over- or underestimation 

but RMSD is a better metric for an overall evaluation. 

 

We agree with the reviewer, and that is why we report both bias and RMSE. Our conclusions do 

not fully rely on bias alone, as is shown throughout the paper. For example, we conclude that the 

zigzag-runs perform best overall, even though run ‘x13_10Y_W’ demonstrates a higher reduction 

with respect to mean bias.  

 

20. Lines 536-541: "To better understand this discrepancy, we performed an additional experiment 

based on run 538 ‘Z_x10_5Y_YR’, but assumed sampling every year for the entire testbed period 



(i.e., 1982-2016). The results from this experiment show a significant eduction in the temporal 

variability of reconstruction bias; with the additional USV sampling, the reconstructed Southern 

Ocean air-sea CO2 flux closely matches the ‘model truth’ for the entire testbed duration (Fig. 

S14).". Here biases increases in the last two decades that do not reflect the increase in the number 

of SOCAT (SOCAT+USV) data as shown in the previous results.  

 

As shown by the figure below, run ‘Z_x10_5Y_YR’ (shown in Fig. 6 in main text) and 

‘Z_x10_35Y_YR’ (shown in previous Fig. S14 in supplement; in the revised version, this is now 

Fig. S20) show similar variability the last five years when the sampling is identical. For run 

Z_x10_5Y_YR’, USV observations have been added only for the last five years of the testbed, while 

for run ‘Z_x10_35Y_YR’, USV observations have been added for the whole testbed period (35 

years). The bias decreases more significantly in the earlier decades for run ‘Z_x10_5Y_YR’ 

because there are no additional USV observations at this time, and there are significantly less 

SOCAT observations in this period compared from 1990 and onwards (see new Fig. S5c; this was 

Fig. S3c in the previous version).  

 

 
 

21. Lines 552-554: "Further, we find that this modest amount of additional Saildrone USV 

sampling increases the global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, 25% 

of the uncertainty in the ocean carbon sink ". The increase in global ocean CO2 sink estimated by 

the LET testbed can not be compared with the uncertainty derived from the GCB’s quantification 

[Friedlingstein et al., 2022]. First, they are two different statistics. Second, the GCB’s uncertainty 



is computed based on the ensemble of different data mapping and modeling methods, and thus the 

value might be significantly larger than the one estimated by each method itself. 

 

These values can be compared as they are in the same units. We wish to demonstrate that 0.1 Pg 

C/yr is a significant reduction. Following the reviewer’s comment, we revised the sentence: 

“Further, we find that this modest amount of additional Saildrone USV sampling increases the 

global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, a quantity equivalent to 25 % 

of the uncertainty in the ocean carbon sink”.   
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