Assessing improvements in global ocean pCO2 machine learning reconstructions with 1

- Southern Ocean autonomous sampling 2
- Thea H. Heimdal¹, Galen A. McKinley¹, Adrienne J. Sutton², Amanda R. Fay¹, Lucas Gloege³ 3
- ¹Columbia University and Lamont-Doherty Earth Observatory, Palisades, NY, USA 4
- 5 ²Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 6 Seattle, WA, USA
- ³Open Earth Foundation, Marina del Rey, CA, USA 7
- Correspondence to: Thea H. Heimdal (theimdal@ldeo.columbia.edu) 8
- 9

. .

10 Abstract -

~ .1

11	The Southern Ocean plays an important role in the exchange of carbon between the atmosphere
12	and oceans, and is a critical region for the ocean uptake of anthropogenic CO_2 . However, estimates
13	of the Southern Ocean air-sea CO ₂ flux are highly uncertain due to limited data coverage. Increased
14	sampling in winter and across meridional gradients in the Southern Ocean may improve machine
15	learning (ML) reconstructions of global surface ocean pCO2. Here, we use a Large Ensemble
16	Testbed (LET) of Earth System Models and the pCO_2 -Residual reconstruction method to assess
17	improvements in pCO_2 reconstruction fidelity that could be achieved with additional autonomous
18	sampling in the Southern Ocean added to existing Surface Ocean CO2 Atlas (SOCAT)
19	observations. The LET allows for a robust evaluation of the skill of pCO2 reconstructions in space
20	and time through comparison to 'model truth'. With only SOCAT sampling, Southern Ocean and
21	global pCO_2 are overestimated, and thus the ocean carbon sink is underestimated. Incorporating
22	Uncrewed Surface Vehicle (USV) sampling increases the spatial and seasonal coverage of
23	observations within the Southern Ocean, leading to a decrease in the overestimation of pCO ₂ . A
24	modest number of additional observations in southern hemisphere winter and across meridional
25	gradients in the Southern Ocean, leads to improvement in reconstruction bias and root-mean
26	squared error (RMSE) by as much as 95 % and 16 %, respectively, as compared to SOCAT
27	sampling alone. Lastly, the large decadal variability of air-sea CO ₂ fluxes shown by SOCAT-only
28	sampling may be partially attributable to undersampling of the Southern Ocean.

1

-(Deleted: to
(Deleted: ly
γ	Deleted: e

Deleted: ,)
Deleted: 6	
Deleted: 9	
Deleted: using	
Deleted: ,	

38 1. Introduction

39 The ocean plays an important role in mitigating climate change by sequestering anthropogenic carbon emissions. From 1850 to 2023, the oceans have removed a total of 180 ± 35 Gt of carbon 40 41 (Friedlingstein et al., 2023). In order to fully understand the climate impacts from rising emissions, 42 it is essential to accurately quantify the air-sea CO₂ flux and the global ocean carbon sink in space 43 and time. The Surface Ocean CO₂ ATlas (SOCAT; Bakker et al., 2016) is the largest global 44 database of surface ocean CO₂ observations, with data starting in 1957. The main synthesis and gridded products contain over 33 million high-quality direct shipboard measurements of fCO₂ 45 (fugacity of CO_2) with an uncertainty of $< 5 \mu atm_{(Bakker et al., 2022)}$. However, due to limited 46 resources for ocean observing, limited number of ships/routes, inaccessible regions and unsafe 47 waters, the database covers only about 1% of the global ocean at monthly 1°x1° spatial resolution 48 49 over the period of 1982-2023, and is highly biased towards the northern hemisphere.

50 Mapping methods have been developed to estimate full-coverage surface ocean pCO_2 51 across space and time by extrapolating to global coverage from these sparse SOCAT observations 52 (e.g., Landschützer et al., 2014; Rödenbeck et al., 2015; Gloege et al., 2022; Bennington et al., 53 2022a,b). Most of these data products utilize machine learning (ML) algorithms to estimate a non-54 linear function between a suite of driver variables (i.e., sea surface temperature - SST, sea surface salinity - SSS, mixed layer depth - MLD, Chlorophyll - Chl-a, xCO₂ - atmospheric CO₂) and 55 56 surface ocean pCO_2 (the target variable) where these are co-located. The driver variables are 57 proxies for processes influencing ocean pCO₂. Full-coverage driver variable datasets are then 58 processed through these ML algorithms to produce estimated global full-coverage surface ocean 59 pCO2. Since the data products rely on pCO2 observations to estimate functions between the target and driver variables, data sparsity remains a fundamental limitation to this technique. 60

61 It has been suggested that targeted sampling from autonomous platforms combined with 62 ships, filling in the state space of pCO₂, represent<u>s</u> a path forward to improve surface ocean pCO₂ 63 reconstructions (Bushinsky et al., 2019; Gregor et al., 2019; Gloege et al., 2021; Djeutchouang et 64 al., 2022; Landschützer et al., 2023; Hauck et al., 2023). One major obstacle, however, is that the 65 indirect pCO₂ estimates from floats have high uncertainties (\pm 11.4 µatm) and may be biased by 66 as much as ~ 4 µatm (Bakker et al., 2016; Williams et al., 2017; Fay et al., 2018; Gray et al., 2018; 67 Sutton et al., 2021; Mackay and Watson 2021; Wu et al 2022). These large uncertainties and biases

-(Deleted: against
-(Deleted: Since
-(Deleted: 7
(Deleted: 2

Observation-based data	ı products
better constrain	
ed: Highlight	
in	
Т	
;	
;	
;	
;	
;	

Deleted: train the algorithms and thus produce these relationships... Formatted: Subscript

Deleted: likely

Л	Formatted: Font: 12 pt
-(Formatted: Font: 12 pt
(Formatted: Font: 12 pt

arise when pCO₂ is not measured directly as in the observations included in SOCAT, but is rather
estimated using measurements of pH combined with a regression-derived alkalinity estimate
(Williams et al., 2017; Gray et al., 2018). SOCAT includes only direct pCO₂ observations. Biases
and uncertainties may have large impacts on global air-sea CO₂ flux estimates, given that the global
mean air-sea disequilibrium is only 5-8 µatm (McKinley et al., 2020). It is therefore critical that
bias and uncertainty corrections are well-constrained over different oceanic conditions and over
time.

91 Uncrewed Surface Vehicles (USVs), such as those manufactured and maintained by 92 Saildrone Inc., represent a new type of autonomous platform that can obtain direct pCO₂ observations with significantly lower uncertainties compared to other autonomous methods, and 93 94 equivalent to the highest-quality shipboard measurements contained in SOCAT ($\pm 2 \mu atm$; Sabine 95 et al., 2020; Sutton et al., 2021). Such improvements in sampling are critically important in the 96 undersampled Southern Ocean. This region is fundamental in terms of the ocean's ability to 97 remove carbon from the atmosphere, being responsible for $\sim 40\%$ of the global ocean uptake of anthropogenic CO₂ (Khatiwala et al., 2009). Improved data coverage in the Southern Ocean 98 99 represents thus a major opportunity to advance our understanding of the global ocean carbon sink 100 (Lenton et al., 2006, 2013; Takahashi et al., 2009; Monteiro et al., 2015; Gregor et al., 2019; Gray et al., 2018; Mongwe et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021; Long et al., 2021; 101 102 Mackay et al., 2022; Wu et al., 2022; Landschützer et al., 2023: Hauck et al., 2023). A combination 103 of SOCAT and Saildrone USV observations would include high-accuracy data from both the long 104 record and global coverage of ship tracks, and the expanded finer resolution of spatial and seasonal 105 coverage of the poorly sampled Southern Ocean. Importantly, Saildrone USVs are also able to 106 cover the spatial extent and seasonal cycle of the meridional gradients, which has been shown to 107 be critical in order to reduce errors in reconstructing surface ocean pCO₂ (Djeutchouang et al., 108 2022). A combined approach, with autonomous samples such as those obtained from Saildrone USVs, in addition to high-quality observations collected from ships, represents thus a promising 109 solution to improve surface ocean pCO2 ML reconstructions. 110

Here, we assess to what extent surface ocean pCO₂ reconstructions can improve by
implementing the pCO₂-Residual machine learning (ML) reconstruction (Bennington et al., 2022a)
with the combined inputs of SOCAT and Saildrone USV coverage. However, instead of using real-

Formatted: Font: 12 pt	
Formatted: Font: 12 pt	
Formatted: Font: 12 pt	
Formatted: Font: 12 pt, Subscript	
Formatted: Font: 12 pt	
Deleted: can	

Deleted:

116	world observations, we sample the target (i.e., surface ocean pCO2) and driver variables (i.e., SST,	Deleted: actual
117	SSS, MLD, Chl-a and xCO ₂) from our Large Ensemble Testbed (LET) of Earth System Models	
118	(ESMs) (e.g., Stamell et al., 2020; Gloege et al., 2021; Bennington et al., 2022a). There are two	
119	major benefits of using a testbed compared to actual observations. First, in an ESM, the surface	
120	ocean pCO ₂ field is provided precisely at all model times and 1°x1° points. Therefore, the pCO ₂	Deleted: known
121	reconstructed by the ML algorithm can be robustly evaluated in space and time against a known	Deleted: locations
122	'truth' (i.e., 'model truth'). The reconstruction evaluation is thus not limited to the availability of	
123	sparse real-world ocean observations. Secondly, a testbed can be used to plan and evaluate the	
124	impact of different sampling strategies on the reconstructed pCO2. It is important to stress that, by	
125	using a model testbed, we do not predict real-world surface ocean pCO2 and air-sea CO2 fluxes.	
126	The goal here is to assess the accuracy with which an ML algorithm can reconstruct the 'model	
127	truth' given inputs of samples consistent with real-world data coverage from the SOCAT database	
128	and Saildrone USVs.	
129	By utilizing the observational coverage of SOCAT and Saildrone USV transects, we assess	
130	to what extent the pCO ₂ -Residual method accurately reconstructs model surface ocean pCO ₂ in	
131	space and time. We test the impact of two different USV Southern Ocean sampling schemes, the	Formatted: Highlight
132	first based on a sampling campaign completed in 2019 (Sutton et al., 2021), and the second on	
133	logistically feasible potential future meridional sampling. Additionally, we explore the timing,	
134	magnitude, duration and spatial extent of Southern Ocean USV sample additions that most	
135	significantly improve the pCO ₂ predictions. Combined, the sampling patterns tested here	Formatted: Highlight
136	complements previous studies exploring the impact of additional sampling in the Southern Ocean	
137	based on idealized full global coverage of floats, and float observations from recent deployments,	
138	including the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)	
139	project, moorings and sailboats (Bushinsky et al., 2019; Denvil-Sommer et al., 2021;	
140	Djeutchouang et al., 2022; Hauck et al., 2023; Behncke et al., 2024; Landschützer et al., 2023).	
141		
141		

4

2. Methods 142

2.1 The Large Ensemble Testbed (LET) 143

147 In this study, the Large Ensemble Testbed (LET) includes 25 members from three independent 148 initial-condition ensemble models (i.e., CanESM2, CESM-LENS and GFDL-ESM2M; Kay et al., 2015; Rodgers et al., 2015; Fyfe et al., 2017), giving a total of 75 members within the testbed. We 149 150 do not use the MPI-GE model that was included in the past LET studies because its Southern 151 Ocean pCO₂ seasonality and decadal variability appear, to be anomalously large (Gloege et al., 152 2021; Fay and McKinley, 2021; Bennington et al., 2022a). Each individual Earth System Model 153 (ESM) is an imperfect representation of the actual Earth system, so the multiple Large Ensembles 154 are used to span different model structures and their representation of internal variability. Each 155 ensemble member undergoes the same external forcing (i.e., historical atmospheric CO₂ before 156 2005 and Representative Concentration Pathway 8.5 through 2016, plus solar and volcanic forcing), but the spread across the ensemble members gives a unique trajectory of the ocean-157 158 atmosphere state over time, i.e., a different state of internal variability as well as the difference 159 across models.

160 The LET used in this study includes monthly 1°x1° model output from 1982-2016 (Gloege et al., 2021). For each individual ensemble member of the LET, surface ocean pCO2 and co-located 161 162 driver variables (i.e., SST, SSS, Chl-a, MLD, xCO₂) were sampled monthly at a 1°x1° resolution, at times and locations equivalent to SOCAT and Saildrone USV observations (Fig. 1; Step 1). 163 164 While the SOCAT observations were sampled from the testbed matching the actual years of 165 sampling, the USV observations were sampled from the testbed starting in 2007 (for ten-year 166 sampling) or 2012 (for five-year sampling) (see Sect. 2.4). As our focus is on reconstruction for 167 the open ocean, testbed output for coastal areas, the Arctic Ocean (>79°N) and marginal seas (Hudson Bay, Caspian Sea, Black Sea, Mediterranean Sea, Baltic Sea, Java Sea, Red Sea and Sea 168 169 of Okhotsk) were removed prior to algorithm processing.

Deleted: s

Deleted: year

173 174 Figure 1: Schematic of the Large Ensemble Testbed (LET; modified from Gloege et al., 2021). 1: Surface ocean 175 pCO₂ from each of the 75 model members is sampled in space and time mimicking real-world SOCAT and Saildrone 176 177 USV observations (see Fig. 2; Table 1; Section 2.5). Prior to algorithm processing, pCO2-Residual is calculated, (Section 2.2). 2: The pCO₂-Residual (target variable) and co-located driver variables (i.e., SST, SSS, MLD, Chl, 178 xCO₂) sampled from the testbed are processed by the XGBoost (XGB) algorithm (Section 2.3). 3: Based on the full-179 coverage of driver variables, pCO₂-Residual is reconstructed globally. This process is repeated 75 times, individually 180 for every single testbed model member. The temperature component (pCO2-T) is then added back to the pCO2-181 Residual for each value. 4: The globally reconstructed pCO_2 is evaluated against the 'model truth' at all $1^{\circ}x1^{\circ}$ grid 182 cells, SST = sea surface temperature. SSS = sea surface salinity. MLD = mixed layer depth. Chl = chlorophyll. xCO₂ 183 = atmospheric concentration of CO2.

Deleted: , i.e., the direct effect of temperature has been removed from the pCO_2 value

-(Deleted: Since we are using model testbed and not real- world observations, the
\mathcal{I}	Deleted: can
X	Deleted: be
Ì	Deleted: , not just where observations are available
(Deleted: ¶

185 2.2 The pCO₂-Residual approach

184

186 We used the pCO_2 -Residual approach following Bennington et al. (2022a), which removes the 187 well-studied direct effect of temperature on pCO2 from the LET model output before algorithm 188 processing. Temperature has both direct and indirect effects on surface ocean pCO₂. The direct 189 effect of temperature, due to solubility and chemical equilibrium, is that an increase in temperature directly causes an increase in pCO₂ (Takahashi et al., 1993). Indirectly, temperature changes are 190 191 associated with biological production and wintertime vertical mixing; and these processes tend to 192 result in opposing pCO₂ changes. To build reconstruction algorithms through the data-driven 193 training that occurs in ML, the statistics in all other algorithms developed to date must identify a 194 function that disentangles these competing effects of SST on pCO2. Here, the algorithm is assisted 195 by removing this known temperature effect, and it must therefore only learn the pCO₂ impacts

Deleted: prior to

205	from biogeochemical drivers. The pCO ₂ -Residual method leads to physically understandable	
206	connections between the input data and output (Bennington et al., 2022a), which mitigates to some	
207	degree 'black box' concerns typically associated with ML algorithms (Toms et al., 2020).	
208	Bennington et al. (2022a) demonstrate higher skill for reconstructions using pCO2-Residual as the	Fa
209	target variable as opposed to pCO2 (Figure S1 in Bennington et al., 2022a), indicating that the	Fo
210	removal of the temperature-driven component enhances the performance of the method. Further,	Fo
211	the pCO2-Residual method has been shown to perform slightly better against independent	Fo
212	observations than other common mapping methods (Bennington et al., 2022a). A brief description	De
213	is provided here, but for further details see Bennington et al. (2022a).	Fo
214	The temperature-driven component of pCO_2 (pCO_2 -T) is calculated using this equation:	Fo
215	$pCO_2-T = pCO_2^{mean} * exp[0.0423 * (SST-SST^{mean})]$	
216	where pCO2 ^{mean} and SST ^{mean} is the long-term mean of surface ocean pCO2 and temperature,	
217	respectively, using all 1°x1° grid cells from the testbed. Alternative sources of mean pCO2 were	Fo
218	assessed by Bennington et al. (2022a), but they found no significant impact on the test statistics or	Fo
219	reconstructed pCO2- Once pCO2-T is determined, pCO2-Residual is calculated as the difference	Fo
220	between pCO ₂ and the calculated pCO ₂ -T:	Fa
221	pCO_2 -Residual = $pCO_2 - pCO_2$ -T	Fo Fo
222	Prior to algorithm processing, pCO ₂ -Residual values > 250 uatm and < -250 uatm from the	Fo

Prior to algorithm processing, pCO₂-Residual values > 250 µatm and < -250 µatm from the testbed were filtered out targeting values that are not representative of the real ocean. The majority of the pCO₂-Residual values that were filtered out correspond to high pCO₂, above the maximum value in SOCAT (816 µatm; Stamell et al., 2020). The excluded data points (less than 0.2 % per member) mostly occurred in output from the CanESM2 model, and were restricted geographically, predominantly along the western coastline of South America.

The eXtreme Gradient Boosting method (XGB; Chen and Guestrin, 2016) is used to develop an algorithm that allows driver variables (i.e., SST, SSS, Chl-a, MLD, xCO₂) to predict the pCO₂-Residual (**Fig. 1**; Step 2). The pCO₂-Residual and associated feature variables is split into validation, training and testing sets. The test and validation set each account for 20 % of the data, leaving 60 % for training. The validation set is used to optimize the algorithm

· (Fe	ormatted: Highlight	
F	ormatted: Subscript, Highlight	
F	ormatted: Highlight	
F	ormatted: Subscript, Highlight	
Formatted: Highlight		
D	eleted: this	
F	ormatted: Subscript, Highlight	
F	Formatted: Highlight	
Formatted: Highlight		
D	eleted: observation-based products	

Formatted: H	lighlight
Formatted: H	Font: 12 pt, Not Italic, Highlight
Formatted: H	Font: 12 pt, Not Italic, Highlight
Formatted: H	Highlight
Formatted: H	Font: 12 pt, Not Italic, Highlight
Formatted: H	Highlight
Formatted: H	Font: 12 pt, Not Italic, Highlight
Formatted: I	Font: 12 pt, Not Italic, Highlight
Formatted: H	Highlight
Formatted: F	Font: 12 pt, Not Italic, Highlight
Formatted: H	Highlight
Formatted: I	Font: 12 pt, Not Italic, Highlight
Formatted: I Subscript, Hi	Font: 12 pt, Not Italic, Not Superscript/ ghlight
Formatted: I Subscript	Font: 12 pt, Not Italic, Not Superscript/
Deleted: to	
Deleted: se	
Deleted: gen	erally

hyperparameters, which define the architecture of decision trees used in the model. The training
set is used to build the decision trees in XGB, while the test set is used to evaluate the performance
of the final algorithm. The XGB algorithm for this study used 4,000 decision trees with a maximum
depth of 6 levels, and this was fixed for all experiments (see Supplementary Text A). For the
final reconstruction of surface ocean pCO₂ across all space and time points, the previously

calculated pCO₂-T values are added back to the reconstructed pCO₂-Residual (Fig. 1; Step 3).

The full XGB process, including 1) training/evaluating/testing and 2) reconstructing globally at a monthly resolution, was repeated individually for each LET member. This process provided therefore a total of 75 unique reconstruction vs. 'model truth' pairs, which can be statistically compared (**Fig. 1**; Step 4).

248 2.3 Statistical Analysis in the Testbed

The statistical comparisons between the test set and the reconstructions are equivalent to what 249 250 would be derived using real-world data ('seen' values). Here, we calculate error statistics based on the full reconstruction (pCO₂ from all $1^{\circ}x1^{\circ}$ grid cells of the testbed, except for those masked or 251 252 filtered out). In the full reconstruction, ~ 99 % of the data do not correspond to SOCAT or 253 Saildrone USV observations used to train the algorithm (Fig. S1). Training data would ideally be 254 removed before performance evaluation, but since the training data represent only ~ 1 %, the 255 impact of not removing them is negligible (Fig. S2). A suite of statistical metrics can be used to 256 compare the reconstruction to the 'model truth' in order to assess how well the algorithm can 257 extrapolate from sparse data to full-field coverage (Fig. 1; Step 4). In this study, we focus on bias 258 and root-mean-squared error (RMSE). Bias is calculated as 'mean prediction - mean observation' 259 (i.e., pCO₂ predicted by XGB subtracted by the pCO₂ 'model truth'), and is a measure of over- or underestimation in the reconstructions. RMSE measures the magnitude of the predicted error and 260 261 is calculated as the square root of the mean of the squared errors. We focus our discussion on the 262 mean across 75 members of the testbed for bias and RMSE. The spread across testbed ensemble 263 members is non-negligible and will be the focus of future work; here, we present the testbed spread 264 primarily in the Supplement. 265

Formatted: Highlight Formatted: Font: Bold, Highlight Formatted: Highlight

Formatted: Subscript

Deleted: Since we are using a testbed, we can also include comparisons on additional independent data, referred to as 'unseen' values, which represent the 1°x1° grid cells of the ensemble members that

Formatted: Not Highlight

Deleted:

Formatted: Font: Bold Formatted: Font: Bold

Formatted: Font: Bold

272 2.4 Overview of sampling patterns and model runs

273 First, we sampled target and driver variables from the LET based on sampling distributions 274 equivalent to that of the SOCAT database ('SOCAT baseline'). Then, we combined the 'SOCAT 275 baseline' with testbed output representing additional Saildrone USV coverage in the Southern Ocean. The additional Southern Ocean coverage was based on 1) the Sutton et al. (2021) sampling 276 277 campaign from 2019 ('one-latitude' track) and 2) realistic potential future meridional USV 278 observations ('zigzag' track) (see Section 2.4.2; Fig. 2). We performed a total of 10 experimental 279 runs (Table 1). These represent different sampling approaches, including: 1) repeating USV 280 sampling over a five- or ten-year period, 2) varying the number of USVs and thus the total number 281 of monthly 1°x1° observations, and 3) restricting all observations to southern hemisphere winter 282 months. By comparing the different runs, we can assess whether or not certain targeted sampling 283 strategies in the Southern Ocean can improve surface ocean pCO₂ ML reconstructions. As 284 discussed above, the LET runs to 2016 only (Gloege et al., 2021). Saildrone USV observations 285 were therefore sampled from the testbed starting in year 2006 or 2007 (for the ten-year sampling) or 2012 (for the five-year sampling) until 2016, i.e., the final year of the testbed. 286

2.4.1 'One-latitude' runs 287

Six out of the ten experimental runs include the 'one-latitude' track (Table 1). The 2019 Saildrone 288 289

USV journey (Sutton et al., 2021) covered an 8-month period, from January to August. Since the

290 USV was recovered in early August, it did not cover the entire southern hemisphere winter (Fig.

291 **S3**. We repeated this 'one-latitude' eight-month sampling pattern for five years ('5Y J-A'; 2,075 292 observations) and ten years ('10Y J-A'; 4,150 observations). To evaluate year-round ('YR')

293 coverage, the eight-month sampling period (January-August) was shifted by one month each year 294 for ten years ('10Y YR'; 4,150 observations). To evaluate the impact of increased sampling, the

295 2019 Saildrone USV track was repeated 12 times with incremental offsets of 1° from the original 296 track, covering an additional 6° north and south (Fig. S4). This 'high-sampling'-run ('x13 10Y J-

297 A'; 44,250 observations) represents a total of 13 USVs. We also performed an additional 13 USV 298 run, but including observations from southern hemisphere winter ('W') months only ('x13 10Y W'; 25,395 observations). Finally, considering the cost of deploying 13 USVs, a 299 300 downscaled 'multiple-USV-winter-only'-run was tested, including five USVs sampling over a

Deleted: Deleted:

Formatted: Font: Bold

Deleted: 1	
Deleted:	
Deleted: In order t	
Deleted: Furthermore, in order t	

Deleted: 2

308 period of five years ('x5_5Y_W'; 5,022 observations). This run covers an additional 2° north and 309 south from the original USV track.

310 2.4.2 'Zigzag' runs

- Four of the ten experimental runs represent realistic potential meridional sampling in the Southern
- 312 Ocean ('zigzag' tracks; **Table 1**) as suggested by Djeutchouang et al. (2022). <u>Saildrone USVs can</u>
- 313 operate at a speed capable of covering the spatial extent of meridional gradients in the Southern
- 314 Ocean (Djeutchouang et al., 2022). However, Saildrone USVs are solar powered, and thus their
- 315 range is restricted by the availability of solar radiation. To account for this and maintain a realistic
- 316 sampling scenario, sampling occurs only to a maximum latitude of 55° S in these experiments,
- 317 This alternative sampling pattern represents USVs sailing west to east in a north/south 'zigzag'
- pattern covering 40° S and 55° S for every 30° of longitude (Fig. 2). We created two scenarios.
- 319 For the first scenario, every 30° of longitude from 40° S and 55° S is visited every three months
- 320 within a single year as suggested by Lenton et al. (2006). Assuming an average Saildrone USV 321 speed, this scenario represents four platforms equally spaced around the Southern Ocean. This sampling pattern was repeated for 10 years, with year-round coverage ('Zx4_10Y_YR'; 7,600 322 323 observations), and for southern hemisphere winter months only ('Zx4 10Y W'; 2,500 observations). The second scenario represents a 'high-sampling' strategy, where every 30° of 324 325 longitude from 40° S and 55° S is visited approximately monthly. This can be achieved by 326 deploying 10 platforms equally spaced around the Southern Ocean running at an average Saildrone 327 USV speed. This sampling pattern is repeated for five years, sampling year-round
- ('Z_x10_5Y_YR'; 11,400 observations) and during southern hemisphere winter months only
 ('Z_x10_5Y_W'; 3,800 observations).

Formatted: Font: 12 pt, Not Italic

Formatted: Font: 12 pt

Formatted: Font: 12 pt, Not Italic

Deleted: Due to limited solar radiation that powers the Saildrone USVs, we let the sampling occur at a maximum latitude of 55° S.

Deleted: Considering the

334 335

Figure 2: Saildrone Uncrewed Surface Vehicle (USV) tracks representing the first circumnavigation around

336 Antarctica from 2019 in maroon ('one-latitude' track; Sutton et al., 2021) and an alternative virtual route with

337 meridional coverage ('zigzag' track).

Run name	SOCAT-baseline	5Y_J-A	10Y_J-A	10Y_YR	x13_10Y_J-A	x13_10Y_W	x5_5Y_W	Z_x4_10Y_YR	Z_x4_10Y_W	Z_x10_5Y_YR	Z_x10_5Y_W
Saildrone track	NA	One-lat	One-lat	One-lat	One-lat	One-lat	One-lat	Zigzag	Zigzag	Zigzag	Zigzag
Years of sampling	NA	5	10	10	10	10	5	10	10	5	5
Duration of sampling	NA	Jan-Aug	Jan-Aug	Year-round	Jan-Aug	SO winter	SO winter	Year-round	SO winter	Year-round	SO winter
Additional observations	NA	2,075	4,150	4,150	44,250	25,395	5,022	7,600	2,500	11,400	3,800
Global coverage increase (%)	NA	0.01	0.02	0.02	0.3	0.1	0.03	0.04	0.01	0.07	0.02
Mean bias (µatm)											
Testbed period (1982-2016)											
Globally	0.63	0.59	0.59	0.52	0.53	0.39	0.57	0.51	0.51	0.45	0.44
NORTH (35°N-90°N)	0.11	0.24	0.20	0.25	0.20	0.17	0.16	0.16	0.16	0.12	0.20
MID (35°S-35°N)	0.23	0.21	0.22	0.14	0.20	0.15	0.23	0.20	0.18	0.13	0.18
SOUTH (90°S-35°S)	1.4	1.3	1.2	1.1	1.1	0.80	1.2	1.1	1.1	1.0	0.87
SO winter months (JJA)	1.3	1.2	1.2	1.1	1.1	0.90	1.2	0.93	1.0	0.94	0.95
SO summer months (DJF)	0.070	0.11	0.15	0.10	0.15	0.019	0.11	0.25	0.073	0.16	0.066
2006/2012-2016											
Globally	0.51*	0.27	0.34	0.28	0.19	0.03	0.21	0.23	0.24	0.17	0.07
SOUTH (90°S-35°S)	1.6*	0.93	1.1	1.0	0.72	0.37	0.73	0.89	0.92	0.67	0.55
SOUTH (90°S-35°S) Jun, Jul, Aug	4.2*	2.6	2.7	2.8	2.2	1.8	2.5	1.8	2.4	1.2	2.0
Mean RMSE (µatm)											
Testbed period (1982-2016)											
Globally	11.8	11.7	11.8	11.7	11.7	11.6	11.7	11.5	11.6	11.5	11.6
NORTH (35°N-90°N)	13.0	13.0	13.0	13.0	13.0	13.0	13.1	13.0	13.0	13.0	13.0
MID (35°S-35°N)	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7
SOUTH (90°S-35°S)	11.5	11.3	11.4	11.2	11.1	11.0	11.3	10.7	11.0	10.6	11.0
2006/2012-2016											
Globally	11.6*	11.6	11.4	11.3	11.3	11.2	11.6	11.0	11.2	11.1	11.4
SOUTH (90°S-35°S)	11.4*	11.1	11.0	10.7	10.6	10.4	10.9	10.0	10.6	9.7	10.6
SOUTH (90°S-35°S) Jun, Jul, Aug	12.0*	11.3	11.2	10.9	10.5	10.3	11.1	10.3	10.6	9.6	10.3

339 Table 1. Overview of the different sampling experiments tested in this study, and mean bias and RMSE (in µatm) for 340 various time periods, latitude bands for all runs, Bold values represent the best score for each category. 'One-lat' = 341 <u>'one-latitude' track; incorporates</u> the Saildrone USV route from Sutton et al. (2021) <u>'Zigzag' = potential meridional</u> 342 sampling, <u>'Additional observations = number of $1^{\circ}x1^{\circ}$ monthly Saildrone USV observations in addition to SOCAT</u>. 343 J-A= January-August. YR = year-round. W = southern hemisphere winter. x4, x5, x10 and x13 = four, five, ten and 344 13 USVs. SO winter = Southern Ocean winter months, i.e., June, July, August and also including September. <u>*Average</u> 345 value of the mean of 2006-2016 and 2012-2016. The global coverage increase was calculated based on the total 346 number of available 1982-2016 monthly 1°x1° observations from SOCAT (262,204 observations) and the Large 347 Ensemble Testbed (17,290,470 observations).

348

338

349 2.5 Air-sea CO₂ flux

350	To assess th	e global ocea	n carbon sinl	k associated with	n our pCO ₂ r	econstructions,	air-sea CO	12
1								

351 exchange was calculated for 1985 onward. Here, we computed air-sea CO₂ fluxes using the bulk

		Run name	5Y_J-A	10Y_J-A	10Y_YR x1
The second second		Saildrone track	One-lat	One-lat	One-lat
		Years of sampling	5	10	10
		# of Saildrones	1	1	1
		Duration of sampling	Jan-Aug	Jan-Aug	Year-round
		Total observations	2,075	4,150	4,150
	Deleted:	Global coverage increase (%)	0.01	0.02	0.02
ļ	Deleted:	Saildrone USV sampling	g patteri	ıs	
l	Formatte	d: Font: 10 pt			
	Deleted: (Gloege e surface oc	using the XGBoost Mac t al., 2021; Bennington e ean pCO ₂	chine Le et al., 20	earning a)22a) to	Igorithm estimate
Į	Deleted:	The 'one-latitude' (
ļ	Deleted:	0			
ļ	Formatte	d: Font: 10 pt			
h	Deleted:) track			
Å	Deleted:	,			
Å	Deleted:	while the			
Å	Deleted:	Z			
-	Deleted:	track represents			
-	Deleted: 1	future			
-	Deleted:	(see Fig. 2)			
٦	Deleted:	The total			
Ì	Deleted:	number of USV			
Ì	Deleted:	(in bold)			
Ì	Deleted:	represent			
ì	Formatte	d: Pattern: Clear			
Ì	Formatte	d: Pattern: Clear			
Ì	Formatte	d: Pattern: Clear			
Ì	Formatte	d: Pattern: Clear			
Ņ	Formatte	d: Pattern: Clear			
l	Formatte	d: Pattern: Clear			
)	Deleted:	Note that all runs also in	cluded	SOCAT	coverage.

371	formulation with python package Seaflux.1.3.1 (https://github.com/lukegre/SeaFlux; Gregor et al.	
372	2021; Fay et al., 2021). We calculated global and Southern Ocean flux in the same manner for 1)	
373	the testbed 'model truth', 2) the 'SOCAT_baseline' and 3) the 10 experimental USV runs.	Deleted:
374	The net sea-air CO ₂ flux was estimated using:	
375	$Flux=k_w \cdot sol \cdot (pCO_2^{ocn}-pCO_2^{atm}) \cdot (1-ice)$	
376	where 'k_w' is the gas transfer velocity, 'sol' is the solubility of CO_2 in seawater (in units of mol	
377	$m^{-3}\;\mu atm^{-1}),\; {}^{\circ}pCO_2{}^{ocn}{}^{\prime}$ is the partial pressure of surface ocean carbon (in $\mu atm),$ either from the	
378	'model truth' or from the reconstructions, and $p\text{CO}_2^{atm}$ (in $\mu atm)$ is the partial pressure of	
379	atmospheric CO2 in the marine boundary layer. For GFDL, we used direct model output of	
380	pCO_2^{atm} , while for CESM and CanESM2, pCO_2^{atm} was calculated individually, as the product of	
381	surface xCO ₂ and sea level pressure (the contribution of water vapor pressure was corrected for in	Deleted: pCO ₂ ^{atm} from CESM was corrected for
382	CESM). Finally, to account for the seasonal ice cover in high latitudes, the fluxes were weighted	
383	by 1 minus the ice fraction ('ice'), i.e., the open ocean fraction.	
384	Winds have the largest impact on flux calculations (Fav et al., 2021), and temporally high-	Formatted: Highlight
384 385	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient	Formatted: Highlight Formatted: Indent: First line: 0.5"
384 385 386	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight
384 385 386 387	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al.,	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389 390	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389 390 391	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389 390 391 392	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389 390 391 392 393	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ ,	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Highlight
384 385 386 387 388 389 390 391 392 393	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ ,	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Font color: Auto
384 385 386 387 388 389 390 391 392 393 394	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ . Note that, reconstructions of pCO ₂ for the <u>'SOCAT-baseline'</u> and the experimental USV	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Highlight Deleted:
384 385 386 387 388 389 390 391 392 393 394 395	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ . Note that, reconstructions of pCO ₂ for the <u>'SOCAT-baseline'</u> and the experimental USV runs are limited in their spatial extent to the open ocean (see Sect. 2.1; excluding coastal areas, the	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Font color: Auto Deleted:
 384 385 386 387 388 389 390 391 392 393 394 395 396 	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ , Note that, reconstructions of pCO ₂ for the <u>'SOCAT_baseline</u> ' and the experimental USV runs are limited in their spatial extent to the open ocean (see Sect. 2.1; excluding coastal areas, the Arctic Ocean and marginal seas). The same mask was thus also applied when calculating the flux	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Highlight Deleted:
384 385 386 387 388 389 390 391 392 393 394 395 396 397	Winds have the largest impact on flux calculations (Fay et al., 2021), and temporally high- resolution output is not available for the LET. Monthly output is available, but this is not sufficient for the flux calculation due to the square dependency of wind speed (Wanninkhof, 2014), Given the necessity to use observed winds, for consistency, we use observations for all necessary variables for the flux calculation. Inputs to the calculation include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds and associated wind scaling factor from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the global and Southern Ocean (< 35° S) fluxes in units of Pg C yr ⁻¹ , Note that, reconstructions of pCO ₂ for the <u>'SOCAT-baseline'</u> and the experimental USV runs are limited in their spatial extent to the open ocean (see Sect. 2.1; excluding coastal areas, the Arctic Ocean and marginal seas). The same mask was thus also applied when calculating the flux of the 'model truth', prior to comparison with the reconstructions.	Formatted: Highlight Formatted: Indent: First line: 0.5" Formatted: Highlight Formatted: Highlight Formatted: Highlight Deleted:

402 **3. Results**

403	3.1 Performance metrics for the 'SOCAT_baseline' reconstruction		Deleted:
404	The mean bias for the entire testbed period (i.e., 1982-2016) is 0.63 µatm globally (Fig. 3a) and		
405	1.4 µatm for the Southern Ocean (< 35° S; Table 1). Bias is much closer to zero for the mid-		Deleted: S
406	<u>latitudes</u> (between 35° S and 35° N; 0.23 μ atm) and northern latitudes (> 35° N; 0.11 μ atm) (Fig.		
407	3a). There is a significant difference in bias considering southern hemisphere winter months (June,		
408	July, August) versus summer months (December, January, February), with a global mean bias (for		
409	1982-2016) of 1.3 µatm compared to 0.07 µatm, respectively (Table 1), due to the sparseness of		Deleted: S
410	SOCAT observations from the southern hemisphere during the harsh winter season (Fig. 85a).		Deleted: 3
411	The mean RMSE for the entire testbed period (i.e., 1982-2016) is 11,8 µatm globally (Fig. 3b) and		Deleted: 7
412	11,5 µatm for the Southern Ocean (Table 1). RMSE is highest in the Eastern Tropical and		Deleted: 9
/13	Southeastern Pacific Ocean and in the Southern Ocean where the algorithm generally		Deleted: 8
413	Sourceastern Fachte Ocean and in the Sourcein Ocean, where the algorithm generally	7	Deleted: S
414	overestimates pCO ₂ (i.e., positive bias; Fig. 3a), with some exceptions in the Atlantic section. This		
415	is consistent with the areas significantly undersampled by SOCAT (Fig. S5b). Except for these		Deleted: 3
416	areas, RMSE and bias is generally low (close to zero) in the open ocean, but show higher values		
417	along coastlines (Fig. 3b). The predicted pCO2 is thus more accurate in areas similar to and		Formatted: Subscript
418	surrounding the SOCAT "observations" (i.e., monthly 1°x1° grid cells equivalent to SOCAT		Formatted: Highlight
419	coverage but sampled from the LET) Figure 3 shows mean bias and RMSE for the full		Formatted: Font: 12 pt, Not Italic, Highlight
717	coverage, our sampled nom the LET, right of shows mean outs and River in the fun		Formatted: Highlight
420	reconstruction (see Section 2.3), but note that there is a statistically significant difference between	W	Formatted: Highlight
421	the train and test set errors (Fig. S6). This indicates potential overfitting in our ML model (i.e.,	$\langle \rangle \rangle$	Formatted: Font: Bold, Highlight
422	higher errors for the 'unseen' reconstruction) and that further tuning of the hypernarameters could	M/N	Formatted: Highlight
122			Formatted: Highlight
423	increase generalization skill (see Supplementary Text A).		Formatted: Font: Bold, Highlight
I			Formatted: Highlight
		1	Formatted: Highlight
		11 11	Formatted: Font: Bold, Highlight

Formatted: Highlight

Formatted: Font: Bold, Highlight Formatted: Font: Bold

3.2 Reconstruction improvements with Saildrone USV additions 439

the 75 ensemble members for the period of 1982 through 2016. The testbed was sampled based on SOCAT

observations only (i.e., no USV). Deleted: 7

Deleted: 9

Deleted: Red and green areas in **a** indicate regions where the reconstruction is biased high (i.e., overestimates pCO₂) and low (i.e., underestimates pCO₂), respectively. Generally, RMSE is highest in the East and South Pacific Ocean and in the Southern Ocean, where the algorithm also generally overestimates pCO2 (positive bias; a).

Our presentation of global maps is limited to runs 'x5_5Y_W' (5,022 monthly 1°x1° observations) and 'Z_x4_10Y_YR' (7,600 monthly 1°x1° observations). These runs were selected as they represent observational schemes that are realistic in the near-term future considering logistics and cost level, both non-meridional and meridional sampling, and different approaches to observing duration and seasonal coverage. For the remaining runs, equivalent maps can be found in the **Supplement**.

461 *3.2.1 Bias*

462 All Saildrone USV runs show a reduction in bias compared to the global mean 1982-2016 463 SOCAT baseline' (Figs. 4a, S7). The improvement in bias is mainly due to lower reconstructed 464 pCO₂ values at southern latitudes, where the <u>'SOCAT</u>-baseline' reconstruction generally 465 overestimates pCO₂ (Fig. 3a). The global mean bias for 'zigzag' run 'Z x4 10Y YR' is 0.51 466 µatm, a higher improvement (19 %) over the 'SOCAT-baseline' compared to the 'one-latitude' 467 run 'x5 5Y W' (11 % mean improvement; mean bias = 0.57 µatm;) (Fig. 4a; Table 1). Generally, 468 the 'zigzag' runs show higher improvements from the 'SOCAT-baseline' (19-31 % improvement; 469 resulting mean bias = $0.44-0.51 \mu atm$) compared to the 'one-latitude' runs (7-19 % improvement; 470 resulting mean bias = 0.52-0.59 µatm) (Fig. S6; Table 1). However, the 'one-latitude'-run 471 'x13 10Y W' that samples southern hemisphere winter months only, stands out with the lowest 472 global mean (1982-2016) bias of 0.39 µatm, representing a 39 % mean improvement from the 473 'SOCAT baseline' (Table 1; Fig. S7). This run, however, has three and five times more observations (25,395) than 'Z_x4_10Y_YR' and 'x5_5Y_W', respectively. 474

Compared to the entire testbed period, even larger improvements in global mean bias are
shown for the period of Saildrone USV additions (2006-2016 and 2012-2016; Figs. 4a vs. 4b,
Figs. S7_vs. S8). Compared to the 'SOCAT-baseline', run 'x13_10Y W' results in a mean bias
improvement of 95 %, while the remaining 'one-latitude' runs and the 'zigzag' runs show mean
improvements up to 63 % and 85 %, respectively (Fig. S8). The spread in mean bias (2006/20122016) across the 75 testbed members for each experiment is shown in Figure S9.

Perhaps surprisingly, there is not a strong connection between the global or Southern Ocean
mean bias and the number of added USV observations (Fig. 5). The 'one-latitude' 'high-sampling'
run 'x13_10Y_J-A' (44,250 observations) show similar mean bias or is outperformed by all

Deleted:		
Deleted: 4		
Deleted		
Dinnu		
Deleted: S		
Deleted:		
Deleteur		
Deleted: 4		
Dolotodi S		
Deleted: S Deleted:		
Deleted: S Deleted: Deleted: S		
Deleted: S Deleted: Deleted: S Deleted: 4		
Deleted: S Deleted: Deleted: S Deleted: 4		
Deleted: S Deleted: Deleted: S Deleted: 4 Deleted: or	 	
Deleted: S Deleted: Deleted: S Deleted: 4 Deleted: or	 	
Deleted: S Deleted: Deleted: S Deleted: 4 Deleted: or		
Deleted: S Deleted: S Deleted: 4 Deleted: or Deleted: 4		
Deleted: S Deleted: S Deleted: S Deleted: 4 Deleted: or Deleted: 4 Deleted: 5		
Deleted: S Deleted: S Deleted: S Deleted: 4 Deleted: or Deleted: 4 Deleted: 5 Deleted:		

499 'zigzag' runs as well as the 'one-latitude'-runs that restrict sampling to southern hemisphere winter
500 months (i.e., 'x5_5Y_W' and 'x13_10Y_W').

501 Considering the change in bias from year-to-year, the 'SOCAT-baseline' shows positive 502 bias at all latitudes in the beginning of the testbed period, before improvement occurs around 1990 503 (Fig. 6a). This is consistent with increasing SOCAT sampling with time for the period considered 504 here (i.e., up to 2016; Fig. S5c). As SOCAT observations are biased towards the northern 505 hemisphere (Fig. S5a, b), bias in the Southern Ocean (< 35° S) increases significantly starting in 506 the 2000s and remains high until the end of the testbed period (Fig. 6a). By adding USV sampling, 507 bias in the Southern Ocean improves over the 'SOCAT-baseline' around year 2000 (Fig. 6b-d; 508 Fig. S10, up to 6-12 years before to the introduction of additional samples in either 2006 or 2012. 509 This improvement is shown for the majority of the 75 ensemble members (Fig. S11). Run 510 'Z x10 5Y W', which has the lowest mean bias out of the 'zigzag' runs (Fig. 5), shows 511 improvement even further back in time, until the beginning of the testbed period (Fig. S10). While 512 the annual mean bias of the 'zigzag' runs varies rather consistently, there is a larger spread across the 'one-latitude' runs (Fig. 6d). 513

-(1	Deleted:
-(1	Deleted: year
-(1	Deleted: time
-(1	Deleted: 3
-(1	Deleted: 3
-(1	Deleted:
-(1	Deleted: 6
(\mathbf{I})	Deleted: prior
(Ì	Formatted: Font: Bold
-(1	Deleted: 6
-(1	Deleted: vary
~(I	Deleted: in a similar manner

Deleted: between

-4

Deleted: Negative change in bias is found across the southern latitudes, indicating an improvement compared to the SOCAT baseline that overestimates pCO₂ (Figure 3a).

Deleted: Note that improvement is greater in the period of Saildrone USV additions compared to the entire testbed

Deleted: Deleted:

period.

Formatted: Highlight

Formatted: Highlight

-2

Change i

599 3.2.2 Root-mean squared error (RMSE)

600	Similar to bias, improvements in RMSE are most significant during the period of USV additions
601	and within the Southern Ocean (Fig. 7a vs. 7b). For the duration of USV additions, the 'one-
602	latitude' runs show improvements in global mean RMSE of 1-3,% (0.1-1,% for 1982-2016), while
603	the 'zigzag' runs show higher improvements between 2-5,% (1-3% for 1982-2016) (Figs. 7, S12,
604	S13). Mean RMSE is further reduced in the Southern Ocean by up to 16 %, and during southern
605	hemisphere winter months (JJA) up to 21,% (run 'Z x10 5Y YR'; mean RMSE of 9,6 µatm;
606	Table 1). There is minimal change in RMSE (or bias) during southern hemisphere summer months
607	(DJF; Fig. S14). The two 'zigzag' runs sampling year-round ('Z x4 10Y YR' and
608	$(Z_{10}5Y_{YR'})$ have the lowest RMSE values both globally and in the Southern Ocean (Fig. 8).
609	The spread across the 75 testbed members for each experiment is shown in Figure S15.
610	The 'zigzag' runs, as well as the 'high-sampling' 'one-latitude'-runs (i.e., 'x13_10Y_J-A'
611	and 'x13_10Y_W'), show improvements compared to the 'SOCAT_baseline' from the initiation
612	of sampling (Figs. 9, S16, S17). The year-round 'zigzag' runs, however, show improvement in the
613	Southern Ocean from the beginning of the testbed period (Figs. 9c, d, S16). RMSE improvements

614 back in time are greater for all runs in the southern hemisphere winter months (Fig. S18).

Deleted: 4		
Deleted: 3		
Deleted: 2		
Deleted: 3		
Deleted: 8		
Deleted: 2		
Deleted: 7		
Deleted: 8		
Deleted: in the	ne Southern Ocean by	
Deleted: 6		
Deleted: 6		
Deleted: 9		
Deleted: S		
Deleted: 9		
Deleted: '		
Formatted:]	Font: Bold	
Deleted:		
Deleted: 0		
Formatted:]	Font: Not Bold	
Deleted: 0		
Deleted: mor	re significant	
Deleted: 1		

Deleted: Overall, there is not a strong correlation between increasing number of observations or duration of sampling and decreasing RMSE.

1985

1985

1985

(C)

(b)

1990

1990

1990

1990

so

1995

1995

Rur

1995

1995

Sc

(a)

Formatted: Font: Not Italic

60

40

0

-20

-40

-60

60

40

20

0

-20

-40

-60

60

40

20

-20

-40

-60

10.0

9.5

9.0 RMSE (µatm)

8.5

8.0

7.5 7.0

Deleted:

(d)

0

Degrees North

Degrees North

Degrees North 20

669 670 671 672 **Figure 9:** Zonal mean, annual mean Hovmöller of RMSE for the 'SOCAT-baseline' (a). Change in RMSE for run* 'x5_5Y_W' (b) and 'Z_x4_10Y_YR'(c) compared to the 'SOCAT-baseline', Run 'Z x4 10Y_YR' shows improvement in RMSE within the Southern Ocean, which expand well beyond the duration of Saildrone USV additions (shown by arrow on panel). Annual mean RMSE for the Southern Ocean (> 35° S) for all runs (d).

23

Deleted: in...'SOCAT- ... aseline' (with the testbed 'model truth', average of 75 ensemble members (...). Dark and light areas represent regions where RMSE is low and high, respectively. RMSE is highest at latitudes > 60° S, > 60° N and around 40° S and the equator. RMSE is higher at all latitudes in the beginning of the testbed period, before some improvement occurs in the 1990s. ...hange in RMSE forof...run 'x5_5Y_W' (b) and 'Z_x4_10Y_YR'(c) compared to the 'SOCAT- ... aseline' reconstruction shown in (a)... Dark areas represent regions where the change in RMSE is negative, i.e., where the Saildrone USV same $\frac{1}{1000}$. [2]) Formatted: Line spacing: single

727 3.3 Impact on the air-sea CO₂ flux with Saildrone USV additions

728	Air-sea flux was calculated in the same manner for both the ML reconstructions and the 'model	
729	truth', which allows for the isolation of the impact of different sampling strategies, as mediated by	
730	the pCO ₂ reconstruction, on fluxes (see Sect. 2.5). These flux estimates are made to inform Deleted: direct comparison of the differences in	\supset
731	understanding of the errors that may exist in CO ₂ flux estimates derived from pCO ₂	\supset
732	reconstructions, and how new sampling could address these errors. Flux estimates represent the Deleted: These fluxes	\supset
733	average of the 75 members of the LET in each case, and are not estimates of real-world fluxes.	
734	Compared to the 'model truth', the <u>'SOCAT-baseline'</u> reconstruction underestimates the Deleted:	\supset
735	global and Southern Ocean sink by 0.11-0.13 Pg C yr ⁻¹ over 1982-2016 (Fig. 10; Table S1). Deleted: 2	\supset
736	Regardless of sampling pattern, adding Saildrone USV observations increases both the global and	
737	Southern Ocean mean sink compared to the 'SOCAT_baseline' (Figs. 10, S12). The 'one-latitude' Deleted:	\supset
738	runs show an increase of 0.01-0.03 Pg C yr ⁻¹ (2-6 % strengthening) of the Southern Ocean sink	\supset
739	(1982-2016), while the 'zigzag' runs lead to an even stronger sink by 0.04-0.06 Pg C yr ⁻¹ (7-11 %	
740	strengthening) (Table S2). When averaging over the years of Saildrone USV sampling addition Deleted: 3	\supset
741	(i.e., 2006-2012 and 2012-2016), the Southern Ocean sink increases up to 0.09 Pg C yr ⁻¹ (14 %	
742	strengthening) for the 'one-latitude' runs and up to 0.1 Pg C yr ⁻¹ (15 % strengthening) for the	
743	'zigzag' runs (Table S2). These same features are found for the global ocean (Fig. S19; Table Deleted: 3	\supset
744	S2). Deleted: 2	\sum
	Deleted: 3	
745	All of the 'zigzag' runs quite closely match both the global and Southern Ocean 'model	
746	truth' air-sea CO ₂ flux for the duration of sample additions (Figs. 10, S19). Except for the first Deleted: 2	\supset
747	couple of years of sample addition for the 'high-sampling'-run 'x13_10Y_J-A', none of the 'one-	
748	latitude' runs can match the 'model truth' air-sea CO ₂ flux, instead they all underestimate the flux Deleted: are able to	\supset
749	(Figs. 10, S12). The 'zigzag' runs have impact on the air-sea flux from an earlier date, starting to Deleted: as	\sum
750	pull the results away from the 'SOCAT-baseline' and toward the 'model truth' already in the late-	\prec
751	1990s, while the 'one-latitude' runs do the same about a decade later (Figs. 10, S19).	\prec

4. Discussion

We have tested the pCO₂-Residual reconstruction method with the Large Ensemble Testbed (LET) to estimate its fidelity and understand how new samples could increase skill. We find that, regardless of the chosen Saildrone USV sampling pattern, the reduction in <u>mean bias and mean</u> RMSE compared to the <u>'SOCAT-baseline'</u> is most prominent within the Southern Ocean (< 35° S) during the period of which Saildrone USV observations were added (**Figs. 4, 6, 7, 9**). However,

it is important to mention that the additional Southern Ocean sampling also impacts (improves)

Deleted:

Deleted: , averaged over the 75 ensemble members

Deleted: Compared to the SOCAT baseline, regardless of sampling pattern, the Saildrone USV additions lead to an increased ocean sink. The 'zigzag' runs generate a stronger sink compared to the 'one-latiude' runs, and closely match the 'model truth' for the duration of sample additions.

Deleted: both

	789	<u>the</u> pCO_2 reconstructions globally (Figs. 5a, 8a). Based on our experiments, a combination of
	790	factors improve global and Southern Ocean pCO2 reconstructions, including the type of sampling
	791	pattern and seasonality of sampling, and to some extent, the number of additional observations.
	792	Importantly, increasing the number of observations or duration of sampling (5 vs. 10 years) is not
	793	the sole determining factor for improving the reconstructions (Figs. 5, 8). This is best demonstrated
	794	by the 'high-sampling'-run 'x13_10Y_J-A' (44,250 observations), which does not provide
	795	significantly better reconstructions, or is even outperformed, by runs with 2-18 times fewer
	796	observations. The runs that produce lower mean RMSE do include data throughout southern
	797	hemisphere winter (Fig, 8). Run 'x13 10Y J-A' does not include more than a few observations
1	798	in the month of August, as it follows the temporal pattern of the real-world 'one-latitude' Saildrone
	799	USV expedition (Figs. <u>\$3, </u> \$4; Sutton et al., 2021). The 'one-latitude' runs '10Y_J-A' and
1	800	'10Y_YR' are directly comparable in terms of sample duration, spatial extent and number of
I	801	observations (Table 1), but the latter, which covers all months, always shows lower mean_RMSE
1	802	and bias (Figs. 5, 6d, 8, 9d). These examples attest to the importance of addressing the issue of
I	803	significant undersampling in the Southern Ocean during the winter season (Fig. S5a).
1		

804 Another important comparison is the 'one-latitude'-run 'x5_5Y_W' (5,022 observations) and 'zigzag'-run 'Z x10 5Y W' (3,800 observations) that both sample during southern 805 hemisphere winter months over a five-year period (Table 1), where the 'zigzag'-run consistently 806 performs better even though it includes fewer observations (Figs. 5, 8). Most of the runs that 807 808 perform similar to, or outperform, the above-mentioned 'high-sampling'-run 'x13_10Y_J-A' 809 (44,250 observations), sample in a 'zigzag' pattern. Out of all 10 runs, the 'year-round' 'zigzag' 810 runs ('Z_x4_10Y_YR' and 'Z_x10_5Y_YR') are most able to reduce the <u>mean</u> error as shown by 811 the lowest RMSE values (Figs. 8, 9d). A recent study performed similar sampling experiments as 812 shown here, by comparing sampling from different types of autonomous platforms to a 'SOCAT_ 813 baseline_(Djeutchouang et al., 2022). They emphasized the importance of capturing the significant 814 differences in pCO2 that exist across meridional gradients during summer and winter months (up 815 to 15 µatm; Djeutchouang et al., 2022). The meridional coverage provided by the 'zigzag' runs could explain why these runs generally outperform the 'one-latitude' runs in our study, and show 816 817 significant reduction in both RMSE and bias, even though the global pCO₂ data density is raised 818 by as little as 0.01-0.07.%.

Deleted: seems to be important in order to	
Deleted: both the	
Deleted: and	
Deleted: c	
Deleted: mainly	
Deleted: but also	
Deleted: 2-18 times less	
Deleted: , but that cover the full	
Deleted: s	
Deleted: 5, 6d,	
Deleted: , 9d	
Deleted: 1	

Deleted: s	
Deleted: 3	
Delated: h	

Deleted: magnitude of

Deleted:

Deleted: 4

837 The greatest reduction in mean bias out of all runs is shown by run 'x13 10Y W' (Figs. 838 5, 6d), which represents 'one-latitude' 'high-sampling' (i.e., 25,395 observations) during southern 839 hemisphere winter months only. This sampling strategy seems thus to have a higher ability to 840 reduce the ML model's tendency to overestimate pCO₂ in the Southern Ocean compared to any of 841 the meridional ('zigzag') runs. However, it should be noted that run 'x13 10Y W' covers areas 842 south of 55° S (Fig. S4), and its improvement in mean bias (and mean RMSE) is particularly 843 prevalent at these high latitudes (e.g., Figs. S8, S10, S13, S16). Whether or not this run is, in fact, 844 feasible with current or future technology is uncertain as parts of the southernmost tracks 845 potentially cover the Southern Ocean ice zone (Fig. S20), and solar radiation for solar-powered platforms and sensors becomes very limited during winter south of 55° S. Furthermore, this 846 847 particular sampling strategy requires 13 USVs, and so would be the most costly of the observing 848 scenarios. Although run 'x13 10Y W' demonstrates the highest reduction in mean bias out of all 849 runs, the 'zigzag' runs still reduce absolute mean bias (for 2006/2012-2016) in the Southern Ocean 850 by 44-65 % (vs. 77 % for run 'x13 10Y W').

851 Overall, the 'zigzag' runs include significantly fewer observations, require fewer USVs, 852 collect samples over the same duration, or even half the time as run 'x13 10Y W', cover areas 853 north of 55°S and within the ice-free zone, and show major improvement in the reconstruction of pCO₂, attested to by reductions in both bias and RMSE. The 'zigzag' runs also closely match both 854 855 the global and Southern Ocean 'model truth' air-sea CO2 flux for the duration of sample additions 856 (Figs. 10, S12). It also appears that the 'zigzag' runs generally have a greater impact on both the 857 pCO2 reconstruction and the air-sea flux further back in time, starting to deviate from the 'SOCAT-858 baseline' earlier compared to the 'one-latitude' runs (Figs. 6, 9, 10, S10, S16, S18, S19). Even the 859 'zigzag' scenarios with the least number of USVs (e.g., 'Z x4 10Y YR') reduces Southern Ocean 860 reconstruction absolute mean (2006-2016) bias and RMSE by up to 46 % and 11,%, respectively, 861 and could provide a basis for realistic future Southern Ocean pCO2 sampling campaigns.

The main motivation for improving surface ocean pCO_2 reconstructions is so that we can more accurately estimate the current and future oceanic uptake of anthropogenic carbon. The Southern Ocean is a significant carbon sink, but estimates of the air-sea CO_2 flux diverge substantially in this region (Takahashi et al., 2009; Landschützer et al., 2014, 2015; Rödenbeck et al., 2015; Williams et al., 2017; Gray et al., 2018; Gruber et al., 2019; Bushinsky et al., 2019; Long

Deleted: i Deleted: however

Deleted: 2	
Deleted: such	
Deleted: 5	
Deleted: 6	
Deleted: 8	
Deleted: 0	
Deleted: 13)
Deleted: thus)

Deleted:	less
	Deleted:

Deleted: 2

Deleted:	
Deleted: 6	
Deleted: 0	
Deleted: 1	
Deleted: 2	
Deleted: 3	

885 et al., 2021; Fay and McKinley, 2021; Wu et al., 2022). Southern Ocean estimates incorporating 886 observations from biogeochemical floats have shown a significantly weaker sink compared to 887 those based only on observations from ships (Williams et al., 2017; Gray et al., 2018; Bushinsky 888 et al., 2019). Bushinsky et al. (2019) and Hauck et al. (2023) performed similar sampling 889 experiments as presented here, by comparing ML surface ocean pCO₂ reconstructions based on 890 SOCAT ys. additional SOCCOM or ideal virtual floats. These studies showed that SOCAT 891 sampling alone overestimates the CO2 uptake in the Southern Ocean, and that additional floats 892 reduce this overestimation, leading to a decreased (weakened) ocean carbon sink. In contrast, we 893 find that the pCO₂-Residual method underestimates the CO₂ uptake with only SOCAT sampling, 894 and that adding USVs increased (strengthened) the Southern Ocean and global ocean sink by up 895 to 0.1 Pg C yr⁻¹ (Figs. 10, S12; Table S2).

896 Going forward, additional studies are needed to better understand why these results suggest 897 a different direction of the sink change with additional sampling. These differences could stem 898 from the use of different reconstruction methods assessed. Hauck et al. (2023) used the MPI-SOM-899 FFN and CarboScope/Jena-MLS reconstruction methods, while we use the pCO2-Residual 900 method. Another substantial difference between the studies is the models and numbers of ensemble 901 members used as the testbed. Hauck et al. (2023) use a single hindcast model, while we use 25 902 members each from three Earth System Models. We find substantial spread across these 75 903 members (Figs, S9 S15), indicating that model structure and internal variability significantly 904 impact results. Our study and Hauck et al. (2023) use different sampling masks and approaches 905 for the calculation of fluxes, which could also be a factor. Targeted, coordinated studies using 906 multiple reconstruction approaches with consistent testbed structures, sampling masks and 907 experimental approaches are clearly needed (Rödenbeck et al., 2015). Despite this need for this 908 additional work, studies do agree that additional Southern Ocean observations could significantly 909 improve reconstructions of air-sea CO₂ fluxes.

What else can we learn using the model testbed? The <u>SOCAT_baseline</u> demonstrates a
weakening of the global and Southern Ocean carbon sink <u>starting in the 1990s with a peak around</u>
year 2000 (Figs. 10, S12), which is in <u>broad</u> agreement with various data products using real-world
SOCAT data (e.g., Gruber et al., 2019; Landschützer et al., 2015; Bushinsky et al., 2019;
Bennington et al., 2022; Gloege et al., 2022). Peaks in bias and RMSE coincide in time with the

1	Deleted: Southern Ocean
1	Deleted: They
7	Deleted: by
Ì	Deleted: ng
Ì	Deleted: the
Ì	Formatted: Subscript
	Deleted: , the Southern Ocean carbon sink (mean of the period of float additions; 2015-2017) decreased (weakened) by 0.4 Pg C yr ⁻¹ . In contrast,
Q	Deleted: by using a model testbed, we show that
Ŵ	Formatted: Subscript
J	Formatted: Subscript
Q	Deleted: 2
	Deleted: 3), which is a significant fraction of the uncertainty in the global ocean carbon sink (0.4 Pg C yr ⁻¹ ; Friedlingstein et al., 2022
and the second	Deleted: Fed with real-world SOCAT data, the global mean air-sea flux estimate from the pCO ₂ -Residual method is similar to other available products (Bennington et al., 2022a), suggesting that other products may also underestimate the Southern Ocean carbon sink due to the spatio-temporal distribution of SOCAT data. Our experiments suggest that targeted USV observations could reduce this underestimation of the ocean carbon sink.
J	Formatted: Subscript
Q	Formatted: Font: Bold, Not Highlight
Q	Formatted: Not Highlight
V	Formatted: Font: Bold, Not Highlight
V	Formatted: Font: Bold
V	Formatted: Font: Bold
V	Formatted: Highlight
Ì	Formatted: Highlight
Ì	Formatted: Subscript
Ì	Deleted: 1
1	Deleted:
S	Deleted: 2

Deleted: alone

940 weakening sink (Figs. 6d, 9d). As shown by Figure 10, this 'low sink' is significantly exaggerated 941 compared to the 'model truth'. To better understand this discrepancy, we performed an additional 942 experiment based on run 'Z x10 5Y YR', but assumed sampling every year for the entire testbed 943 period (i.e., 1982-2016). There is now a significant reduction in the temporal variability of 944 reconstruction bias; with the additional 35-year USV sampling, the reconstructed Southern Ocean 945 air-sea CO_2 flux closely matches the 'model truth' for the entire testbed duration (Fig. S21). This 946 suggests that the large decadal variability of air-sea CO₂ fluxes since the 1980s, and the weak 947 anomaly in the Southern Ocean carbon sink in the early 2000s (Le Quéré et al., 2007; Landschützer 948 et al., 2015; Gruber et al., 2019; Bennington et al., 2022a,b; Friedlingstein et al., 2023, may be at 949 least partially attributable to undersampling of the Southern Ocean. This is in agreement with the 950 float sampling experiments performed by Hauck et al. (2023), attributing the strong decadal 951 variability to sparse and skewed SOCAT data distributions. We will further explore this issue in 952 future work. Still, this preliminary experiment suggests that interpretations of trends and variability of the global and Southern Ocean carbon sink should be considered with caution. 953

954 5. Conclusions

955 By using the Large Ensemble Testbed (LET), we show that targeted meridional and winter 956 sampling in the Southern Ocean can improve global and Southern Ocean ML surface ocean pCO₂ reconstructions. Significant improvements are possible by raising the global pCO2 data density by 957 958 as little as 0.01-0.07, %. Further, we find that this modest amount of additional Saildrone USV 959 sampling increases the global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr⁻¹, a 960 quantity equivalent to 25 % of the uncertainty in the ocean carbon sink (0.4 Pg C yr⁻¹; 961 Friedlingstein et al., 2023). Our findings are consistent with previous studies suggesting that additional observations during southern hemisphere winter months and covering meridional 962 963 gradients can reduce uncertainties and biases in the reconstructions (Lenton et al., 2006; Monteiro 964 et al., 2010; Djeutchouang et al., 2022; Mackay et al., 2022). As opposed to other autonomous 965 platform approaches, Saildrone USVs obtain in situ pCO2 observations with uncertainties 966 equivalent to the highest-quality observations collected by research ships (± 2 µatm; Sabine et al., 967 2020; Sutton et al., 2021), and can operate at a high speed so that the spatial extent and seasonal 968 cycle of meridional gradients can be covered. The approach of combining high-accuracy Saildrone USV and SOCAT observations represents thus a promising solution to improve future surface 969

Deleted: The results from this experiment show

Deleted: 14

Deleted: 2

Deleted: 4

974	ocean pCO ₂ reconstructions	and the accuracy	of the ocean carbon sink.	Lastly, we show that the
-----	--	------------------	---------------------------	--------------------------

- 975 large variability in bias, and the weakening of the global and Southern Ocean carbon sink in the
- 976 2000s, may be partially an artefact of Southern Ocean undersampling.

977 Code availability

978 Data analysis scripts will be made available in a GitHub repository upon publication.

979 Data availability

980TheLargeEnsembleTestbedispubliclyavailableat981https://figshare.com/collections/Large_ensemble_pCO2_testbed/4568555.

982

983 Author contribution

- 984 THH, GAM and AJS designed the experiments, and THH performed the simulations. THH, ARF
- and LG developed the code. THH and ARF calculated the air-sea fluxes. THH prepared themanuscript with contributions from all co-authors.

987 Competing interests

988 The authors declare that they have no conflict of interest.

989 Acknowledgements

- 990 We acknowledge funding from NOAA through the Climate Observations and Monitoring Program
- 991 (Award #NA20OAR4310340) and from NSF through the LEAP STC (Award #2019625). This is
- 992 PMEL contribution 5549. We would also like to acknowledge and thank Val Bennington, Julius
- 993 Busecke, Devan Samant and Abby Shaum for providing technical support, and Viviana Acquaviva

994 for discussions regarding the manuscript. Lastly, we wish to thank two anonymous reviewers,

995 whose contributions greatly improved the manuscript,

(Deleted: and
(Deleted:
$\langle \rangle$	Formatted: Font: 12 pt
X	Formatted: Highlight
1	Deleted:

996

1001 References

1002

1027

1003 Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, 1004 C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., 1005 Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. 1006 1007 D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, 1008 1009 J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, 1010 1011 P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. 1012 J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, 1013 K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., 1014 Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, 1015 K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean 1016 1017 CO₂ Atlas (SOCAT), Earth System Science Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-1018 <u>2016</u>, 2016.

1019 Bakker, D. C. E., Alin, S. R., Becker, M., Bittig, H. C., Castaño-Primo, R., Feely, R, A., Gkritzalis, 1020 T., Kadono, K., Kozyr, A., Lauvset, S, K., Metzl, N., Munro, D, R., Nakaoka, S., Nojiri, Y., O'Brien, 1021 K, M., Olsen, A., Pfeil, Benjamin, P., Denis, S., Tobias, S., Kevin F., Sutton, A. J., Sweeney, C., Tilbrook, B., Wada, C., Wanninkhof, R., Willstrand W. A., Akl, J., Apelthun, L. B., Bates, N., 1022 1023 Beatty, C. M., Burger, E. F., Cai, W., Cosca, C. E., Corredor, J. E., Cronin, M., Cross, J. N., De 1024 Carlo, E. H., DeGrandpre, M. D., Emerson, S. R., Enright, M. P., Enyo, K., Evans, W., Frangoulis, 1025 C., Fransson, A., García-Ibáñez, M. I., Gehrung, M., Giannoudi, L., Glockzin, M., Hales, B.,

- 1026 Howden, S. D., Hunt, C. W., Ibánhez, J. S. P., Jones, S. D., Kamb, L., Körtzinger, A., Landa, C.
- S., Landschützer, P., Lefèvre, N., Lo Monaco, C., Macovei, V. A., Maenner J. S., Meinig, C., 1028 Millero, F. J., Monacci, N. M., Mordy, C., Morell, J. M., Murata, A., Musielewicz, S., Neill, .,
- 1029 Newberger, T., Nomura, D., Ohman, M., Ono, T., Passmore, A., Petersen, W., Petihakis, G.,
- 1030 Perivoliotis, L., Plueddemann, A. J., Rehder, G., Reynaud, T., Rodriguez, C., Ross, A. C.,
- 1031 Rutgersson, A., Sabine, C. L., Salisbury, J. E., Schlitzer, R., Send, U., Skjelvan, I., Stamataki, N.,

1032	Sutherland, S	. C., Swe	eney, C., Tad	lokoro, K., '	Tanhua, T.,	Telszewski, M.,	Trull, T., V	Vandemark,

1033 D., van Ooijen, E., Voynova, Y. G., Wang, H., Weller, R. A., Whitehead, C., Wilson, D.: Surface

1034 Ocean CO₂ Atlas Database Version 2022 (SOCATv2022) (NCEI Accession 0253659), NOAA

1035 National Centers for Environmental Information [dataset], <u>https://doi.org/10.25921/1h9f-nb73</u>,
1036 2022.

Behncke, J., Landschützer, P. & Tanhua, T. A detectable change in the air-sea CO₂ flux estimate
from sailboat measurements. *Scientific Reports*, <u>14</u>, <u>3345</u>, <u>https://doi.org/10.1038/s41598-024-</u>
53159-0, 2024,

Bennington, V., Galjanic, T., and McKinley, G. A.: Explicit Physical Knowledge in Machine
Learning for Ocean Carbon Flux Reconstruction: The pCO₂-Residual Method, Journal of
Advances in Modeling Earth Systems, 14(10), <u>https://doi.org/10.1029/2021ms002960</u>, 2022a.

Bennington, V., Gloege, L., and McKinley, G. A.: Variability in the global ocean carbon sink from
1959 to 2020 by correcting models with observations, Geophysical Research Letters, 49(14),
https://doi.org/10.1029/2022GL098632, (2022b).

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R.,
Resplandy, L., Johnson, K. S., and Sarmiento, J. L.: Reassessing Southern Ocean air-sea CO₂ flux
estimates with the addition of biogeochemical float observations, Global Biogeochemical Cycles, *33*(11), 1370-1388, https://doi.org/10.1029/2019GB006176, 2019.

1050 Chen, T., and Guestrin, C.: Xgboost: A scalable tree boosting system, In: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794),
 https://doi.org/10.1145/2939672.2939785, 2016.

053 Denvil-Sommer, A., Gehlen, M., and Vrac, M.: Observation system simulation experiments in the

Atlantic Ocean for enhanced surface ocean pCO₂ reconstructions, *Ocean Science*, 17, 1011-1030.

1055 <u>https://doi.org/10.5194/os-17-1011-2021, 2021.</u>

1056 Deser, C., Phillips. A., Bourdette, V., and Teng. H.: Uncertainty in climate change projections: the

1057 role of internal variability, Climate Dynamics, 38, 527-546, <u>https://doi.org/10.1007/s00382-010-</u>

1058 <u>0977-x</u>, 2012

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Field Code Changed
Deleted: ¶
Formatted: Font color: Text 1

	Formatted: Highlight
(Formatted: Subscript, Highlight
	Formatted: Highlight
$\langle \rangle$	Formatted: Font: Italic, Highlight
()	Formatted: Highlight
//	Formatted: Highlight
Ì	Formatted: Highlight

1060	Djeutchouang, L. M.,	Chang, N., Gregor, L.,	Vichi, M., and Monteiro,	P. M. S.: The sensitivity of

 $1061 \quad pCO_2$ reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized

1062 ocean sampling simulation approach, Biogeosciences, 19, 4171-4195, <u>https://doi.org/10.5194/bg-</u>

1063 <u>19-4171-2022</u>, 2022

Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C., Gray, A. R.,
Landschützer, P., Stephens, B. B., Takahashi, T., and Williams, N.: Utilizing the Drake Passage
Time-series to understand variability and change in subpolar Southern Ocean pCO₂,
Biogeosciences, 15(12), 3841-3855, https://doi.org/10.5194/bg-15-3841-2018, 2018.

Fay, A. R., and McKinley, G. A.: Observed regional fluxes to constrain modeled estimates of the
ocean carbon sink, Geophysical Research Letters, 48(20), <u>https://doi.org/10.1029/2021GL095325</u>,
2021.

1	071	Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., Iida, Y.
1	072	Laruelle, G. G., Rödenbeck, C., Roobaert, A., and Zeng, J.: SeaFlux: harmonization of air-sea CO
1	073	fluxes from surface nCO2 data products using a standardized approach Farth System Science Data

1074 <u>13, 4693-4710, https://doi.org/10.5194/essd-13-4693-2021, 2021.</u>

1075 Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., 1076 Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, 077 078 N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., 079 Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, 080 X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., 081 Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., 082 Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, 083 A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, 084 J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, 085 G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, 086 S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, 087 K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. 088 M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q.,

Formatted: Highlight					
Formatted: Subscript, Highlight					
Formatted: Highlight					
Formatted: Subscript, Highlight					
Formatted: Highlight					
Formatted: Font: Italic, Highlight					
Formatted: Font: Italic, Highlight					
Formatted: Highlight					
Formatted: Font: (Default) Times Ne Highlight	w Roman, 12 pt,				
Formatted: Font: 12 pt, Highlight					
Formatted: Font: (Default) Times Ne	w Roman, 12 pt				

1089	Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F.,
1090	van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang,

1091 D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023,

1092 Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023.

- 1097 Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R., Frolicher, T. L., and Fyfe, J. C.:
- 1098 Quantifying Errors in Observationally Based Estimates of Ocean Carbon Sink Variability, Global
- 1099 Biogeochemical Cycles, 35(4), https://doi.org/10.1029/2020gb006788, 2021.
- 1100 Gloege, L., Yan, M., Zheng, T. and McKinley, G. A.: Improved quantification of ocean carbon
- 1101 uptake by using machine learning to merge global models and pCO₂ data, Journal of Advances in
- 1102 Modeling Earth Systems, 14(2), <u>https://doi.org/10.1029/2021MS002620</u>, 2022.
- 1103
- 1104 Good, S. A., Martin, M., and Rayner, N. A.: EN4: Quality controlled ocean temperature and
- 1105 salinity profiles and monthly objective analyses with uncertainty estimates, Journal of
- 1106 Geophysical Research Oceans, 118(12), 6704-6717, <u>https://doi.org/10.1002/2013JC009067</u>,
- 1107

2013.

1108

- 1110 Wanninkhof, R., Williams, N. L., and Sarmiento, J. L.: Autonomous biogeochemical floats detect
- 1111 significant carbon dioxide outgassing in the high-latitude Southern Ocean, Geophysical Research
- 1112 Letters, 45(17), 9049-9057, https://doi.org/10.1029/2018GL078013, 2018.
- 1113 Gregor, L., Lebehot, A. D., Kok, S., and Monteiro, P. M. S.: A comparative assessment of the
- 1114 uncertainties of global surface ocean CO₂ estimates using a machine-learning ensemble (CSIR-
- 1115 ML6 version 2019a) have we hit the wall?, Geoscientific Model Development, 12, 5113-5136,
- 1116 https://doi.org/10.5194/gmd-12-5113-2019, 2019.

Deleted: Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J., Le Quéré, C. Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. L. Decharme, B., Djeutchouang, L., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I. Houghton, R. A., Hurtt, C. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A. K., Jones, S. D., Kato, E., Kennedy, D., Goldewijk, K. K., Knauer, J., Korsbakken, J. A., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L. Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C. Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., Werf, G. V. D., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J.: Global carbon budget 2021, Earth System Science Data, 14(4), 1917-2005, https://doi.org/10.5194/essd-14-1917-2022, 2022

<sup>Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N. C., Molotch, N. P.,
Zhang, X., Wan, H., Arora, V. K., Scinocca, J., and Jiao, Y.: Large near-term projected snowpack
loss over the western United States, Nature communications, 8(1), 14996,
https://doi.org/10.1038/ncomms14996, 2017.</sup>

¹¹⁰⁹ Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D.,

- 1141 Gregor, L. and Fay, A. R.: Air-sea CO₂ fluxes for surface pCO₂ data products using a standardized
- 1142 approach, Zenodo [code], <u>https://doi.org/10.5281/zenodo.5482547</u>, 2021.
- 1143 Gruber, N., Landschützer, P., and Lovenduski, N. S.: The variable Southern Ocean carbon sink,
- 1144
 The Annual Review of Marine Science, 11, 159-86, https://doi.org/10.1146/annurev-marine-121916-063407, 2019.
- 146 Hauck, J., Nissen, C., Landschützer, P., Rödenbeck, C., Bushinsky, S., and Olsen, A.: Sparse
- 147 observations induce large biases in estimates of the global ocean CO2 sink: and ocean model
- subsampling experiment, Philosophical Transactions Of the Royal Society A, 381:20220063,
- 149 https://doi.org/10.1098/rsta.2022.0063, 2023.
- 1150 Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C.,
- 1151 Danabasoglu, G., Edwards, J., Holland, M., Kuschner, P., Lamarque, J-F., Lawrence, D., Lindsay,
- 1152 K., Middelton, A., Munoz, E., Nealse, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
- 1153 Community Earth System Model (CESM) large ensemble project: A community resource for
- 1154 studying climate change in the presence of internal climate variability, Bulletin of the American
- 1155 Meteorological Society, 96(8), 1333-1349, <u>https://doi.org/10.1175/BAMS-D-13-00255</u>, 2015.
- Khatiwala, S., Primeau, F., and Hall., T.: Reconstruction of the history of anthropogenic CO2
 concentrations in the ocean, Nature, 462(7271), 346-349, <u>https://doi.org/10.1038/nature08526</u>,
 2009.
- Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent variability of the global
 ocean carbon sink, Global Biogeochemical Cycles, 28(9), 927-949,
 <u>https://doi.org/10.1002/2014GB004853</u>, 2014.
- 1162 Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., Van Heuven, S.,
- 1163 Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Brook, B., and Wanninkhof, R.: The
- 1164 reinvigoration of the Southern Ocean carbon sink, Science, 349(6253), 1221-1224,
- 1165 <u>https://doi.org/10.1126/science.aab2620</u>, 2015.
- 1166 Landschützer, P., Tanhua, T., Behncke, J., and Keppler, L.: Sailing through the Southern Ocean
- 1167 seas of air-sea CO₂ flux uncertainty, Philosophical Transactions of the Royal Society A, 381,
 - https://doi.org/10.1098/rsta.2022.0064, 2023.

1168

Formatted: Font: 12 pt Formatted: Font: 12 pt

Deleted: .

- Lenton, A. B., Matear, R. J., and Tilbrook, B.: Design of an observational strategy for quantifying
 the Southern Ocean uptake of CO₂, Global Biogeochemical Cycles, 20, 1-11.
 https://doi.org/10.1029/2005GB002620, 2006.
- Lenton, A. B., Tilbrook, B., Law, R. M., Bakker, D. C. E., Doney, S. C., Gruber, N., Ishii, M.,
 Hoppema, M., Lovenduski, N. S., Matear, R. J., McNeil. B. I., Metzl, N., Mikaloff Fletcher, S. E.,
 Monteiro, P. M. S., Rödenbeck, C., Sweeney, C., and Takahashi, T.: Sea-air CO₂ fluxes in the
 Southern Ocean for the period 1990-2009, Biogeosciences, 10, 4037-4054,
 https://doi.org/10.5194/bg-10-4037-2013, 2013.
- 1178 Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Lagenfelds, R., Gomez, A.,
- 1179 Labuschagne C., Ramonet, M., Nakazawa, T., Metzl, N., Gillett, N., and Heimann, M.: Saturation
- of the Southern Ocean CO2 sink due to recent climate change, Science, 316(5832), 1735-1738,
 https://doi.org/10.1126/science.1136188, 2007.
- 1182 Long, M. C., Stephens, B. B., McKain, K., Sweeney, C., Keeling, R. F., Kort, E. A., Morgan, E.
- 1183 J., Bent, J. D., Chandra, N., Chevallier, F., Commane, R., Daube, B. C., Krummel, P. B., Loh, Z.,
- 1184 Luijkx, I. T., Munro, D., Patra, P., Peters, W., Ramonet, M., Rödenbeck, C., Stavert, A., Tans, P.,
- 1185 and Wofsy, S. C.: Strong Southern Ocean carbon uptake evident in airborne observations, Science,
- 1186 374(6572), 1275-1280, <u>https://doi.org/10.1126/science.abi4355</u>, 2021.
- 1187 Mackay, N., and Watson, A.: Winter air-sea CO₂ fluxes constructed from summer observations of
- the polar Southern Ocean suggest weak outgassing, Journal of Geophysical Research: Oceans,
 126(5), e2020JC016600, <u>https://doi.org/10.1029/2020JC016600</u>, 2021.
- 1190 Mackay, N., Watson, A., Suntharalingam, P., Chen, Z., and Rödenbeck, C.: Improved winter data
- 1191 coverage of the Southern Ocean CO₂ sink from extrapolation of summertime observations,
- 1192 Communications Earth & Environment, 3, 265, <u>https://doi.org/10.1038/s43247-022-00592-6</u>,
- 1193 2022.
- 1194 McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., and Lovenduski, N. S.: External forcing
- explains recent decadal variability of the ocean carbon sink, AGU Advances, 1(2),
 e2019AV000149, https://doi.org/10.1029/2019AV000149, 2020.

- 1197 Mongwe, N. P., Vichi, M., and Monteiro, P. M. S.: The seasonal cycle of pCO₂ and CO₂ fluxes in
- the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models, Biogeosciences, 15(9),
- 1199 2851-2872, https://doi.org/10.5194/bg-15-2851-2018, 2018.
- 1200 Monteiro, P. M. S., Gregor, L., Lévy, M., Maenner, S., Sabine, C. L., and Swart, S.: Intraseasonal
- variability linked to sampling alias in air-sea CO₂ fluxes in the Southern Ocean, Geophysical
 Research Letters, 42(20), 8507-8514, https://doi.org/10.1002/2015GL066009, 2015.
- $\frac{1202}{1202}$ Research Letters, 42(20), 8507-8514, $\frac{1005272015022015012000009}{12015012000009}$, 2015.
- Rodgers, K. B., Lin, J., and Frölicher, T. L.: Emergence of multiple ocean ecosystem drivers in a
 large ensemble suite with an Earth system model, Biogeosciences, 12(11), 3301-3320.
 https://doi.org/10.5194/bg-12-3301-2015, 2015.
- 1206 Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer,
- 1207 P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse T. P., Schuster,
- 1208 U., Shutler, J. D., Valsala, V., Wannikkhof, R., and Zeng, J.: Data-based estimates of the ocean
- 1209 carbon sink variability first results of the Surface Ocean pCO_2 Mapping intercomparison
- 210 (SOCOM), Biogeosciences, 12, 7251-7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
- Sabine, C., Sutton, A., McCabe, K., Lawrence-Slavas, N., Alin, S, Feely, R., Jenkins, R., Maenner,

S., Meinig, C., Thomas, J., van Ooijen, E., Passmore, A., and Tilbrook, B.: Evaluation of a new
carbon dioxide system for autonomous surface vehicles, Journal of Atmospheric and Oceaenic
Technology, 37(8), 1305-1317, <u>https://doi.org/10.1175/JTECH-D-20-0010.1</u>, 2020.

- 1215 Stamell, J., Rustagi, R. R., Gloege, L., and McKinley, G. A.: Strengths and weaknesses of three
- 1216 Machine Learning methods for pCO2 interpolation, Geoscientific Model Development
- 1217 Discussions[preprint], doi:10.5194/gmd-2020-311, 22 October 2020.
- 1218 Sutton, A. J., Williams, N. L., and Tilbrook, B.: Constraining Southern Ocean CO₂ flux uncertainty
- 1219 using uncrewed surface vehicle observations, Geophysical Research Letters, 48(3),
- 1220 e2020GL091748, https://doi.org/10.1029/2020GL091748, 2021.
- 1221 Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal
- 1222 variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global
- 1223 Biogeochemical Cycles, 7(4), 843-878, <u>https://doi.org/10.1029/93GB02263</u>, 1993.

Deleted:

Deleted:

1226	Takaha	shi, T.,	Sutherland, S	. C., Wannir	nkhof, R	., Sweeney, C., Feel	y, R. A., Chipr	nan, D. W.,
1227	Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl,				r, U., Metzl,			
1228	N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T.,							
1229	Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby,							
1230	R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal							
1231	change in surface ocean pCO_2 , and net sea-air CO_2 flux over the global oceans, Deep Sea Research							
1232	Part	II:	Topical	Studies	in	Oceanography,	56(8-10),	554-557,
1233	https://c	doi.org/	10.1016/j.dsr2	2.2008.12.009	<mark>9</mark> , 2009.			

Toms, B. A., Barnes, E. A., and Ebert-Uphoff, I.: Physically interpretable neural networks for the
geosciences: Applications to earth system variability, Journal of Advances in Modeling Earth
Systems, 12(9), e2019MS002002, <u>https://doi.org/10.1029/2019MS002002</u>, 2020.

Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
 Limnology and Oceanography: Methods, 12, 351-362, https://doi.org/10.4319/lom.2014.12.351,
 2014.

Williams, N. L., Juranek, L. W., Feely, R. A., Johnson, K. S., Sarmiento, J. L., Talley, L. D., 1240 Dickson, A. G., Gray, A. R., Wannikhof, R., Russell, J. L., Riser, S. C., and Takeshita, Y.: 1241 Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An 1242 1243 uncertainty analysis, Global Biogeochemical Cycles, 31(3), 591-604, https://doi.org/10.1002/2016GB005541, 2017. 1244

Wu, Y., Bakker, D. C. E., Achterberg, E. P., Silva, A. N., Pickup D. P., Li, X., Hartman, S.,
Stappard, D., Qi, D., and Tyrrell, T.: Integrated analysis of carbon dioxide and oxygen
concentrations as a quality control of ocean float data, Communications Earth & Environment, 3,
92, https://doi.org/10.1038/s43247-022-00421-w, 2022.

1249

1250

1251

1252

Formatted: Highlight

 Formatted: Font: Italic, Highlight

 Formatted: Highlight

 Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, Highlight

 Formatted: Highlight

 Formatted: Not Highlight

Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
_			4
×			
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
			4
X			
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
X			•
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
¥			•
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
X			4
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
¥			4
Page 19. [1] Deleted	Theo Hotlen Heimdol	12/14/23 4·52·00 PM	
	Thea Hatten Heimuar	12/14/20 4.32.00 1 191	
			4
Page 19. [1] Deleted	Theo Hotlen Heimdol	12/14/23 4·52·00 PM	
Tage 17. [1] Deleted	Thea Hatten Heimuar	12/17/25 7.52.00 1 191	
X			<
Dage 10: [1] Deleted	Theo Hotlen Heimdel	12/14/22 4-52-00 DM	
rage 19: [1] Deleted	пеа пацен пенниа	12/14/23 4:52:00 FM	
Y			4
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
▼			4
<u>۸</u>			
Page 19: [1] Deleted	Thea Hatlen Heimdal	12/14/23 4:52:00 PM	
▼			4
A			
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM	
•			<

A		
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
▼		4
		11/27/22 A 20 00 DM
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/2//23 2:39:00 PM
X		<
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
X		
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
y		<
Page 23: [2] Delated	Theo Hotlon Hoimdel	11/27/22 2.20.00 DM
rage 25. [2] Deleteu	Thea Hatten Heimuai	11/2//25 2:39:00 F MI
X		4
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
•		4
<u> </u>		
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
X		<
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
X		•
Page 23: [2] Deleted	Thea Hatlen Heimdal	11/27/23 2:39:00 PM
▼		4
A		