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Abstract 10 

The Southern Ocean plays an important role in the exchange of carbon between the atmosphere 11 

and oceans, and is a critical region for the ocean uptake of anthropogenic CO2. However, estimates 12 

of the Southern Ocean air-sea CO2 flux are highly uncertain due to limited data coverage. Increased 13 

sampling in winter and across meridional gradients in the Southern Ocean may improve machine 14 

learning (ML) reconstructions of global surface ocean pCO2. Here, we use a Large Ensemble 15 

Testbed (LET) of Earth System Models and the pCO2-Residual reconstruction method to assess 16 

improvements in pCO2 reconstruction fidelity that could be achieved with additional autonomous 17 

sampling in the Southern Ocean added to existing Surface Ocean CO2 Atlas (SOCAT) 18 

observations. The LET allows for a robust evaluation of the skill of pCO2 reconstructions in space 19 

and time through comparison to ‘model truth’. With only SOCAT sampling, Southern Ocean and 20 

global pCO2 are overestimated, and thus the ocean carbon sink is underestimated. Incorporating 21 

Uncrewed Surface Vehicle (USV) sampling increases the spatial and seasonal coverage of 22 

observations within the Southern Ocean, leading to a decrease in the overestimation of pCO2. A 23 

modest number of additional observations in southern hemisphere winter and across meridional 24 

gradients in the Southern Ocean leads to improvement in reconstruction bias and root-mean 25 

squared error (RMSE) by as much as 95 % and 16 %, respectively, as compared to SOCAT 26 

sampling alone. Lastly, the large decadal variability of air-sea CO2 fluxes shown by SOCAT-only 27 

sampling may be partially attributable to undersampling of the Southern Ocean.   28 
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 2 

1.  Introduction  38 

The ocean plays an important role in mitigating climate change by sequestering anthropogenic 39 

carbon emissions. From 1850 to 2023, the oceans have removed a total of 180 ± 35 Gt of carbon 40 

(Friedlingstein et al., 2023). In order to fully understand the climate impacts from rising emissions, 41 

it is essential to accurately quantify the air-sea CO2 flux and the global ocean carbon sink in space 42 

and time. The Surface Ocean CO2 ATlas (SOCAT; Bakker et al., 2016) is the largest global 43 

database of surface ocean CO2 observations, with data starting in 1957. The main synthesis and 44 

gridded products contain over 33 million high-quality direct shipboard measurements of fCO2 45 

(fugacity of CO2) with an uncertainty of < 5 μatm (Bakker et al., 2022). However, due to limited 46 

resources for ocean observing, limited number of ships/routes, inaccessible regions and unsafe 47 

waters, the database covers only about 1% of the global ocean at monthly 1°x1° spatial resolution 48 

over the period of 1982-2023, and is highly biased towards the northern hemisphere.  49 

Mapping methods have been developed to estimate full-coverage surface ocean pCO2 50 

across space and time by extrapolating to global coverage from these sparse SOCAT observations 51 

(e.g., Landschützer et al., 2014; Rödenbeck et al., 2015; Gloege et al., 2022; Bennington et al., 52 

2022a,b). Most of these data products utilize machine learning (ML) algorithms to estimate a non-53 

linear function between a suite of driver variables (i.e., sea surface temperature - SST, sea surface 54 

salinity - SSS, mixed layer depth - MLD, Chlorophyll - Chl-a, xCO2 - atmospheric CO2) and 55 

surface ocean pCO2 (the target variable) where these are co-located. The driver variables are 56 

proxies for processes influencing ocean pCO2. Full-coverage driver variable datasets are then 57 

processed through these ML algorithms to produce estimated global full-coverage surface ocean 58 

pCO2. Since the data products rely on pCO2 observations to estimate functions between the target 59 

and driver variables, data sparsity remains a fundamental limitation to this technique.  60 

It has been suggested that targeted sampling from autonomous platforms combined with 61 

ships, filling in the state space of pCO2, represents a path forward to improve surface ocean pCO2 62 

reconstructions (Bushinsky et al., 2019; Gregor et al., 2019; Gloege et al., 2021; Djeutchouang et 63 

al., 2022; Landschützer et al., 2023; Hauck et al., 2023). One major obstacle, however, is that the 64 

indirect pCO2 estimates from floats have high uncertainties (± 11.4 μatm) and may be biased by 65 

as much as ~ 4 μatm (Bakker et al., 2016; Williams et al., 2017; Fay et al., 2018; Gray et al., 2018; 66 

Sutton et al., 2021; Mackay and Watson 2021; Wu et al 2022). These large uncertainties and biases 67 
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arise when pCO2 is not measured directly as in the observations included in SOCAT, but is rather 84 

estimated using measurements of pH combined with a regression-derived alkalinity estimate 85 

(Williams et al., 2017; Gray et al., 2018). SOCAT includes only direct pCO2 observations. Biases 86 

and uncertainties may have large impacts on global air-sea CO2 flux estimates, given that the global 87 

mean air-sea disequilibrium is only 5-8 μatm (McKinley et al., 2020). It is therefore critical that 88 

bias and uncertainty corrections are well-constrained over different oceanic conditions and over 89 

time.  90 

Uncrewed Surface Vehicles (USVs), such as those manufactured and maintained by 91 

Saildrone Inc., represent a new type of autonomous platform that can obtain direct pCO2 92 

observations with significantly lower uncertainties compared to other autonomous methods, and 93 

equivalent to the highest-quality shipboard measurements contained in SOCAT (± 2 μatm; Sabine 94 

et al., 2020; Sutton et al., 2021). Such improvements in sampling are critically important in the 95 

undersampled Southern Ocean. This region is fundamental in terms of the ocean’s ability to 96 

remove carbon from the atmosphere, being responsible for ~ 40% of the global ocean uptake of 97 

anthropogenic CO2 (Khatiwala et al., 2009). Improved data coverage in the Southern Ocean 98 

represents thus a major opportunity to advance our understanding of the global ocean carbon sink 99 

(Lenton et al., 2006, 2013; Takahashi et al., 2009; Monteiro et al., 2015; Gregor et al., 2019; Gray 100 

et al., 2018; Mongwe et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021; Long et al., 2021; 101 

Mackay et al., 2022; Wu et al., 2022; Landschützer et al., 2023; Hauck et al., 2023). A combination 102 

of SOCAT and Saildrone USV observations would include high-accuracy data from both the long 103 

record and global coverage of ship tracks, and the expanded finer resolution of spatial and seasonal 104 

coverage of the poorly sampled Southern Ocean. Importantly, Saildrone USVs are also able to 105 

cover the spatial extent and seasonal cycle of the meridional gradients, which has been shown to 106 

be critical in order to reduce errors in reconstructing surface ocean pCO2 (Djeutchouang et al., 107 

2022). A combined approach, with autonomous samples such as those obtained from Saildrone 108 

USVs, in addition to high-quality observations collected from ships, represents thus a promising 109 

solution to improve surface ocean pCO2 ML reconstructions.  110 

Here, we assess to what extent surface ocean pCO2 reconstructions can improve by 111 

implementing the pCO2-Residual machine learning (ML) reconstruction (Bennington et al., 2022a) 112 

with the combined inputs of SOCAT and Saildrone USV coverage. However, instead of using real-113 
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world observations, we sample the target (i.e., surface ocean pCO2) and driver variables (i.e., SST, 116 

SSS, MLD, Chl-a and xCO2) from our Large Ensemble Testbed (LET) of Earth System Models 117 

(ESMs) (e.g., Stamell et al., 2020; Gloege et al., 2021; Bennington et al., 2022a). There are two 118 

major benefits of using a testbed compared to actual observations. First, in an ESM, the surface 119 

ocean pCO2 field is provided precisely at all model times and 1°x1° points. Therefore, the pCO2 120 

reconstructed by the ML algorithm can be robustly evaluated in space and time against a known 121 

‘truth’ (i.e., ‘model truth’). The reconstruction evaluation is thus not limited to the availability of 122 

sparse real-world ocean observations. Secondly, a testbed can be used to plan and evaluate the 123 

impact of different sampling strategies on the reconstructed pCO2. It is important to stress that, by 124 

using a model testbed, we do not predict real-world surface ocean pCO2 and air-sea CO2 fluxes. 125 

The goal here is to assess the accuracy with which an ML algorithm can reconstruct the ‘model 126 

truth’ given inputs of samples consistent with real-world data coverage from the SOCAT database 127 

and Saildrone USVs.  128 

By utilizing the observational coverage of SOCAT and Saildrone USV transects, we assess 129 

to what extent the pCO2-Residual method accurately reconstructs model surface ocean pCO2 in 130 

space and time. We test the impact of two different USV Southern Ocean sampling schemes, the 131 

first based on a sampling campaign completed in 2019 (Sutton et al., 2021), and the second on 132 

logistically feasible potential future meridional sampling. Additionally, we explore the timing, 133 

magnitude, duration and spatial extent of Southern Ocean USV sample additions that most 134 

significantly improve the pCO2 predictions. Combined, the sampling patterns tested here 135 

complements previous studies exploring the impact of additional sampling in the Southern Ocean 136 

based on idealized full global coverage of floats, and float observations from recent deployments, 137 

including the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) 138 

project, moorings and sailboats (Bushinsky et al., 2019; Denvil-Sommer et al., 2021; 139 

Djeutchouang et al., 2022; Hauck et al., 2023; Behncke et al., 2024; Landschützer et al., 2023).  140 

 141 

2. Methods 142 

2.1 The Large Ensemble Testbed (LET) 143 
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In this study, the Large Ensemble Testbed (LET) includes 25 members from three independent 147 

initial-condition ensemble models (i.e., CanESM2, CESM-LENS and GFDL-ESM2M; Kay et al., 148 

2015; Rodgers et al., 2015; Fyfe et al., 2017), giving a total of 75 members within the testbed. We 149 

do not use the MPI-GE model that was included in the past LET studies because its Southern 150 

Ocean pCO2 seasonality and decadal variability appear to be anomalously large (Gloege et al., 151 

2021; Fay and McKinley, 2021; Bennington et al., 2022a). Each individual Earth System Model 152 

(ESM) is an imperfect representation of the actual Earth system, so the multiple Large Ensembles 153 

are used to span different model structures and their representation of internal variability. Each 154 

ensemble member undergoes the same external forcing (i.e., historical atmospheric CO2 before 155 

2005 and Representative Concentration Pathway 8.5 through 2016, plus solar and volcanic 156 

forcing), but the spread across the ensemble members gives a unique trajectory of the ocean-157 

atmosphere state over time, i.e., a different state of internal variability as well as the difference 158 

across models.  159 

The LET used in this study includes monthly 1°x1° model output from 1982-2016 (Gloege 160 

et al., 2021). For each individual ensemble member of the LET, surface ocean pCO2 and co-located 161 

driver variables (i.e., SST, SSS, Chl-a, MLD, xCO2) were sampled monthly at a 1°x1° resolution, 162 

at times and locations equivalent to SOCAT and Saildrone USV observations (Fig. 1; Step 1). 163 

While the SOCAT observations were sampled from the testbed matching the actual years of 164 

sampling, the USV observations were sampled from the testbed starting in 2007 (for ten-year 165 

sampling) or 2012 (for five-year sampling) (see Sect. 2.4). As our focus is on reconstruction for 166 

the open ocean, testbed output for coastal areas, the Arctic Ocean (>79°N) and marginal seas 167 

(Hudson Bay, Caspian Sea, Black Sea, Mediterranean Sea, Baltic Sea, Java Sea, Red Sea and Sea 168 

of Okhotsk) were removed prior to algorithm processing.  169 

 170 

Deleted: s171 

Deleted: year 172 



 6 

  173 
Figure 1: Schematic of the Large Ensemble Testbed (LET; modified from Gloege et al., 2021). 1: Surface ocean 174 
pCO2 from each of the 75 model members is sampled in space and time mimicking real-world SOCAT and Saildrone 175 
USV observations (see Fig. 2; Table 1; Section 2.5). Prior to algorithm processing, pCO2-Residual is calculated 176 
(Section 2.2). 2: The pCO2-Residual (target variable) and co-located driver variables (i.e., SST, SSS, MLD, Chl, 177 
xCO2) sampled from the testbed are processed by the XGBoost (XGB) algorithm (Section 2.3). 3: Based on the full-178 
coverage of driver variables, pCO2-Residual is reconstructed globally. This process is repeated 75 times, individually 179 
for every single testbed model member. The temperature component (pCO2-T) is then added back to the pCO2-180 
Residual for each value. 4: The globally reconstructed pCO2 is evaluated against the ‘model truth’ at all 1°x1° grid 181 
cells. SST = sea surface temperature. SSS = sea surface salinity. MLD = mixed layer depth. Chl = chlorophyll. xCO2 182 
= atmospheric concentration of CO2.  183 

 184 

2.2 The pCO2-Residual approach 185 

We used the pCO2-Residual approach following Bennington et al. (2022a), which removes the 186 

well-studied direct effect of temperature on pCO2 from the LET model output before algorithm 187 

processing. Temperature has both direct and indirect effects on surface ocean pCO2. The direct 188 

effect of temperature, due to solubility and chemical equilibrium, is that an increase in temperature 189 

directly causes an increase in pCO2 (Takahashi et al., 1993). Indirectly, temperature changes are 190 

associated with biological production and wintertime vertical mixing; and these processes tend to 191 

result in opposing pCO2 changes. To build reconstruction algorithms through the data-driven 192 

training that occurs in ML, the statistics in all other algorithms developed to date must identify a 193 

function that disentangles these competing effects of SST on pCO2. Here, the algorithm is assisted 194 

by removing this known temperature effect, and it must therefore only learn the pCO2 impacts 195 
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 7 

from biogeochemical drivers. The pCO2-Residual method leads to physically understandable 205 

connections between the input data and output (Bennington et al., 2022a), which mitigates to some 206 

degree ‘black box’ concerns typically associated with ML algorithms (Toms et al., 2020). 207 

Bennington et al. (2022a) demonstrate higher skill for reconstructions using pCO2-Residual as the 208 

target variable as opposed to pCO2 (Figure S1 in Bennington et al., 2022a), indicating that the 209 

removal of the temperature-driven component enhances the performance of the method. Further, 210 

the pCO2-Residual method has been shown to perform slightly better against independent 211 

observations than other common mapping methods (Bennington et al., 2022a). A brief description 212 

is provided here, but for further details see Bennington et al. (2022a).  213 

The temperature-driven component of pCO2 (pCO2-T) is calculated using this equation: 214 

pCO2-T = pCO2mean * exp[0.0423 * (SST-SSTmean)] 215 

where pCO2mean and SSTmean is the long-term mean of surface ocean pCO2 and temperature, 216 

respectively, using all 1°x1° grid cells from the testbed. Alternative sources of mean pCO2 were 217 

assessed by Bennington et al. (2022a), but they found no significant impact on the test statistics or 218 

reconstructed pCO2. Once pCO2-T is determined, pCO2-Residual is calculated as the difference 219 

between pCO2 and the calculated pCO2-T:  220 

pCO2-Residual = pCO2 – pCO2-T 221 

Prior to algorithm processing, pCO2-Residual values > 250 μatm and < -250 μatm from the 222 

testbed were filtered out targeting values that are not representative of the real ocean. The majority 223 

of the pCO2-Residual values that were filtered out correspond to high pCO2, above the maximum 224 

value in SOCAT (816 μatm; Stamell et al., 2020). The excluded data points (less than 0.2 % per 225 

member) mostly occurred in output from the CanESM2 model, and were restricted geographically, 226 

predominantly along the western coastline of South America.  227 

The eXtreme Gradient Boosting method (XGB; Chen and Guestrin, 2016) is used to 228 

develop an algorithm that allows driver variables (i.e., SST, SSS, Chl-a, MLD, xCO2) to predict 229 

the pCO2-Residual (Fig. 1; Step 2). The pCO2-Residual and associated feature variables is split 230 

into validation, training and testing sets. The test and validation set each account for 20 % of the 231 

data, leaving 60 % for training. The validation set is used to optimize the algorithm 232 
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 8 

hyperparameters, which define the architecture of decision trees used in the model. The training 238 

set is used to build the decision trees in XGB, while the test set is used to evaluate the performance 239 

of the final algorithm. The XGB algorithm for this study used 4,000 decision trees with a maximum 240 

depth of 6 levels, and this was fixed for all experiments (see Supplementary Text A). For the 241 

final reconstruction of surface ocean pCO2 across all space and time points, the previously 242 

calculated pCO2-T values are added back to the reconstructed pCO2-Residual (Fig. 1; Step 3). 243 

The full XGB process, including 1) training/evaluating/testing and 2) reconstructing 244 

globally at a monthly resolution, was repeated individually for each LET member. This process 245 

provided therefore a total of 75 unique reconstruction vs. ‘model truth’ pairs, which can be 246 

statistically compared (Fig. 1; Step 4).  247 

2.3 Statistical Analysis in the Testbed 248 

The statistical comparisons between the test set and the reconstructions are equivalent to what 249 

would be derived using real-world data (‘seen’ values). Here, we calculate error statistics based on 250 

the full reconstruction (pCO2 from all 1°x1° grid cells of the testbed, except for those masked or 251 

filtered out). In the full reconstruction, ~ 99 % of the data  do not correspond to SOCAT or 252 

Saildrone USV observations used to train the algorithm (Fig. S1). Training data would ideally be 253 

removed before performance evaluation, but since the training data represent only ~ 1 %, the 254 

impact of not removing them is negligible (Fig. S2). A suite of statistical metrics can be used to 255 

compare the reconstruction to the ‘model truth’ in order to assess how well the algorithm can 256 

extrapolate from sparse data to full-field coverage (Fig. 1; Step 4). In this study, we focus on bias 257 

and root-mean-squared error (RMSE). Bias is calculated as ‘mean prediction – mean observation’ 258 

(i.e., pCO2 predicted by XGB subtracted by the pCO2 ‘model truth’), and is a measure of over- or 259 

underestimation in the reconstructions. RMSE measures the magnitude of the predicted error and 260 

is calculated as the square root of the mean of the squared errors. We focus our discussion on the 261 

mean across 75 members of the testbed for bias and RMSE. The spread across testbed ensemble 262 

members is non-negligible and will be the focus of future work; here, we present the testbed spread 263 

primarily in the Supplement.  264 

 265 
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 9 

2.4 Overview of sampling patterns and model runs  272 

First, we sampled target and driver variables from the LET based on sampling distributions 273 

equivalent to that of the SOCAT database (‘SOCAT-baseline’). Then, we combined the ‘SOCAT-274 

baseline’ with testbed output representing additional Saildrone USV coverage in the Southern 275 

Ocean. The additional Southern Ocean coverage was based on 1) the Sutton et al. (2021) sampling 276 

campaign from 2019 (‘one-latitude’ track) and 2) realistic potential future meridional USV 277 

observations (‘zigzag’ track) (see Section 2.4.2; Fig. 2). We performed a total of 10 experimental 278 

runs (Table 1). These represent different sampling approaches, including: 1) repeating USV 279 

sampling over a five- or ten-year period, 2) varying the number of USVs and thus the total number 280 

of monthly 1°x1° observations, and 3) restricting all observations to southern hemisphere winter 281 

months. By comparing the different runs, we can assess whether or not certain targeted sampling 282 

strategies in the Southern Ocean can improve surface ocean pCO2 ML reconstructions. As 283 

discussed above, the LET runs to 2016 only (Gloege et al., 2021). Saildrone USV observations 284 

were therefore sampled from the testbed starting in year 2006 or 2007 (for the ten-year sampling) 285 

or 2012 (for the five-year sampling) until 2016, i.e., the final year of the testbed.   286 

2.4.1 ‘One-latitude’ runs 287 

Six out of the ten experimental runs include the ‘one-latitude’ track (Table 1). The 2019 Saildrone 288 

USV journey (Sutton et al., 2021) covered an 8-month period, from January to August. Since the 289 

USV was recovered in early August, it did not cover the entire southern hemisphere winter (Fig. 290 

S3). We repeated this ‘one-latitude’ eight-month sampling pattern for five years (‘5Y_J-A’; 2,075 291 

observations) and ten years (‘10Y_J-A’; 4,150 observations). To evaluate year-round (‘YR’) 292 

coverage, the eight-month sampling period (January-August) was shifted by one month each year 293 

for ten years (‘10Y_YR’; 4,150 observations). To evaluate the impact of increased sampling, the 294 

2019 Saildrone USV track was repeated 12 times with incremental offsets of 1° from the original 295 

track, covering an additional 6° north and south (Fig. S4). This ‘high-sampling’-run (‘x13_10Y_J-296 

A’; 44,250 observations) represents a total of 13 USVs. We also performed an additional 13 USV 297 

run, but including observations from southern hemisphere winter (‘W’) months only 298 

(‘x13_10Y_W’; 25,395 observations). Finally, considering the cost of deploying 13 USVs, a 299 

downscaled ‘multiple-USV-winter-only’-run was tested, including five USVs sampling over a 300 
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 10 

period of five years (‘x5_5Y_W’; 5,022 observations). This run covers an additional 2° north and 308 

south from the original USV track. 309 

2.4.2 ‘Zigzag’ runs 310 

Four of the ten experimental runs represent realistic potential meridional sampling in the Southern 311 

Ocean (‘zigzag’ tracks; Table 1) as suggested by Djeutchouang et al. (2022). Saildrone USVs can 312 

operate at a speed capable of covering the spatial extent of meridional gradients in the Southern 313 

Ocean (Djeutchouang et al., 2022). However, Saildrone USVs are solar powered, and thus their 314 

range is restricted by the availability of solar radiation. To account for this and maintain a realistic 315 

sampling scenario, sampling occurs only to a maximum latitude of 55° S in these experiments.    316 

This alternative sampling pattern represents USVs sailing west to east in a north/south ‘zigzag’ 317 

pattern covering 40° S and 55° S for every 30° of longitude (Fig. 2). We created two scenarios. 318 

For the first scenario, every 30° of longitude from 40° S and 55° S is visited every three months 319 

within a single year as suggested by Lenton et al. (2006). Assuming an average Saildrone USV 320 

speed, this scenario represents four platforms equally spaced around the Southern Ocean. This 321 

sampling pattern was repeated for 10 years, with year-round coverage (‘Zx4_10Y_YR’; 7,600 322 

observations), and for southern hemisphere winter months only (‘Zx4_10Y_W’; 2,500 323 

observations). The second scenario represents a ‘high-sampling’ strategy, where every 30° of 324 

longitude from 40° S and 55° S is visited approximately monthly. This can be achieved by 325 

deploying 10 platforms equally spaced around the Southern Ocean running at an average Saildrone 326 

USV speed. This sampling pattern is repeated for five years, sampling year-round 327 

(‘Z_x10_5Y_YR’; 11,400 observations) and during southern hemisphere winter months only 328 

(‘Z_x10_5Y_W’; 3,800 observations).  329 
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 334 
Figure 2: Saildrone Uncrewed Surface Vehicle (USV) tracks representing the first circumnavigation around 335 
Antarctica from 2019 in maroon (‘one-latitude’ track; Sutton et al., 2021) and an alternative virtual route with 336 
meridional coverage (‘zigzag’ track).  337 

 338 
Table 1. Overview of the different sampling experiments tested in this study, and mean bias and RMSE (in μatm) for 339 
various time periods, latitude bands for all runs. Bold values represent the best score for each category. ‘One-lat’ = 340 
‘one-latitude’ track; incorporates the Saildrone USV route from Sutton et al. (2021). ‘Zigzag’ =  potential meridional 341 
sampling. ‘Additional observations = number of 1°x1° monthly Saildrone USV observations in addition to SOCAT. 342 
J-A= January-August. YR = year-round. W = southern hemisphere winter. x4, x5, x10 and x13 = four, five, ten and 343 
13 USVs. SO winter = Southern Ocean winter months, i.e., June, July, August and also including September. *Average 344 
value of the mean of 2006-2016 and 2012-2016. The global coverage increase was calculated based on the total 345 
number of available 1982-2016 monthly 1°x1° observations from SOCAT (262,204 observations) and the Large 346 
Ensemble Testbed (17,290,470 observations).  347 

 348 

2.5 Air-sea CO2 flux 349 

To assess the global ocean carbon sink associated with our pCO2 reconstructions, air-sea CO2 350 

exchange was calculated for 1985 onward. Here, we computed air-sea CO2 fluxes using the bulk 351 

Run name SOCAT-baseline 5Y_J-A 10Y_J-A 10Y_YR x13_10Y_J-A x13_10Y_W x5_5Y_W Z_x4_10Y_YR Z_x4_10Y_W Z_x10_5Y_YR Z_x10_5Y_W
Saildrone track NA One-lat One-lat One-lat One-lat One-lat One-lat Zigzag Zigzag Zigzag Zigzag
Years of sampling NA 5 10 10 10 10 5 10 10 5 5
Duration of sampling NA Jan-Aug Jan-Aug Year-round Jan-Aug SO winter SO winter Year-round SO winter Year-round SO winter
Additional observations NA 2,075 4,150 4,150 44,250 25,395 5,022 7,600 2,500 11,400 3,800
Global coverage increase (%) NA 0.01 0.02 0.02 0.3 0.1 0.03 0.04 0.01 0.07 0.02
Mean bias (μatm) 
Testbed period (1982-2016)
Globally 0.63 0.59 0.59 0.52 0.53 0.39 0.57 0.51 0.51 0.45 0.44
NORTH (35°N-90°N) 0.11 0.24 0.20 0.25 0.20 0.17 0.16 0.16 0.16 0.12 0.20
MID (35°S-35°N) 0.23 0.21 0.22 0.14 0.20 0.15 0.23 0.20 0.18 0.13 0.18
SOUTH (90°S-35°S) 1.4 1.3 1.2 1.1 1.1 0.80 1.2 1.1 1.1 1.0 0.87
SO winter months (JJA) 1.3 1.2 1.2 1.1 1.1 0.90 1.2 0.93 1.0 0.94 0.95
SO summer months (DJF) 0.070 0.11 0.15 0.10 0.15 0.019 0.11 0.25 0.073 0.16 0.066
2006/2012-2016
Globally 0.51* 0.27 0.34 0.28 0.19 0.03 0.21 0.23 0.24 0.17 0.07
SOUTH (90°S-35°S) 1.6* 0.93 1.1 1.0 0.72 0.37 0.73 0.89 0.92 0.67 0.55
SOUTH (90°S-35°S) Jun, Jul, Aug 4.2* 2.6 2.7 2.8 2.2 1.8 2.5 1.8 2.4 1.2 2.0
Mean RMSE (μatm) 
Testbed period (1982-2016)
Globally 11.8 11.7 11.8 11.7 11.7 11.6 11.7 11.5 11.6 11.5 11.6
NORTH (35°N-90°N) 13.0 13.0 13.0 13.0 13.0 13.0 13.1 13.0 13.0 13.0 13.0
MID (35°S-35°N) 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7
SOUTH (90°S-35°S) 11.5 11.3 11.4 11.2 11.1 11.0 11.3 10.7 11.0 10.6 11.0
2006/2012-2016
Globally 11.6* 11.6 11.4 11.3 11.3 11.2 11.6 11.0 11.2 11.1 11.4
SOUTH (90°S-35°S) 11.4* 11.1 11.0 10.7 10.6 10.4 10.9 10.0 10.6 9.7 10.6
SOUTH (90°S-35°S) Jun, Jul, Aug 12.0* 11.3 11.2 10.9 10.5 10.3 11.1 10.3 10.6 9.6 10.3
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formulation with python package Seaflux.1.3.1 (https://github.com/lukegre/SeaFlux; Gregor et al. 371 

2021; Fay et al., 2021). We calculated global and Southern Ocean flux in the same manner for 1) 372 

the testbed ‘model truth’, 2) the ‘SOCAT-baseline’ and 3) the 10 experimental USV runs.  373 

The net sea–air CO2 flux was estimated using: 374 

Flux=kw·sol·(pCO2ocn−pCO2atm)·(1−ice) 375 

where ‘kw’ is the gas transfer velocity, ‘sol’ is the solubility of CO2 in seawater (in units of mol 376 

m−3 μatm−1), ‘pCO2ocn’ is the partial pressure of surface ocean carbon (in μatm), either from the 377 

‘model truth’ or from the reconstructions, and pCO2atm (in μatm) is the partial pressure of 378 

atmospheric CO2 in the marine boundary layer. For GFDL, we used direct model output of 379 

pCO2atm, while for CESM and CanESM2, pCO2atm was calculated individually, as the product of 380 

surface xCO2 and sea level pressure (the contribution of water vapor pressure was corrected for in 381 

CESM). Finally, to account for the seasonal ice cover in high latitudes, the fluxes were weighted 382 

by 1 minus the ice fraction (‘ice’), i.e., the open ocean fraction.  383 

Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high-384 

resolution output is not available for the LET. Monthly output is available, but this is not sufficient 385 

for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014). Given 386 

the necessity to use observed winds, for consistency, we use observations for all necessary 387 

variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 388 

2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 389 

(OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the 390 

European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure 391 

(Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in 392 

units of Pg C yr-1. 393 

Note that, reconstructions of pCO2 for the ‘SOCAT-baseline’ and the experimental USV 394 

runs are limited in their spatial extent to the open ocean (see Sect. 2.1; excluding coastal areas, the 395 

Arctic Ocean and marginal seas). The same mask was thus also applied when calculating the flux 396 

of the ‘model truth’, prior to comparison with the reconstructions.  397 
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3. Results 402 

3.1 Performance metrics for the ‘SOCAT-baseline’ reconstruction  403 

The mean bias for the entire testbed period (i.e., 1982-2016) is 0.63 μatm globally (Fig. 3a) and 404 

1.4 μatm for the Southern Ocean (< 35° S; Table 1). Bias is much closer to zero for the mid- 405 

latitudes (between 35° S and 35° N; 0.23 μatm) and northern latitudes (> 35° N; 0.11 μatm) (Fig. 406 

3a). There is a significant difference in bias considering southern hemisphere winter months (June, 407 

July, August) versus summer months (December, January, February), with a global mean bias (for 408 

1982-2016) of 1.3 μatm compared to 0.07 μatm, respectively (Table 1), due to the sparseness of 409 

SOCAT observations from the southern hemisphere during the harsh winter season (Fig. S5a). 410 

The mean RMSE for the entire testbed period (i.e., 1982-2016) is 11.8 μatm globally (Fig. 3b) and 411 

11.5 μatm for the Southern Ocean (Table 1). RMSE is highest in the Eastern Tropical and 412 

Southeastern Pacific Ocean and in the Southern Ocean, where the algorithm generally 413 

overestimates pCO2 (i.e., positive bias; Fig. 3a), with some exceptions in the Atlantic section. This 414 

is consistent with the areas significantly undersampled by SOCAT (Fig. S5b). Except for these 415 

areas, RMSE and bias is generally low (close to zero) in the open ocean, but show higher values 416 

along coastlines (Fig. 3b). The predicted pCO2 is thus more accurate in areas similar to and 417 

surrounding the SOCAT “observations” (i.e., monthly 1°x1° grid cells equivalent to SOCAT 418 

coverage, but sampled from the LET). Figure 3 shows mean bias and RMSE for the full 419 

reconstruction (see Section 2.3), but note that there is a statistically significant difference between 420 

the train and test set errors (Fig. S6). This indicates potential overfitting in our ML model (i.e., 421 

higher errors for the ‘unseen’ reconstruction), and that further tuning of the hyperparameters could 422 

increase generalization skill (see Supplementary Text A).   423 
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 433 

Figure 3: Bias (a) and root-mean-squared error (RMSE) (b) for the ‘SOCAT-baseline’ (i.e., no USV) over the period 434 
of 1982 through 2016. The global mean bias and RMSE is 0.63 μatm and 11.8 μatm, respectively. Note that only the 435 
open ocean was considered in the reconstruction, so several areas were masked out prior to algorithm processing, such 436 
as the Arctic Ocean, coastal areas and marginal seas (no data; white areas in figures).  437 
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Our presentation of global maps is limited to runs ‘x5_5Y_W’ (5,022 monthly 1°x1° observations) 455 

and ‘Z_x4_10Y_YR’ (7,600 monthly 1°x1° observations). These runs were selected as they 456 

represent observational schemes that are realistic in the near-term future considering logistics and 457 

cost level, both non-meridional and meridional sampling, and different approaches to observing 458 

duration and seasonal coverage. For the remaining runs, equivalent maps can be found in the 459 

Supplement.  460 

3.2.1 Bias 461 

All Saildrone USV runs show a reduction in bias compared to the global mean 1982-2016 462 

‘SOCAT-baseline’ (Figs. 4a, S7). The improvement in bias is mainly due to lower reconstructed 463 

pCO2 values at southern latitudes, where the ‘SOCAT-baseline’ reconstruction generally 464 

overestimates pCO2 (Fig. 3a). The global mean bias for ‘zigzag’ run ‘Z_x4_10Y_YR’ is 0.51 465 

μatm, a higher improvement (19 %) over the ‘SOCAT-baseline’ compared to the ‘one-latitude’ 466 

run ‘x5_5Y_W’ (11 % mean improvement; mean bias = 0.57 μatm;) (Fig. 4a; Table 1). Generally, 467 

the ‘zigzag’ runs show higher improvements from the ‘SOCAT-baseline’ (19-31 % improvement; 468 

resulting mean bias = 0.44-0.51 μatm) compared to the ‘one-latitude’ runs (7-19 % improvement; 469 

resulting mean bias = 0.52-0.59 μatm) (Fig. S6; Table 1). However, the ‘one-latitude’-run 470 

‘x13_10Y_W’ that samples southern hemisphere winter months only, stands out with the lowest 471 

global mean (1982-2016) bias of 0.39 μatm, representing a 39 % mean improvement from the 472 

‘SOCAT-baseline’ (Table 1; Fig. S7). This run, however, has three and five times more 473 

observations (25,395) than ‘Z_x4_10Y_YR’ and ‘x5_5Y_W’, respectively.  474 

Compared to the entire testbed period, even larger improvements in global mean bias are 475 

shown for the period of Saildrone USV additions (2006-2016 and 2012-2016; Figs. 4a vs. 4b, 476 

Figs. S7 vs. S8). Compared to the ‘SOCAT-baseline’, run ‘x13_10Y_W’ results in a mean bias 477 

improvement of 95 %, while the remaining ‘one-latitude’ runs and the ‘zigzag’ runs show mean 478 

improvements up to 63 % and 85 %, respectively (Fig. S8). The spread in mean bias (2006/2012-479 

2016) across the 75 testbed members for each experiment is shown in Figure S9.     480 

Perhaps surprisingly, there is not a strong connection between the global or Southern Ocean 481 

mean bias and the number of added USV observations (Fig. 5). The ‘one-latitude’ ‘high-sampling’ 482 

run ‘x13_10Y_J-A’ (44,250 observations) show similar mean bias or is outperformed by all 483 
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‘zigzag’ runs as well as the ‘one-latitude’-runs that restrict sampling to southern hemisphere winter 499 

months (i.e., ‘x5_5Y_W’ and ‘x13_10Y_W’).      500 

Considering the change in bias from year-to-year, the ‘SOCAT-baseline’ shows positive 501 

bias at all latitudes in the beginning of the testbed period, before improvement occurs around 1990 502 

(Fig. 6a). This is consistent with increasing SOCAT sampling with time for the period considered 503 

here (i.e., up to 2016; Fig. S5c). As SOCAT observations are biased towards the northern 504 

hemisphere (Fig. S5a, b), bias in the Southern Ocean (< 35° S) increases significantly starting in 505 

the 2000s and remains high until the end of the testbed period (Fig. 6a). By adding USV sampling, 506 

bias in the Southern Ocean improves over the ‘SOCAT-baseline’ around year 2000 (Fig. 6b-d; 507 

Fig. S10), up to 6-12 years before to the introduction of additional samples in either 2006 or 2012. 508 

This improvement is shown for the majority of the 75 ensemble members (Fig. S11). Run 509 

‘Z_x10_5Y_W’, which has the lowest mean bias out of the ‘zigzag’ runs (Fig. 5), shows 510 

improvement even further back in time, until the beginning of the testbed period (Fig. S10). While 511 

the annual mean bias of the ‘zigzag’ runs varies rather consistently, there is a larger spread across 512 

the ‘one-latitude’ runs (Fig. 6d).  513 
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 526 

 527 
Figure 4: Change in bias when comparing run ‘x5_5Y_W’ and ‘Z_x4_10Y_YR’ to the ‘SOCAT-baseline’ 528 
reconstruction, averaged over the duration of the testbed period (a; 1982-2016) and the period of USV additions (b; 529 
2006-2012 or 2012-2016). The percent global improvement in absolute bias is shown on each panel. The USV 530 
Saildrone tracks are shown in blue.   531 
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 540 
Figure 5: Mean bias globally (a) and for the Southern Ocean (b) for the duration of Saildrone USV sampling (2006-541 
2016 or 2012-2016) for all runs presented in Table 1. Circles represent runs using the ‘one-latitude’ track, while 542 
diamonds represent ‘zigzag’ runs. Runs highlighted in bold correspond to the two selected runs mapped in Figure 4, 543 
6, 7 and 9. Global (0.51 μatm) and Southern Ocean (1.6 μatm) bias values shown for the ‘SOCAT-baseline’ (black 544 
squares) represent a mean of values for 2006-2016 (global = 0.52 μatm, S. Ocean = 1.63 μatm) and 2012-2016 (global 545 
= 0.51 μatm, S. Ocean = 1.56 μatm). ‘# additional observations’ = number of monthly 1°x1° USV observations in 546 
addition to SOCAT. Box plots illustrating the spread across the 75 ensemble members are shown in Fig. S9.  547 
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 553 

 554 

Figure 6: Zonal mean, annual mean Hovmöller of bias for the ‘SOCAT-baseline’ (a). Change in bias for run 555 
‘x5_5Y_W’ (b) and ‘Z_x4_10Y_YR’ (c) compared to the ‘SOCAT-baseline’ shown in (a). Improvement in bias in 556 
the Southern Ocean expands back in time well beyond the duration of USV additions for both runs (shown by arrows 557 
on each panel). Annual mean bias for the Southern Ocean (> 35° S) for all runs (d).  558 
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3.2.2 Root-mean squared error (RMSE) 599 

Similar to bias, improvements in RMSE are most significant during the period of USV additions 600 

and within the Southern Ocean (Fig. 7a vs. 7b). For the duration of USV additions, the ‘one-601 

latitude’ runs show improvements in global mean RMSE of 1-3 % (0.1-1 % for 1982-2016), while 602 

the ‘zigzag’ runs show higher improvements between 2-5 % (1-3 % for 1982-2016) (Figs. 7, S12, 603 

S13). Mean RMSE is further reduced in the Southern Ocean by up to 16 %, and during southern 604 

hemisphere winter months (JJA) up to 21 % (run ‘Z_x10_5Y_YR’; mean RMSE of 9.6 μatm; 605 

Table 1). There is minimal change in RMSE (or bias) during southern hemisphere summer months 606 

(DJF; Fig. S14). The two ‘zigzag’ runs sampling year-round (‘Z_x4_10Y_YR’ and 607 

‘Z_x10_5Y_YR’) have the lowest RMSE values both globally and in the Southern Ocean (Fig. 8). 608 

The spread across the 75 testbed members for each experiment is shown in Figure S15.     609 

The ‘zigzag’ runs, as well as the ‘high-sampling’ ‘one-latitude’-runs (i.e., ‘x13_10Y_J-A’ 610 

and ‘x13_10Y_W’), show improvements compared to the ‘SOCAT-baseline’ from the initiation 611 

of sampling (Figs. 9, S16, S17). The year-round ‘zigzag’ runs, however, show improvement in the 612 

Southern Ocean from the beginning of the testbed period (Figs. 9c, d, S16). RMSE improvements 613 

back in time are greater for all runs in the southern hemisphere winter months (Fig. S18).  614 
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635 
Figure 7: Change in RMSE when comparing run ‘x5_5Y_W’ and ‘Z_x4_10Y_YR’ to the ‘SOCAT-baseline’, 636 
averaged over the duration of the testbed period (a; 1982-2016) and the period of Saildrone USV additions (b; 2006-637 
2012 or 2012-2016). The percent global improvement is shown on each panel.  638 
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 647 
Fig. 8: Mean RMSE globally (a) and for the Southern Ocean (< 35° S; b) for the duration of Saildrone USV sampling 648 
(2006-2016 or 2012-2016) for all runs presented in Table 1. Circles represent runs using the ‘one-latitude’ track, while 649 
diamonds represent ‘zigzag’ runs. Runs highlighted in bold correspond to the two selected runs mapped in Figure 4, 650 
6, 7 and 9. RMSE values shown for the ‘SOCAT-baseline’ (black squares) represent a mean of values for 2006-2016 651 
(global = 11.5 μatm, S. Ocean = 11.3 μatm) and 2012-2016 (global = 11.8 μatm, S. Ocean = 11.5 μatm). ‘# additional 652 
observations’ = number of monthly 1°x1° USV observations in addition to SOCAT. Box plots illustrating the spread 653 
across the 75 ensemble members are shown in Fig. S15.  654 
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 667 

 668 

Figure 9: Zonal mean, annual mean Hovmöller of RMSE for the ‘SOCAT-baseline’ (a). Change in RMSE for run 669 
‘x5_5Y_W’ (b) and ‘Z_x4_10Y_YR’(c) compared to the ‘SOCAT-baseline’. Run ‘Z_x4_10Y_YR’ shows 670 
improvement in RMSE within the Southern Ocean, which expand well beyond the duration of Saildrone USV 671 
additions (shown by arrow on panel). Annual mean RMSE for the Southern Ocean (> 35° S) for all runs (d).   672 
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3.3 Impact on the air-sea CO2 flux with Saildrone USV additions 727 

Air-sea flux was calculated in the same manner for both the ML reconstructions and the ‘model 728 

truth’, which allows for the isolation of the impact of different sampling strategies, as mediated by 729 

the pCO2 reconstruction, on fluxes (see Sect. 2.5). These flux estimates are made to inform 730 

understanding of the errors that may exist in CO2 flux estimates derived from pCO2 731 

reconstructions, and how new sampling could address these errors. Flux estimates represent the 732 

average of the 75 members of the LET in each case, and are not estimates of real-world fluxes. 733 

Compared to the ‘model truth’, the ‘SOCAT-baseline’ reconstruction underestimates the 734 

global and Southern Ocean sink by 0.11-0.13 Pg C yr-1 over 1982-2016 (Fig. 10; Table S1). 735 

Regardless of sampling pattern, adding Saildrone USV observations increases both the global and 736 

Southern Ocean mean sink compared to the ‘SOCAT-baseline’ (Figs. 10, S19). The ‘one-latitude’ 737 

runs show an increase of 0.01-0.03 Pg C yr-1 (2-6 % strengthening) of the Southern Ocean sink 738 

(1982-2016), while the ‘zigzag’ runs lead to an even stronger sink by 0.04-0.06 Pg C yr-1 (7-11 % 739 

strengthening) (Table S2). When averaging over the years of Saildrone USV sampling addition 740 

(i.e., 2006-2012 and 2012-2016), the Southern Ocean sink increases up to 0.09 Pg C yr-1 (14 % 741 

strengthening) for the ‘one-latitude’ runs and up to 0.1 Pg C yr-1 (15 % strengthening) for the 742 

‘zigzag’ runs (Table S2). These same features are found for the global ocean (Fig. S19; Table 743 

S2).  744 

All of the ‘zigzag’ runs quite closely match both the global and Southern Ocean ‘model 745 

truth’ air-sea CO2 flux for the duration of sample additions (Figs. 10, S19). Except for the first 746 

couple of years of sample addition for the ‘high-sampling’-run ‘x13_10Y_J-A’, none of the ‘one-747 

latitude’ runs can match the ‘model truth’ air-sea CO2 flux, instead they all underestimate the flux 748 

(Figs. 10, S19). The ‘zigzag’ runs have impact on the air-sea flux from an earlier date, starting to 749 

pull the results away from the ‘SOCAT-baseline’ and toward the ‘model truth’ already in the late-750 

1990s, while the ‘one-latitude’ runs do the same about a decade later (Figs. 10, S19).  751 
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768 
Figure 10: Southern Ocean (< 35° S) annually averaged air-sea CO2 flux for the ‘SOCAT-baseline’ (black dashed 769 
line), ‘model truth’ (black dotted line) ‘one-latitude’ runs (a; solid lines) and ‘zigzag’ runs (b; dashed lines).  770 

  771 

 772 
4. Discussion 773 

We have tested the pCO2-Residual reconstruction method with the Large Ensemble Testbed (LET) 774 

to estimate its fidelity and understand how new samples could increase skill. We find that, 775 

regardless of the chosen Saildrone USV sampling pattern, the reduction in mean bias and mean 776 

RMSE compared to the ‘SOCAT-baseline’ is most prominent within the Southern Ocean (< 35° 777 

S) during the period of which Saildrone USV observations were added (Figs. 4, 6, 7, 9). However, 778 

it is important to mention that the additional Southern Ocean sampling also impacts (improves) 779 
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the pCO2 reconstructions globally (Figs. 5a, 8a). Based on our experiments, a combination of 789 

factors improve global and Southern Ocean pCO2 reconstructions, including the type of sampling 790 

pattern and seasonality of sampling, and to some extent, the number of additional observations. 791 

Importantly, increasing the number of observations or duration of sampling (5 vs. 10 years) is not 792 

the sole determining factor for improving the reconstructions (Figs. 5, 8). This is best demonstrated 793 

by the ‘high-sampling’-run ‘x13_10Y_J-A’ (44,250 observations), which does not provide 794 

significantly better reconstructions, or is even outperformed, by runs with 2-18 times fewer 795 

observations. The runs that produce lower mean RMSE do include data throughout southern 796 

hemisphere winter (Fig. 8 ). Run ‘x13_10Y_J-A’ does not include more than a few observations 797 

in the month of August, as it follows the temporal pattern of the real-world ‘one-latitude’ Saildrone 798 

USV expedition (Figs. S3, S4; Sutton et al., 2021). The ‘one-latitude’ runs ‘10Y_J-A’ and 799 

‘10Y_YR’ are directly comparable in terms of sample duration, spatial extent and number of 800 

observations (Table 1), but the latter, which covers all months, always shows lower mean RMSE 801 

and bias (Figs. 5, 6d, 8, 9d). These examples attest to the importance of addressing the issue of 802 

significant undersampling in the Southern Ocean during the winter season (Fig. S5a).  803 

Another important comparison is the ‘one-latitude’-run ‘x5_5Y_W’ (5,022 observations) 804 

and ‘zigzag’-run ‘Z_x10_5Y_W’ (3,800 observations) that both sample during southern 805 

hemisphere winter months over a five-year period (Table 1), where the ‘zigzag’-run consistently 806 

performs better even though it includes fewer observations (Figs. 5, 8). Most of the runs that 807 

perform similar to, or outperform, the above-mentioned ‘high-sampling’-run ‘x13_10Y_J-A’ 808 

(44,250 observations), sample in a ‘zigzag’ pattern. Out of all 10 runs, the ‘year-round’ ‘zigzag’ 809 

runs (‘Z_x4_10Y_YR’ and ‘Z_x10_5Y_YR’) are most able to reduce the mean error as shown by 810 

the lowest RMSE values (Figs. 8, 9d). A recent study performed similar sampling experiments as 811 

shown here, by comparing sampling from different types of autonomous platforms to a ‘SOCAT-812 

baseline’ (Djeutchouang et al., 2022). They emphasized the importance of capturing the significant 813 

differences in pCO2 that exist across meridional gradients during summer and winter months (up 814 

to 15 μatm; Djeutchouang et al., 2022). The meridional coverage provided by the ‘zigzag’ runs 815 

could explain why these runs generally outperform the ‘one-latitude’ runs in our study, and show 816 

significant reduction in both RMSE and bias, even though the global pCO2 data density is raised 817 

by as little as 0.01-0.07 %.  818 
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The greatest reduction in mean bias out of all runs is shown by run ‘x13_10Y_W’ (Figs. 837 

5, 6d), which represents ‘one-latitude’ ‘high-sampling’ (i.e., 25,395 observations) during southern 838 

hemisphere winter months only. This sampling strategy seems thus to have a higher ability to 839 

reduce the ML model’s tendency to overestimate pCO2 in the Southern Ocean compared to any of 840 

the meridional (‘zigzag’) runs. However, it should be noted that run ‘x13_10Y_W’ covers areas 841 

south of 55° S (Fig. S4), and its improvement in mean bias (and mean RMSE) is particularly 842 

prevalent at these high latitudes (e.g., Figs. S8, S10, S13, S16). Whether or not this run is, in fact, 843 

feasible with current or future technology is uncertain as parts of the southernmost tracks 844 

potentially cover the Southern Ocean ice zone (Fig. S20), and solar radiation for solar-powered 845 

platforms and sensors becomes very limited during winter south of 55° S. Furthermore, this 846 

particular sampling strategy requires 13 USVs, and so would be the most costly of the observing 847 

scenarios. Although run ‘x13_10Y_W’ demonstrates the highest reduction in mean bias out of all 848 

runs, the ‘zigzag’ runs still reduce absolute mean bias (for 2006/2012-2016) in the Southern Ocean 849 

by 44-65 % (vs. 77 % for run ‘x13_10Y_W’).  850 

Overall, the ‘zigzag’ runs include significantly fewer observations, require fewer USVs, 851 

collect samples over the same duration, or even half the time as run ‘x13_10Y_W’, cover areas 852 

north of 55°S and within the ice-free zone, and show major improvement in the reconstruction of 853 

pCO2, attested to by reductions in both bias and RMSE. The ‘zigzag’ runs also closely match both 854 

the global and Southern Ocean ‘model truth’ air-sea CO2 flux for the duration of sample additions 855 

(Figs. 10, S19). It also appears that the ‘zigzag’ runs generally have a greater impact on both the 856 

pCO2 reconstruction and the air-sea flux further back in time, starting to deviate from the ‘SOCAT-857 

baseline’ earlier compared to the ‘one-latitude’ runs (Figs. 6, 9, 10, S10, S16, S18, S19). Even the 858 

‘zigzag’ scenarios with the least number of USVs (e.g., ‘Z_x4_10Y_YR’) reduces Southern Ocean 859 

reconstruction absolute mean (2006-2016) bias and RMSE by up to 46 % and 11 %, respectively, 860 

and could provide a basis for realistic future Southern Ocean pCO2 sampling campaigns. 861 

The main motivation for improving surface ocean pCO2 reconstructions is so that we can 862 

more accurately estimate the current and future oceanic uptake of anthropogenic carbon. The 863 

Southern Ocean is a significant carbon sink, but estimates of the air-sea CO2 flux diverge 864 

substantially in this region (Takahashi et al., 2009; Landschützer et al., 2014, 2015; Rödenbeck et 865 

al., 2015; Williams et al., 2017; Gray et al., 2018; Gruber et al., 2019; Bushinsky et al., 2019; Long 866 
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et al., 2021; Fay and McKinley, 2021; Wu et al., 2022). Southern Ocean estimates incorporating 885 

observations from biogeochemical floats have shown a significantly weaker sink compared to 886 

those based only on observations from ships (Williams et al., 2017; Gray et al., 2018; Bushinsky 887 

et al., 2019). Bushinsky et al. (2019) and Hauck et al. (2023) performed similar sampling 888 

experiments as presented here, by comparing ML surface ocean pCO2 reconstructions based on 889 

SOCAT vs. additional SOCCOM or ideal virtual floats. These studies showed that SOCAT 890 

sampling alone overestimates the CO2 uptake in the Southern Ocean, and that additional floats 891 

reduce this overestimation, leading to a decreased (weakened) ocean carbon sink.  In contrast, we 892 

find that the pCO2-Residual method underestimates the CO2 uptake with only SOCAT sampling, 893 

and that adding USVs increased (strengthened) the Southern Ocean and global ocean sink by up 894 

to 0.1 Pg C yr-1 (Figs. 10, S19; Table S2).  895 

Going forward, additional studies are needed to better understand why these results suggest 896 

a different direction of the sink change with additional sampling. These differences could stem 897 

from the use of different reconstruction methods assessed. Hauck et al. (2023) used the MPI-SOM-898 

FFN and CarboScope/Jena-MLS reconstruction methods, while we use the pCO2-Residual 899 

method. Another substantial difference between the studies is the models and numbers of ensemble 900 

members used as the testbed. Hauck et al. (2023) use a single hindcast model, while we use 25 901 

members each from three Earth System Models. We find substantial spread across these 75 902 

members (Figs. S9 S15), indicating that model structure and internal variability significantly 903 

impact results. Our study and Hauck et al. (2023) use different sampling masks and approaches 904 

for the calculation of fluxes, which could also be a factor. Targeted, coordinated studies using 905 

multiple reconstruction approaches with consistent testbed structures, sampling masks and 906 

experimental approaches are clearly needed (Rödenbeck et al., 2015). Despite this need for this 907 

additional work, studies do agree that additional Southern Ocean observations could significantly 908 

improve reconstructions of air-sea CO2 fluxes.  909 

What else can we learn using the model testbed? The ‘SOCAT-baseline’ demonstrates a 910 

weakening of the global and Southern Ocean carbon sink starting in the 1990s with a peak around 911 

year 2000 (Figs. 10, S19), which is in broad agreement with various data products using real-world 912 

SOCAT data (e.g., Gruber et al., 2019; Landschützer et al., 2015; Bushinsky et al., 2019; 913 

Bennington et al., 2022; Gloege et al., 2022). Peaks in bias and RMSE coincide in time with the 914 
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weakening sink (Figs. 6d, 9d). As shown by Figure 10, this ‘low sink’ is significantly exaggerated 940 

compared to the ‘model truth’. To better understand this discrepancy, we performed an additional 941 

experiment based on run ‘Z_x10_5Y_YR’, but assumed sampling every year for the entire testbed 942 

period (i.e., 1982-2016). There is now a significant reduction in the temporal variability of 943 

reconstruction bias; with the additional 35-year USV sampling, the reconstructed Southern Ocean 944 

air-sea CO2 flux closely matches the ‘model truth’ for the entire testbed duration (Fig. S21). This 945 

suggests that the large decadal variability of air-sea CO2 fluxes since the 1980s, and the weak 946 

anomaly in the Southern Ocean carbon sink in the early 2000s (Le Quéré et al., 2007; Landschützer 947 

et al., 2015; Gruber et al., 2019; Bennington et al., 2022a,b; Friedlingstein et al., 2023), may be at 948 

least partially attributable to undersampling of the Southern Ocean. This is in agreement with the 949 

float sampling experiments performed by Hauck et al. (2023), attributing the strong decadal 950 

variability to sparse and skewed SOCAT data distributions. We will further explore this issue in 951 

future work. Still, this preliminary experiment suggests that interpretations of trends and variability 952 

of the global and Southern Ocean carbon sink should be considered with caution.  953 

5. Conclusions 954 

By using the Large Ensemble Testbed (LET), we show that targeted meridional and winter 955 

sampling in the Southern Ocean can improve global and Southern Ocean ML surface ocean pCO2 956 

reconstructions. Significant improvements are possible by raising the global pCO2 data density by 957 

as little as 0.01-0.07 %. Further, we find that this modest amount of additional Saildrone USV 958 

sampling increases the global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, a 959 

quantity equivalent to 25 % of the uncertainty in the ocean carbon sink (0.4 Pg C yr-1; 960 

Friedlingstein et al., 2023). Our findings are consistent with previous studies suggesting that 961 

additional observations during southern hemisphere winter months and covering meridional 962 

gradients can reduce uncertainties and biases in the reconstructions (Lenton et al., 2006; Monteiro 963 

et al., 2010; Djeutchouang et al., 2022; Mackay et al., 2022). As opposed to other autonomous 964 

platform approaches, Saildrone USVs obtain in situ pCO2 observations with uncertainties 965 

equivalent to the highest-quality observations collected by research ships (± 2 μatm; Sabine et al., 966 

2020; Sutton et al., 2021), and can operate at a high speed so that the spatial extent and seasonal 967 

cycle of meridional gradients can be covered. The approach of combining high-accuracy Saildrone 968 

USV and SOCAT observations represents thus a promising solution to improve future surface 969 
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ocean pCO2 reconstructions and the accuracy of the ocean carbon sink. Lastly, we show that the 974 

large variability in bias, and the weakening of the global and Southern Ocean carbon sink in the 975 

2000s, may be partially an artefact of Southern Ocean undersampling.  976 
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