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Abstract 10 

The Southern Ocean plays an important role in the exchange of carbon between the atmosphere 11 

and oceans, and is a critical region for the ocean uptake of anthropogenic CO2. However, estimates 12 

of the Southern Ocean air-sea CO2 flux are highly uncertain due to limited data coverage. Increased 13 

sampling in winter and across meridional gradients in the Southern Ocean may improve machine 14 

learning (ML) reconstructions of global surface ocean pCO2. Here, we use a Large Ensemble 15 

Testbed (LET) of Earth System Models and the pCO2-Residual reconstruction method to assess 16 

improvements in pCO2 reconstruction fidelity that could be achieved with additional autonomous 17 

sampling in the Southern Ocean added to existing Surface Ocean CO2 Atlas (SOCAT) 18 

observations. The LET allows for a robust evaluation of the skill of pCO2 reconstructions in space 19 

and time through comparison to ‘model truth’. With only SOCAT sampling, Southern Ocean and 20 

global pCO2 are overestimated, and thus the ocean carbon sink is underestimated. Incorporating 21 

Uncrewed Surface Vehicle (USV) sampling increases the spatial and seasonal coverage of 22 

observations within the Southern Ocean, leading to a decrease in the overestimation of pCO2. A 23 

modest number of additional observations in southern hemisphere winter and across meridional 24 

gradients in the Southern Ocean leads to improvement in reconstruction bias and root-mean 25 

squared error (RMSE) by as much as 95 % and 16 %, respectively, as compared to SOCAT 26 

sampling alone. Lastly, the large decadal variability of air-sea CO2 fluxes shown by SOCAT-only 27 

sampling may be partially attributable to undersampling of the Southern Ocean.   28 

 29 
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1.  Introduction  30 

The ocean plays an important role in mitigating climate change by sequestering anthropogenic 31 

carbon emissions. From 1850 to 2023, the oceans have removed a total of 180 ± 35 Gt of carbon 32 

(Friedlingstein et al., 2023). In order to fully understand the climate impacts from rising emissions, 33 

it is essential to accurately quantify the air-sea CO2 flux and the global ocean carbon sink in space 34 

and time. The Surface Ocean CO2 ATlas (SOCAT; Bakker et al., 2016) is the largest global 35 

database of surface ocean CO2 observations, with data starting in 1957. The main synthesis and 36 

gridded products contain over 33 million high-quality direct shipboard measurements of fCO2 37 

(fugacity of CO2) with an uncertainty of < 5 μatm (Bakker et al., 2022). However, due to limited 38 

resources for ocean observing, limited number of ships/routes, inaccessible regions and unsafe 39 

waters, the database covers only about 1% of the global ocean at monthly 1°x1° spatial resolution 40 

over the period of 1982-2023, and is highly biased towards the northern hemisphere.  41 

Mapping methods have been developed to estimate full-coverage surface ocean pCO2 42 

across space and time by extrapolating to global coverage from these sparse SOCAT observations 43 

(e.g., Landschützer et al., 2014; Rödenbeck et al., 2015; Gloege et al., 2022; Bennington et al., 44 

2022a,b). Most of these data products utilize machine learning (ML) algorithms to estimate a non-45 

linear function between a suite of driver variables (i.e., sea surface temperature - SST, sea surface 46 

salinity - SSS, mixed layer depth - MLD, Chlorophyll - Chl-a, xCO2 - atmospheric CO2) and 47 

surface ocean pCO2 (the target variable) where these are co-located. The driver variables are 48 

proxies for processes influencing ocean pCO2. Full-coverage driver variable datasets are then 49 

processed through these ML algorithms to produce estimated global full-coverage surface ocean 50 

pCO2. Since the data products rely on pCO2 observations to estimate functions between the target 51 

and driver variables, data sparsity remains a fundamental limitation to this technique.  52 

It has been suggested that targeted sampling from autonomous platforms combined with 53 

ships, filling in the state space of pCO2, represents a path forward to improve surface ocean pCO2 54 

reconstructions (Bushinsky et al., 2019; Gregor et al., 2019; Gloege et al., 2021; Djeutchouang et 55 

al., 2022; Landschützer et al., 2023; Hauck et al., 2023). One major obstacle, however, is that the 56 

indirect pCO2 estimates from floats have high uncertainties (± 11.4 μatm) and may be biased by 57 

as much as ~ 4 μatm (Bakker et al., 2016; Williams et al., 2017; Fay et al., 2018; Gray et al., 2018; 58 

Sutton et al., 2021; Mackay and Watson 2021; Wu et al 2022). These large uncertainties and biases 59 
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arise when pCO2 is not measured directly as in the observations included in SOCAT, but is rather 60 

estimated using measurements of pH combined with a regression-derived alkalinity estimate 61 

(Williams et al., 2017; Gray et al., 2018). SOCAT includes only direct pCO2 observations. Biases 62 

and uncertainties may have large impacts on global air-sea CO2 flux estimates, given that the global 63 

mean air-sea disequilibrium is only 5-8 μatm (McKinley et al., 2020). It is therefore critical that 64 

bias and uncertainty corrections are well-constrained over different oceanic conditions and over 65 

time.  66 

Uncrewed Surface Vehicles (USVs), such as those manufactured and maintained by 67 

Saildrone Inc., represent a new type of autonomous platform that can obtain direct pCO2 68 

observations with significantly lower uncertainties compared to other autonomous methods, and 69 

equivalent to the highest-quality shipboard measurements contained in SOCAT (± 2 μatm; Sabine 70 

et al., 2020; Sutton et al., 2021). Such improvements in sampling are critically important in the 71 

undersampled Southern Ocean. This region is fundamental in terms of the ocean’s ability to 72 

remove carbon from the atmosphere, being responsible for ~ 40% of the global ocean uptake of 73 

anthropogenic CO2 (Khatiwala et al., 2009). Improved data coverage in the Southern Ocean 74 

represents thus a major opportunity to advance our understanding of the global ocean carbon sink 75 

(Lenton et al., 2006, 2013; Takahashi et al., 2009; Monteiro et al., 2015; Gregor et al., 2019; Gray 76 

et al., 2018; Mongwe et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021; Long et al., 2021; 77 

Mackay et al., 2022; Wu et al., 2022; Landschützer et al., 2023; Hauck et al., 2023). A combination 78 

of SOCAT and Saildrone USV observations would include high-accuracy data from both the long 79 

record and global coverage of ship tracks, and the expanded finer resolution of spatial and seasonal 80 

coverage of the poorly sampled Southern Ocean. Importantly, Saildrone USVs are also able to 81 

cover the spatial extent and seasonal cycle of the meridional gradients, which has been shown to 82 

be critical in order to reduce errors in reconstructing surface ocean pCO2 (Djeutchouang et al., 83 

2022). A combined approach, with autonomous samples such as those obtained from Saildrone 84 

USVs, in addition to high-quality observations collected from ships, represents thus a promising 85 

solution to improve surface ocean pCO2 ML reconstructions.  86 

Here, we assess to what extent surface ocean pCO2 reconstructions can improve by 87 

implementing the pCO2-Residual machine learning (ML) reconstruction (Bennington et al., 2022a) 88 

with the combined inputs of SOCAT and Saildrone USV coverage. However, instead of using real-89 
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world observations, we sample the target (i.e., surface ocean pCO2) and driver variables (i.e., SST, 90 

SSS, MLD, Chl-a and xCO2) from our Large Ensemble Testbed (LET) of Earth System Models 91 

(ESMs) (e.g., Stamell et al., 2020; Gloege et al., 2021; Bennington et al., 2022a). There are two 92 

major benefits of using a testbed compared to actual observations. First, in an ESM, the surface 93 

ocean pCO2 field is provided precisely at all model times and 1°x1° points. Therefore, the pCO2 94 

reconstructed by the ML algorithm can be robustly evaluated in space and time against a known 95 

‘truth’ (i.e., ‘model truth’). The reconstruction evaluation is thus not limited to the availability of 96 

sparse real-world ocean observations. Secondly, a testbed can be used to plan and evaluate the 97 

impact of different sampling strategies on the reconstructed pCO2. It is important to stress that, by 98 

using a model testbed, we do not predict real-world surface ocean pCO2 and air-sea CO2 fluxes. 99 

The goal here is to assess the accuracy with which an ML algorithm can reconstruct the ‘model 100 

truth’ given inputs of samples consistent with real-world data coverage from the SOCAT database 101 

and Saildrone USVs.  102 

By utilizing the observational coverage of SOCAT and Saildrone USV transects, we assess 103 

to what extent the pCO2-Residual method accurately reconstructs model surface ocean pCO2 in 104 

space and time. We test the impact of two different USV Southern Ocean sampling schemes, the 105 

first based on a sampling campaign completed in 2019 (Sutton et al., 2021), and the second on 106 

logistically feasible potential future meridional sampling. Additionally, we explore the timing, 107 

magnitude, duration and spatial extent of Southern Ocean USV sample additions that most 108 

significantly improve the pCO2 predictions. Combined, the sampling patterns tested here 109 

complements previous studies exploring the impact of additional sampling in the Southern Ocean 110 

based on idealized full global coverage of floats, and float observations from recent deployments, 111 

including the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) 112 

project, moorings and sailboats (Bushinsky et al., 2019; Denvil-Sommer et al., 2021; 113 

Djeutchouang et al., 2022; Hauck et al., 2023; Behncke et al., 2024; Landschützer et al., 2023).  114 

 115 

2. Methods 116 

2.1 The Large Ensemble Testbed (LET) 117 
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In this study, the Large Ensemble Testbed (LET) includes 25 members from three independent 118 

initial-condition ensemble models (i.e., CanESM2, CESM-LENS and GFDL-ESM2M; Kay et al., 119 

2015; Rodgers et al., 2015; Fyfe et al., 2017), giving a total of 75 members within the testbed. We 120 

do not use the MPI-GE model that was included in the past LET studies because its Southern 121 

Ocean pCO2 seasonality and decadal variability appear to be anomalously large (Gloege et al., 122 

2021; Fay and McKinley, 2021; Bennington et al., 2022a). Each individual Earth System Model 123 

(ESM) is an imperfect representation of the actual Earth system, so the multiple Large Ensembles 124 

are used to span different model structures and their representation of internal variability. Each 125 

ensemble member undergoes the same external forcing (i.e., historical atmospheric CO2 before 126 

2005 and Representative Concentration Pathway 8.5 through 2016, plus solar and volcanic 127 

forcing), but the spread across the ensemble members gives a unique trajectory of the ocean-128 

atmosphere state over time, i.e., a different state of internal variability as well as the difference 129 

across models.  130 

The LET used in this study includes monthly 1°x1° model output from 1982-2016 (Gloege 131 

et al., 2021). For each individual ensemble member of the LET, surface ocean pCO2 and co-located 132 

driver variables (i.e., SST, SSS, Chl-a, MLD, xCO2) were sampled monthly at a 1°x1° resolution, 133 

at times and locations equivalent to SOCAT and Saildrone USV observations (Fig. 1; Step 1). 134 

While the SOCAT observations were sampled from the testbed matching the actual years of 135 

sampling, the USV observations were sampled from the testbed starting in 2007 (for ten-year 136 

sampling) or 2012 (for five-year sampling) (see Sect. 2.4). As our focus is on reconstruction for 137 

the open ocean, testbed output for coastal areas, the Arctic Ocean (>79°N) and marginal seas 138 

(Hudson Bay, Caspian Sea, Black Sea, Mediterranean Sea, Baltic Sea, Java Sea, Red Sea and Sea 139 

of Okhotsk) were removed prior to algorithm processing.  140 

 141 
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  142 
Figure 1: Schematic of the Large Ensemble Testbed (LET; modified from Gloege et al., 2021). 1: Surface ocean 143 
pCO2 from each of the 75 model members is sampled in space and time mimicking real-world SOCAT and Saildrone 144 
USV observations (see Fig. 2; Table 1; Section 2.5). Prior to algorithm processing, pCO2-Residual is calculated 145 
(Section 2.2). 2: The pCO2-Residual (target variable) and co-located driver variables (i.e., SST, SSS, MLD, Chl, 146 
xCO2) sampled from the testbed are processed by the XGBoost (XGB) algorithm (Section 2.3). 3: Based on the full-147 
coverage of driver variables, pCO2-Residual is reconstructed globally. This process is repeated 75 times, individually 148 
for every single testbed model member. The temperature component (pCO2-T) is then added back to the pCO2-149 
Residual for each value. 4: The globally reconstructed pCO2 is evaluated against the ‘model truth’ at all 1°x1° grid 150 
cells. SST = sea surface temperature. SSS = sea surface salinity. MLD = mixed layer depth. Chl = chlorophyll. xCO2 151 
= atmospheric concentration of CO2.  152 

 153 

2.2 The pCO2-Residual approach 154 

We used the pCO2-Residual approach following Bennington et al. (2022a), which removes the 155 

well-studied direct effect of temperature on pCO2 from the LET model output before algorithm 156 

processing. Temperature has both direct and indirect effects on surface ocean pCO2. The direct 157 

effect of temperature, due to solubility and chemical equilibrium, is that an increase in temperature 158 

directly causes an increase in pCO2 (Takahashi et al., 1993). Indirectly, temperature changes are 159 

associated with biological production and wintertime vertical mixing; and these processes tend to 160 

result in opposing pCO2 changes. To build reconstruction algorithms through the data-driven 161 

training that occurs in ML, the statistics in all other algorithms developed to date must identify a 162 

function that disentangles these competing effects of SST on pCO2. Here, the algorithm is assisted 163 

by removing this known temperature effect, and it must therefore only learn the pCO2 impacts 164 
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from biogeochemical drivers. The pCO2-Residual method leads to physically understandable 165 

connections between the input data and output (Bennington et al., 2022a), which mitigates to some 166 

degree ‘black box’ concerns typically associated with ML algorithms (Toms et al., 2020). Further, 167 

this method has been shown to perform better against independent observations than other 168 

common mapping methods (Bennington et al., 2022a). A brief description is provided here, but 169 

for further details see Bennington et al. (2022a).  170 

The temperature-driven component of pCO2 (pCO2-T) is calculated using this equation: 171 

pCO2-T = pCO2mean * exp[0.0423 * (SST-SSTmean)] 172 

where pCO2mean and SSTmean is the long-term mean of surface ocean pCO2 and temperature, 173 

respectively, using all 1°x1° grid cells from the testbed. Once pCO2-T is determined, pCO2-174 

Residual is calculated as the difference between pCO2 and the calculated pCO2-T:  175 

pCO2-Residual = pCO2 – pCO2-T 176 

Prior to algorithm processing, pCO2-Residual values > 250 μatm and < -250 μatm from the 177 

testbed were filtered out targeting values that are not representative of the real ocean. The majority 178 

of the pCO2-Residual values that were filtered out correspond to high pCO2, above the maximum 179 

value in SOCAT (816 μatm; Stamell et al., 2020). The excluded data points (less than 0.2 % per 180 

member) mostly occurred in output from the CanESM2 model, and were restricted geographically, 181 

predominantly along the western coastline of South America.  182 

The eXtreme Gradient Boosting method (XGB; Chen and Guestrin, 2016) is used to 183 

develop an algorithm that allows driver variables (i.e., SST, SSS, Chl-a, MLD, xCO2) to predict 184 

the pCO2-Residual (Fig. 1; Step 2). The pCO2-Residual and associated feature variables is split 185 

into validation, training and testing sets. The test and validation set each account for 20 % of the 186 

data, leaving 60 % for training. The validation set is used to optimize the algorithm 187 

hyperparameters, which define the architecture of decision trees used in the model. The training 188 

set is used to build the decision trees in XGB, while the test set is used to evaluate the performance 189 

of the final algorithm. The XGB algorithm for this study used 4,000 decision trees with a maximum 190 

depth of 6 levels, and this was fixed for all experiments. For the final reconstruction of surface 191 
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ocean pCO2 across all space and time points, the previously calculated pCO2-T values are added 192 

back to the reconstructed pCO2-Residual (Fig. 1; Step 3). 193 

The full XGB process, including 1) training/evaluating/testing and 2) reconstructing 194 

globally at a monthly resolution, was repeated individually for each LET member. This process 195 

provided therefore a total of 75 unique reconstruction vs. ‘model truth’ pairs, which can be 196 

statistically compared (Fig. 1; Step 4).  197 

2.3 Statistical Analysis in the Testbed 198 

The statistical comparisons between the test set and the reconstructions are equivalent to what 199 

would be derived using real-world data (‘seen’ values). Here, we calculate error statistics based on 200 

the full reconstruction (pCO2 from all 1°x1° grid cells of the testbed, except for those masked or 201 

filtered out). In the full reconstruction, ~ 99 % of the data  do not correspond to SOCAT or 202 

Saildrone USV observations used to train the algorithm (Fig. S1). Training data would ideally be 203 

removed before performance evaluation, but since the training data represent only ~ 1 %, the 204 

impact of not removing them is negligible (Fig. S2). A suite of statistical metrics can be used to 205 

compare the reconstruction to the ‘model truth’ in order to assess how well the algorithm can 206 

extrapolate from sparse data to full-field coverage (Fig. 1; Step 4). In this study, we focus on bias 207 

and root-mean-squared error (RMSE). Bias is calculated as ‘mean prediction – mean observation’ 208 

(i.e., pCO2 predicted by XGB subtracted by the pCO2 ‘model truth’), and is a measure of over- or 209 

underestimation in the reconstructions. RMSE measures the magnitude of the predicted error and 210 

is calculated as the square root of the mean of the squared errors. We focus our discussion on the 211 

mean across 75 members of the testbed for bias and RMSE. The spread across testbed ensemble 212 

members is non-negligible and will be the focus of future work; here, we present the testbed spread 213 

primarily in the Supplement.  214 

2.4 Overview of sampling patterns and model runs  215 

First, we sampled target and driver variables from the LET based on sampling distributions 216 

equivalent to that of the SOCAT database (‘SOCAT-baseline’). Then, we combined the ‘SOCAT-217 

baseline’ with testbed output representing additional Saildrone USV coverage in the Southern 218 

Ocean. The additional Southern Ocean coverage was based on 1) the Sutton et al. (2021) sampling 219 

campaign from 2019 (‘one-latitude’ track) and 2) realistic potential future meridional USV 220 
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observations (‘zigzag’ track) (see Section 2.4.2; Fig. 2). We performed a total of 10 experimental 221 

runs (Table 1). These represent different sampling approaches, including: 1) repeating USV 222 

sampling over a five- or ten-year period, 2) varying the number of USVs and thus the total number 223 

of monthly 1°x1° observations, and 3) restricting all observations to southern hemisphere winter 224 

months. By comparing the different runs, we can assess whether or not certain targeted sampling 225 

strategies in the Southern Ocean can improve surface ocean pCO2 ML reconstructions. As 226 

discussed above, the LET runs to 2016 only (Gloege et al., 2021). Saildrone USV observations 227 

were therefore sampled from the testbed starting in year 2006 or 2007 (for the ten-year sampling) 228 

or 2012 (for the five-year sampling) until 2016, i.e., the final year of the testbed.   229 

2.4.1 ‘One-latitude’ runs 230 

Six out of the ten experimental runs include the ‘one-latitude’ track (Table 1). The 2019 Saildrone 231 

USV journey (Sutton et al., 2021) covered an 8-month period, from January to August. Since the 232 

USV was recovered in early August, it did not cover the entire southern hemisphere winter (Fig. 233 

S3). We repeated this ‘one-latitude’ eight-month sampling pattern for five years (‘5Y_J-A’; 2,075 234 

observations) and ten years (‘10Y_J-A’; 4,150 observations). To evaluate year-round (‘YR’) 235 

coverage, the eight-month sampling period (January-August) was shifted by one month each year 236 

for ten years (‘10Y_YR’; 4,150 observations). To evaluate the impact of increased sampling, the 237 

2019 Saildrone USV track was repeated 12 times with incremental offsets of 1° from the original 238 

track, covering an additional 6° north and south (Fig. S4). This ‘high-sampling’-run (‘x13_10Y_J-239 

A’; 44,250 observations) represents a total of 13 USVs. We also performed an additional 13 USV 240 

run, but including observations from southern hemisphere winter (‘W’) months only 241 

(‘x13_10Y_W’; 25,395 observations). Finally, considering the cost of deploying 13 USVs, a 242 

downscaled ‘multiple-USV-winter-only’-run was tested, including five USVs sampling over a 243 

period of five years (‘x5_5Y_W’; 5,022 observations). This run covers an additional 2° north and 244 

south from the original USV track. 245 

2.4.2 ‘Zigzag’ runs 246 

Four of the ten experimental runs represent realistic potential meridional sampling in the Southern 247 

Ocean (‘zigzag’ tracks; Table 1) as suggested by Djeutchouang et al. (2022). Saildrone USVs can 248 

operate at a speed capable of covering the spatial extent of meridional gradients in the Southern 249 
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Ocean (Djeutchouang et al., 2022). However, Saildrone USVs are solar powered, and thus their 250 

range is restricted by the availability of solar radiation. To account for this and maintain a realistic 251 

sampling scenario, sampling occurs only to a maximum latitude of 55° S in these experiments.    252 

This alternative sampling pattern represents USVs sailing west to east in a north/south ‘zigzag’ 253 

pattern covering 40° S and 55° S for every 30° of longitude (Fig. 2). We created two scenarios. 254 

For the first scenario, every 30° of longitude from 40° S and 55° S is visited every three months 255 

within a single year as suggested by Lenton et al. (2006). Assuming an average Saildrone USV 256 

speed, this scenario represents four platforms equally spaced around the Southern Ocean. This 257 

sampling pattern was repeated for 10 years, with year-round coverage (‘Zx4_10Y_YR’; 7,600 258 

observations), and for southern hemisphere winter months only (‘Zx4_10Y_W’; 2,500 259 

observations). The second scenario represents a ‘high-sampling’ strategy, where every 30° of 260 

longitude from 40° S and 55° S is visited approximately monthly. This can be achieved by 261 

deploying 10 platforms equally spaced around the Southern Ocean running at an average Saildrone 262 

USV speed. This sampling pattern is repeated for five years, sampling year-round 263 

(‘Z_x10_5Y_YR’; 11,400 observations) and during southern hemisphere winter months only 264 

(‘Z_x10_5Y_W’; 3,800 observations).  265 

 266 
Figure 2: Saildrone Uncrewed Surface Vehicle (USV) tracks representing the first circumnavigation around 267 
Antarctica from 2019 in maroon (‘one-latitude’ track; Sutton et al., 2021) and an alternative virtual route with 268 
meridional coverage (‘zigzag’ track).  269 
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 270 
Table 1. Overview of the different sampling experiments tested in this study, and mean bias and RMSE (in μatm) for 271 
various time periods, latitude bands for all runs. Bold values represent the best score for each category. ‘One-lat’ = 272 
‘one-latitude’ track; incorporates the Saildrone USV route from Sutton et al. (2021). ‘Zigzag’ =  potential meridional 273 
sampling. ‘Additional observations = number of 1°x1° monthly Saildrone USV observations in addition to SOCAT. 274 
J-A= January-August. YR = year-round. W = southern hemisphere winter. x4, x5, x10 and x13 = four, five, ten and 275 
13 USVs. SO winter = Southern Ocean winter months, i.e., June, July, August and also including September. *Average 276 
value of the mean of 2006-2016 and 2012-2016. The global coverage increase was calculated based on the total 277 
number of available 1982-2016 monthly 1°x1° observations from SOCAT (262,204 observations) and the Large 278 
Ensemble Testbed (17,290,470 observations).  279 

 280 

2.5 Air-sea CO2 flux 281 

To assess the global ocean carbon sink associated with our pCO2 reconstructions, air-sea CO2 282 

exchange was calculated for 1985 onward. Here, we computed air-sea CO2 fluxes using the bulk 283 

formulation with python package Seaflux.1.3.1 (https://github.com/lukegre/SeaFlux; Gregor et al. 284 

2021; Fay et al., 2021). We calculated global and Southern Ocean flux in the same manner for 1) 285 

the testbed ‘model truth’, 2) the ‘SOCAT-baseline’ and 3) the 10 experimental USV runs.  286 

The net sea–air CO2 flux was estimated using: 287 

Flux=kw·sol·(pCO2ocn−pCO2atm)·(1−ice) 288 

where ‘kw’ is the gas transfer velocity, ‘sol’ is the solubility of CO2 in seawater (in units of mol 289 

m−3 μatm−1), ‘pCO2ocn’ is the partial pressure of surface ocean carbon (in μatm), either from the 290 

‘model truth’ or from the reconstructions, and pCO2atm (in μatm) is the partial pressure of 291 

atmospheric CO2 in the marine boundary layer. For GFDL, we used direct model output of 292 

pCO2atm, while for CESM and CanESM2, pCO2atm was calculated individually, as the product of 293 

Run name SOCAT-baseline 5Y_J-A 10Y_J-A 10Y_YR x13_10Y_J-A x13_10Y_W x5_5Y_W Z_x4_10Y_YR Z_x4_10Y_W Z_x10_5Y_YR Z_x10_5Y_W
Saildrone track NA One-lat One-lat One-lat One-lat One-lat One-lat Zigzag Zigzag Zigzag Zigzag
Years of sampling NA 5 10 10 10 10 5 10 10 5 5
Duration of sampling NA Jan-Aug Jan-Aug Year-round Jan-Aug SO winter SO winter Year-round SO winter Year-round SO winter
Additional observations NA 2,075 4,150 4,150 44,250 25,395 5,022 7,600 2,500 11,400 3,800
Global coverage increase (%) NA 0.01 0.02 0.02 0.3 0.1 0.03 0.04 0.01 0.07 0.02
Mean bias (μatm) 
Testbed period (1982-2016)
Globally 0.63 0.59 0.59 0.52 0.53 0.39 0.57 0.51 0.51 0.45 0.44
NORTH (35°N-90°N) 0.11 0.24 0.20 0.25 0.20 0.17 0.16 0.16 0.16 0.12 0.20
MID (35°S-35°N) 0.23 0.21 0.22 0.14 0.20 0.15 0.23 0.20 0.18 0.13 0.18
SOUTH (90°S-35°S) 1.4 1.3 1.2 1.1 1.1 0.80 1.2 1.1 1.1 1.0 0.87
SO winter months (JJA) 1.3 1.2 1.2 1.1 1.1 0.90 1.2 0.93 1.0 0.94 0.95
SO summer months (DJF) 0.070 0.11 0.15 0.10 0.15 0.019 0.11 0.25 0.073 0.16 0.066
2006/2012-2016
Globally 0.51* 0.27 0.34 0.28 0.19 0.03 0.21 0.23 0.24 0.17 0.07
SOUTH (90°S-35°S) 1.6* 0.93 1.1 1.0 0.72 0.37 0.73 0.89 0.92 0.67 0.55
SOUTH (90°S-35°S) Jun, Jul, Aug 4.2* 2.6 2.7 2.8 2.2 1.8 2.5 1.8 2.4 1.2 2.0
Mean RMSE (μatm) 
Testbed period (1982-2016)
Globally 11.8 11.7 11.8 11.7 11.7 11.6 11.7 11.5 11.6 11.5 11.6
NORTH (35°N-90°N) 13.0 13.0 13.0 13.0 13.0 13.0 13.1 13.0 13.0 13.0 13.0
MID (35°S-35°N) 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7
SOUTH (90°S-35°S) 11.5 11.3 11.4 11.2 11.1 11.0 11.3 10.7 11.0 10.6 11.0
2006/2012-2016
Globally 11.6* 11.6 11.4 11.3 11.3 11.2 11.6 11.0 11.2 11.1 11.4
SOUTH (90°S-35°S) 11.4* 11.1 11.0 10.7 10.6 10.4 10.9 10.0 10.6 9.7 10.6
SOUTH (90°S-35°S) Jun, Jul, Aug 12.0* 11.3 11.2 10.9 10.5 10.3 11.1 10.3 10.6 9.6 10.3
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surface xCO2 and sea level pressure (the contribution of water vapor pressure was corrected for in 294 

CESM and GFDL). Finally, to account for the seasonal ice cover in high latitudes, the fluxes were 295 

weighted by 1 minus the ice fraction (‘ice’), i.e., the open ocean fraction. Inputs to the calculation 296 

include EN4.2.2 salinity (Good et al., 2013), SST and ice fraction from NOAA Optimum 297 

Interpolation Sea Surface Temperature V2 (OISSTv2) (Reynolds et al., 2002), and surface winds 298 

and associated wind scaling factor from the European Centre for Medium-Range Weather 299 

Forecasts (ECMWF ERA5 sea level pressure (Hersbach et al., 2020). Results presented show the 300 

global and Southern Ocean (< 35° S) fluxes in units of Pg C yr-1. 301 

Note that, reconstructions of pCO2 for the ‘SOCAT-baseline’ and the experimental USV 302 

runs are limited in their spatial extent to the open ocean (see Sect. 2.1; excluding coastal areas, the 303 

Arctic Ocean and marginal seas). The same mask was thus also applied when calculating the flux 304 

of the ‘model truth’, prior to comparison with the reconstructions.  305 

3. Results 306 

3.1 Performance metrics for the ‘SOCAT-baseline’ reconstruction  307 

The mean bias for the entire testbed period (i.e., 1982-2016) is 0.63 μatm globally (Fig. 3a) and 308 

1.4 μatm for the Southern Ocean (< 35° S; Table 1). Bias is much closer to zero for the mid- 309 

latitudes (between 35° S and 35° N; 0.23 μatm) and northern latitudes (> 35° N; 0.11 μatm) (Fig. 310 

3a). There is a significant difference in bias considering southern hemisphere winter months (June, 311 

July, August) versus summer months (December, January, February), with a global mean bias (for 312 

1982-2016) of 1.3 μatm compared to 0.07 μatm, respectively (Table 1), due to the sparseness of 313 

SOCAT observations from the southern hemisphere during the harsh winter season (Fig. S5a). 314 

The mean RMSE for the entire testbed period (i.e., 1982-2016) is 11.8 μatm globally (Fig. 3b) and 315 

11.5 μatm for the Southern Ocean (Table 1). RMSE is highest in the Eastern Tropical and 316 

Southeastern Pacific Ocean and in the Southern Ocean, where the algorithm generally 317 

overestimates pCO2 (i.e., positive bias; Fig. 3a), with some exceptions in the Atlantic section. This 318 

is consistent with the areas significantly undersampled by SOCAT (Fig. S5b). Except for these 319 

areas, RMSE and bias is generally low (close to zero) in the open ocean, but show higher values 320 

along coastlines (Fig. 3b).  321 
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 322 

Figure 3: Bias (a) and root-mean-squared error (RMSE) (b) for the ‘SOCAT-baseline’ (i.e., no USV) over the period 323 
of 1982 through 2016. The global mean bias and RMSE is 0.63 μatm and 11.8 μatm, respectively. Note that only the 324 
open ocean was considered in the reconstruction, so several areas were masked out prior to algorithm processing, such 325 
as the Arctic Ocean, coastal areas and marginal seas (no data; white areas in figures).  326 

 327 
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3.2 Reconstruction improvements with Saildrone USV additions 329 

Our presentation of global maps is limited to runs ‘x5_5Y_W’ (5,022 monthly 1°x1° observations) 330 

and ‘Z_x4_10Y_YR’ (7,600 monthly 1°x1° observations). These runs were selected as they 331 

represent observational schemes that are realistic in the near-term future considering logistics and 332 

cost level, both non-meridional and meridional sampling, and different approaches to observing 333 

duration and seasonal coverage. For the remaining runs, equivalent maps can be found in the 334 

Supplement.  335 

3.2.1 Bias 336 

All Saildrone USV runs show a reduction in bias compared to the global mean 1982-2016 337 

‘SOCAT-baseline’ (Figs. 4a, S6). The improvement in bias is mainly due to lower reconstructed 338 

pCO2 values at southern latitudes, where the ‘SOCAT-baseline’ reconstruction generally 339 

overestimates pCO2 (Fig. 3a). The global mean bias for ‘zigzag’ run ‘Z_x4_10Y_YR’ is 0.51 340 

μatm, a higher improvement (19 %) over the ‘SOCAT-baseline’ compared to the ‘one-latitude’ 341 

run ‘x5_5Y_W’ (11 % mean improvement; mean bias = 0.57 μatm;) (Fig. 4a; Table 1). Generally, 342 

the ‘zigzag’ runs show higher improvements from the ‘SOCAT-baseline’ (19-31 % improvement; 343 

resulting mean bias = 0.44-0.51 μatm) compared to the ‘one-latitude’ runs (7-19 % improvement; 344 

resulting mean bias = 0.52-0.59 μatm) (Fig. S6; Table 1). However, the ‘one-latitude’-run 345 

‘x13_10Y_W’ that samples southern hemisphere winter months only, stands out with the lowest 346 

global mean bias of 0.39 μatm, representing a 39 % mean improvement from the ‘SOCAT-347 

baseline’, as well as reduced spread across the 75 ensemble members (Table 1; Fig. S6; S8). This 348 

run, however, has three or five times more observations (25,395) than ‘Z_x4_10Y_YR’ and 349 

‘x5_5Y_W’, respectively.  350 

Compared to the entire testbed period, even larger improvements in global mean bias are 351 

shown for the period of Saildrone USV additions (2006-2016 and 2012-2016; Figs. 4a vs. 4b, 352 

Figs. S6 vs. S7). Compared to the ‘SOCAT-baseline’, run ‘x13_10Y_W’ results in a mean bias 353 

improvement of 95 %, while the remaining ‘one-latitude’ runs and the ‘zigzag’ runs show mean 354 

improvements up to 63 % and 85 %, respectively (Fig. S7).  355 

Perhaps surprisingly, there is not a strong connection between the global or Southern Ocean 356 

mean bias and the number of added USV observations (Fig. 5). The ‘one-latitude’ ‘high-sampling’ 357 
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run ‘x13_10Y_J-A’ (44,250 observations) show similar mean bias or is outperformed by all 358 

‘zigzag’ runs as well as the ‘one-latitude’-runs that restrict sampling to southern hemisphere winter 359 

months (i.e., ‘x5_5Y_W’ and ‘x13_10Y_W’).      360 

Considering the change in bias from year-to-year, the ‘SOCAT-baseline’ shows positive 361 

bias at all latitudes in the beginning of the testbed period, before improvement occurs around 1990 362 

(Fig. 6a). This is consistent with increasing SOCAT sampling with time for the period considered 363 

here (i.e., up to 2016; Fig. S5c). As SOCAT observations are biased towards the northern 364 

hemisphere (Fig. S5a, b), bias in the Southern Ocean (< 35° S) increases significantly starting in 365 

the 2000s and remains high until the end of the testbed period (Fig. 6a). By adding USV sampling, 366 

bias in the Southern Ocean improves over the ‘SOCAT-baseline’ around year 2000 (Fig. 6b-d; 367 

Fig. S9), up to 6-12 years before to the introduction of additional samples in either 2006 or 2012. 368 

This improvement is shown for the majority of the 75 ensemble members (Fig. S10). Run 369 

‘Z_x10_5Y_W’, which has the lowest mean bias out of the ‘zigzag’ runs (Fig. 5), shows 370 

improvement even further back in time, until the beginning of the testbed period (Fig. S9). While 371 

the annual mean bias of the ‘zigzag’ runs varies rather consistently, there is a larger spread across 372 

the ‘one-latitude’ runs (Fig. 6d).  373 



 16 

 374 
 375 
Figure 4: Change in bias when comparing run ‘x5_5Y_W’ and ‘Z_x4_10Y_YR’ to the ‘SOCAT-baseline’ 376 
reconstruction, averaged over the duration of the testbed period (a; 1982-2016) and the period of USV additions (b; 377 
2006-2012 or 2012-2016). The percent global improvement in absolute bias is shown on each panel.  378 
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 379 
Figure 5: Mean bias globally (a) and for the Southern Ocean (b) for the duration of Saildrone USV sampling (2006-380 
2016 or 2012-2016) for all runs presented in Table 1. Circles represent runs using the ‘one-latitude’ track, while 381 
diamonds represent ‘zigzag’ runs. Runs highlighted in bold correspond to the two selected runs mapped in Figure 4, 382 
6, 7 and 9. Global (0.51 μatm) and Southern Ocean (1.6 μatm) bias values shown for the ‘SOCAT-baseline’ (black 383 
squares) represent a mean of values for 2006-2016 (global = 0.52 μatm, S. Ocean = 1.63 μatm) and 2012-2016 (global 384 
= 0.51 μatm, S. Ocean = 1.56 μatm). ‘# additional observations’ = number of monthly 1°x1° USV observations in 385 
addition to SOCAT. Box plots illustrating the spread across the 75 ensemble members are shown in Fig. S8.  386 
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 387 

 388 

Figure 6: Zonal mean, annual mean Hovmöller of bias for the ‘SOCAT-baseline’ (a). Change in bias for run 389 
‘x5_5Y_W’ (b) and ‘Z_x4_10Y_YR’ (c) compared to the ‘SOCAT-baseline’ shown in (a). Improvement in bias in 390 
the Southern Ocean expands back in time well beyond the duration of USV additions for both runs (shown by arrows 391 
on each panel). Annual mean bias for the Southern Ocean (> 35° S) for all runs (d).  392 

 393 

3.2.2 Root-mean squared error (RMSE) 394 
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Similar to bias, improvements in RMSE are most significant during the period of USV additions 395 

and within the Southern Ocean (Fig. 7a vs. 7b). For the duration of USV additions, the ‘one-396 

latitude’ runs show improvements in global mean RMSE of 1-3 % (0.1-1 % for 1982-2016), while 397 

the ‘zigzag’ runs show higher improvements between 2-5 % (1-3 % for 1982-2016) (Figs. 7, S11, 398 

S12). Mean RMSE is further reduced in the Southern Ocean by up to 16 %, and during southern 399 

hemisphere winter months (JJA) up to 21 % (run ‘Z_x10_5Y_YR’; mean RMSE of 9.6 μatm; 400 

Table 1). There is minimal change in RMSE (or bias) during southern hemisphere summer months 401 

(DJF; Fig. S13). The two ‘zigzag’ runs sampling year-round (‘Z_x4_10Y_YR’ and 402 

‘Z_x10_5Y_YR’) have the lowest RMSE values both globally and in the Southern Ocean (Fig. 8). 403 

The spread across the 75 testbed members for each experiment is shown in Figure S14.     404 

The ‘zigzag’ runs, as well as the ‘high-sampling’ ‘one-latitude’-runs (i.e., ‘x13_10Y_J-A’ 405 

and ‘x13_10Y_W’), show improvements compared to the ‘SOCAT-baseline’ from the initiation 406 

of sampling (Figs. 9, S15, S16). The year-round ‘zigzag’ runs, however, show improvement in the 407 

Southern Ocean from the beginning of the testbed period (Figs. 9c, d, S15). RMSE improvements 408 

back in time are greater for all runs in the southern hemisphere winter months (Fig. S17).  409 
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410 
Figure 7: Change in RMSE when comparing run ‘x5_5Y_W’ and ‘Z_x4_10Y_YR’ to the ‘SOCAT-baseline’, 411 
averaged over the duration of the testbed period (a; 1982-2016) and the period of Saildrone USV additions (b; 2006-412 
2012 or 2012-2016). The percent global improvement is shown on each panel.  413 
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 414 
Fig. 8: Mean RMSE globally (a) and for the Southern Ocean (< 35° S; b) for the duration of Saildrone USV sampling 415 
(2006-2016 or 2012-2016) for all runs presented in Table 1. Circles represent runs using the ‘one-latitude’ track, while 416 
diamonds represent ‘zigzag’ runs. Runs highlighted in bold correspond to the two selected runs mapped in Figure 4, 417 
6, 7 and 9. RMSE values shown for the ‘SOCAT-baseline’ (black squares) represent a mean of values for 2006-2016 418 
(global = 11.5 μatm, S. Ocean = 11.3 μatm) and 2012-2016 (global = 11.8 μatm, S. Ocean = 11.5 μatm). ‘# additional 419 
observations’ = number of monthly 1°x1° USV observations in addition to SOCAT. Box plots illustrating the spread 420 
across the 75 ensemble members are shown in Fig. S14.  421 
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 422 

 423 

Figure 9: Zonal mean, annual mean Hovmöller of RMSE for the ‘SOCAT-baseline’ (a). Change in RMSE for run 424 
‘x5_5Y_W’ (b) and ‘Z_x4_10Y_YR’(c) compared to the ‘SOCAT-baseline’. Run ‘Z_x4_10Y_YR’ shows 425 
improvement in RMSE within the Southern Ocean, which expand well beyond the duration of Saildrone USV 426 
additions (shown by arrow on panel). Annual mean RMSE for the Southern Ocean (> 35° S) for all runs (d).   427 
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3.3 Impact on the air-sea CO2 flux with Saildrone USV additions 428 

Air-sea flux was calculated in the same manner for both the ML reconstructions and the ‘model 429 

truth’, which allows for the isolation of the impact of different sampling strategies, as mediated by 430 

the pCO2 reconstruction, on fluxes (see Sect. 2.5). These flux estimates are made to inform 431 

understanding of the errors that may exist in CO2 flux estimates derived from pCO2 432 

reconstructions, and how new sampling could address these errors. Flux estimates represent the 433 

average of the 75 members of the LET in each case, and are not estimates of real-world fluxes. 434 

Compared to the ‘model truth’, the ‘SOCAT-baseline’ reconstruction underestimates the 435 

global and Southern Ocean sink by 0.11-0.13 Pg C yr-1 over 1982-2016 (Fig. 10; Table S1). 436 

Regardless of sampling pattern, adding Saildrone USV observations increases both the global and 437 

Southern Ocean mean sink compared to the ‘SOCAT-baseline’ (Figs. 10, S18). The ‘one-latitude’ 438 

runs show an increase of 0.01-0.03 Pg C yr-1 (2-6 % strengthening) of the Southern Ocean sink 439 

(1982-2016), while the ‘zigzag’ runs lead to an even stronger sink by 0.04-0.06 Pg C yr-1 (7-11 % 440 

strengthening) (Table S2). When averaging over the years of Saildrone USV sampling addition 441 

(i.e., 2006-2012 and 2012-2016), the Southern Ocean sink increases up to 0.09 Pg C yr-1 (14 % 442 

strengthening) for the ‘one-latitude’ runs and up to 0.1 Pg C yr-1 (15 % strengthening) for the 443 

‘zigzag’ runs (Table S2). These same features are found for the global ocean (Fig. S18; Table 444 

S2).  445 

All of the ‘zigzag’ runs quite closely match both the global and Southern Ocean ‘model 446 

truth’ air-sea CO2 flux for the duration of sample additions (Figs. 10, S18). Except for the first 447 

couple of years of sample addition for the ‘high-sampling’-run ‘x13_10Y_J-A’, none of the ‘one-448 

latitude’ runs can match the ‘model truth’ air-sea CO2 flux, instead they all underestimate the flux 449 

(Figs. 10, S18). The ‘zigzag’ runs have impact on the air-sea flux from an earlier date, starting to 450 

pull the results away from the ‘SOCAT-baseline’ and toward the ‘model truth’ already in the late-451 

1990s, while the ‘one-latitude’ runs do the same about a decade later (Figs. 10, S18).  452 
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453 
Figure 10: Southern Ocean (< 35° S) annually averaged air-sea CO2 flux for the ‘SOCAT-baseline’ (black dashed 454 
line), ‘model truth’ (black dotted line) ‘one-latitude’ runs (a; solid lines) and ‘zigzag’ runs (b; dashed lines).  455 

  456 

 457 
4. Discussion 458 

We have tested the pCO2-Residual reconstruction method with the Large Ensemble Testbed (LET) 459 

to estimate its fidelity and understand how new samples could increase skill. We find that, 460 

regardless of the chosen Saildrone USV sampling pattern, the reduction in mean bias and mean 461 

RMSE compared to the ‘SOCAT-baseline’ is most prominent within the Southern Ocean (< 35° 462 

S) during the period of which Saildrone USV observations were added (Figs. 4, 6, 7, 9). However, 463 
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reconstructions globally (Figs. 5a, 8a). Based on our experiments, a combination of factors 465 

improve global and Southern Ocean pCO2 reconstructions, including the type of sampling pattern 466 

and seasonality of sampling, and to some extent, the number of additional observations. 467 

Importantly, increasing the number of observations or duration of sampling (5 vs. 10 years) is not 468 

the sole determining factor for improving the reconstructions (Figs. 5, 8). This is best demonstrated 469 

by the ‘high-sampling’-run ‘x13_10Y_J-A’ (44,250 observations), which does not provide 470 

significantly better reconstructions, or is even outperformed, by runs with 2-18 times fewer 471 

observations. The runs that produce lower mean RMSE do include data throughout southern 472 

hemisphere winter (Figs. 8, 9d). Run ‘x13_10Y_J-A’ does not include more than a few 473 

observations in the month of August, as it follows the temporal pattern of the real-world ‘one-474 

latitude’ Saildrone USV expedition (Fig. S2; Sutton et al., 2021). The ‘one-latitude’ runs ‘10Y_J-475 

A’ and ‘10Y_YR’ are directly comparable in terms of sample duration, spatial extent and number 476 

of observations (Table 1), but the latter, which covers all months, always shows lower mean 477 

RMSE and bias (Figs. 5, 6d, 8, 9d). These examples attest to the importance of addressing the 478 

issue of significant undersampling in the Southern Ocean during the winter season (Figs. S5a, b).  479 

Another important comparison is the ‘one-latitude’-run ‘x5_5Y_W’ (5,022 observations) 480 

and ‘zigzag’-run ‘Z_x10_5Y_W’ (3,800 observations) that both sample during southern 481 

hemisphere winter months over a five-year period (Table 1), where the ‘zigzag’-run consistently 482 

performs better even though it includes fewer observations (Figs. 5, 8). Most of the runs that 483 

perform similar to, or outperform, the above-mentioned ‘high-sampling’-run ‘x13_10Y_J-A’ 484 

(44,250 observations), sample in a ‘zigzag’ pattern. Out of all 10 runs, the ‘year-round’ ‘zigzag’ 485 

runs (‘Z_x4_10Y_YR’ and ‘Z_x10_5Y_YR’) are most able to reduce the mean error as shown by 486 

the lowest RMSE values (Figs. 8, 9d). A recent study performed similar sampling experiments as 487 

shown here, by comparing sampling from different types of autonomous platforms to a ‘SOCAT-488 

baseline’ (Djeutchouang et al., 2022). They emphasized the importance of capturing the significant 489 

differences in pCO2 that exist across meridional gradients during summer and winter months (up 490 

to 15 μatm; Djeutchouang et al., 2022). The meridional coverage provided by the ‘zigzag’ runs 491 

could explain why these runs generally outperform the ‘one-latitude’ runs in our study, and show 492 

significant reduction in both RMSE and bias, even though the global pCO2 data density is raised 493 

by as little as 0.01-0.07 %.  494 
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The greatest reduction in mean bias out of all runs is shown by run ‘x13_10Y_W’ (Figs. 495 

5, 6d), which represents ‘one-latitude’ ‘high-sampling’ (i.e., 25,395 observations) during southern 496 

hemisphere winter months only. This sampling strategy seems thus to have a higher ability to 497 

reduce the ML model’s tendency to overestimate pCO2 in the Southern Ocean compared to any of 498 

the meridional (‘zigzag’) runs. However, it should be noted that run ‘x13_10Y_W’ covers areas 499 

south of 55° S (Fig. S4), and its improvement in mean bias (and mean RMSE) is particularly 500 

prevalent at these high latitudes (e.g., Figs. S7, S9, S12, S17). Whether or not this run is, in fact, 501 

feasible with current or future technology is uncertain as parts of the southernmost tracks 502 

potentially cover the Southern Ocean ice zone (Fig. S19), and solar radiation for solar-powered 503 

platforms and sensors becomes very limited during winter south of 55° S. Furthermore, this 504 

particular sampling strategy requires 13 USVs, and so would be the most costly of the observing 505 

scenarios. Although run ‘x13_10Y_W’ demonstrates the highest reduction in mean bias out of all 506 

runs, the ‘zigzag’ runs still reduce mean bias in the Southern Ocean by 44-65 % (vs. 77 % for run 507 

‘x13_10Y_W’).  508 

Overall, the ‘zigzag’ runs include significantly fewer observations, require fewer USVs, 509 

collect samples over the same duration, or even half the time as run ‘x13_10Y_W’, cover areas 510 

north of 55°S and within the ice-free zone, and show major improvement in the reconstruction of 511 

pCO2, attested to by reductions in both bias and RMSE. The ‘zigzag’ runs also closely match both 512 

the global and Southern Ocean ‘model truth’ air-sea CO2 flux for the duration of sample additions 513 

(Figs. 10, S18). It also appears that the ‘zigzag’ runs generally have a greater impact on both the 514 

pCO2 reconstruction and the air-sea flux further back in time, starting to deviate from the ‘SOCAT-515 

baseline’ earlier compared to the ‘one-latitude’ runs (Figs. 6, 9, 10, S9, S15, S17, S18). Even the 516 

‘zigzag’ scenarios with the least number of USVs (e.g., ‘Z_x4_10Y_YR’) reduces Southern Ocean 517 

reconstruction bias and RMSE by up to 46 % and 11 %, respectively, and could provide a basis 518 

for realistic future Southern Ocean pCO2 sampling campaigns. 519 

The main motivation for improving surface ocean pCO2 reconstructions is so that we can 520 

more accurately estimate the current and future oceanic uptake of anthropogenic carbon. The 521 

Southern Ocean is a significant carbon sink, but estimates of the air-sea CO2 flux diverge 522 

substantially in this region (Takahashi et al., 2009; Landschützer et al., 2014, 2015; Rödenbeck et 523 

al., 2015; Williams et al., 2017; Gray et al., 2018; Gruber et al., 2019; Bushinsky et al., 2019; Long 524 
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et al., 2021; Fay and McKinley, 2021; Wu et al., 2022). Southern Ocean estimates incorporating 525 

observations from biogeochemical floats have shown a significantly weaker sink compared to 526 

those based only on observations from ships (Williams et al., 2017; Gray et al., 2018; Bushinsky 527 

et al., 2019). Bushinsky et al. (2019) and Hauck et al. (2023) performed similar sampling 528 

experiments as presented here, by comparing ML surface ocean pCO2 reconstructions based on 529 

SOCAT vs. additional SOCCOM or ideal virtual floats. These studies showed that SOCAT 530 

sampling alone overestimates the CO2 uptake in the Southern Ocean, and that additional floats 531 

reduce this overestimation, leading to a decreased (weakened) ocean carbon sink.  In contrast, we 532 

find that the pCO2-Residual method underestimates the CO2 uptake with only SOCAT sampling, 533 

and that adding USVs increased (strengthened) the Southern Ocean and global ocean sink by up 534 

to 0.1 Pg C yr-1 (Figs. 10, S18; Table S2).  535 

Going forward, additional studies are needed to better understand why these results suggest 536 

a different direction of the sink change with additional sampling. These differences could stem 537 

from the use of different reconstruction methods assessed. Hauck et al. (2023) used the MPI-SOM-538 

FFN and CarboScope/Jena-MLS reconstruction methods, while we use the pCO2-Residual 539 

method. Another substantial difference between the studies is the models and numbers of ensemble 540 

members used as the testbed. Hauck et al. (2023) use a single hindcast model, while we use 25 541 

members each from three Earth System Models. We find substantial spread across these 75 542 

members (Figs. S8, S10, S14, S16), indicating that model structure and internal variability 543 

significantly impact results. Our study and Hauck et al. (2023) use different sampling masks and 544 

approaches for the calculation of fluxes, which could also be a factor. Targeted, coordinated studies 545 

using multiple reconstruction approaches with consistent testbed structures and experimental 546 

approaches are clearly needed (Rödenbeck et al., 2015). Despite this need for this additional work, 547 

studies do agree that additional Southern Ocean observations could significantly improve 548 

reconstructions of air-sea CO2 fluxes.  549 

What else can we learn using the model testbed? The ‘SOCAT-baseline’ demonstrates a 550 

weakening of the global and Southern Ocean carbon sink starting in the 1990s with a peak around 551 

year 2000 (Figs. 10, S18), which is in broad agreement with various data products using real-world 552 

SOCAT data (e.g., Gruber et al., 2019; Landschützer et al., 2015; Bushinsky et al., 2019; 553 

Bennington et al., 2022; Gloege et al., 2022). Peaks in bias and RMSE coincide in time with the 554 
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weakening sink (Figs. 6d, 9d). As shown by Figure 10, this ‘low sink’ is significantly exaggerated 555 

compared to the ‘model truth’. To better understand this discrepancy, we performed an additional 556 

experiment based on run ‘Z_x10_5Y_YR’, but assumed sampling every year for the entire testbed 557 

period (i.e., 1982-2016). There is now a significant reduction in the temporal variability of 558 

reconstruction bias; with the additional 35-year USV sampling, the reconstructed Southern Ocean 559 

air-sea CO2 flux closely matches the ‘model truth’ for the entire testbed duration (Fig. S20). This 560 

suggests that the large decadal variability of air-sea CO2 fluxes since the 1980s, and the weak 561 

anomaly in the Southern Ocean carbon sink in the early 2000s (Le Quéré et al., 2007; Landschützer 562 

et al., 2015; Gruber et al., 2019; Bennington et al., 2022a,b; Friedlingstein et al., 2023), may be at 563 

least partially attributable to undersampling of the Southern Ocean. This is in agreement with the 564 

float sampling experiments performed by Hauck et al. (2023), attributing the strong decadal 565 

variability to sparse and skewed SOCAT data distributions. We will further explore this issue in 566 

future work. Still, this preliminary experiment suggests that interpretations of trends and variability 567 

of the global and Southern Ocean carbon sink should be considered with caution.  568 

5. Conclusions 569 

By using the Large Ensemble Testbed (LET), we show that targeted meridional and winter 570 

sampling in the Southern Ocean can improve global and Southern Ocean ML surface ocean pCO2 571 

reconstructions. Significant improvements are possible by raising the global pCO2 data density by 572 

as little as 0.01-0.07 %. Further, we find that this modest amount of additional Saildrone USV 573 

sampling increases the global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, a 574 

quantity equivalent to 25 % of the uncertainty in the ocean carbon sink (0.4 Pg C yr-1; 575 

Friedlingstein et al., 2023). Our findings are consistent with previous studies suggesting that 576 

additional observations during southern hemisphere winter months and covering meridional 577 

gradients can reduce uncertainties and biases in the reconstructions (Lenton et al., 2006; Monteiro 578 

et al., 2010; Djeutchouang et al., 2022; Mackay et al., 2022). As opposed to other autonomous 579 

platform approaches, Saildrone USVs obtain in situ pCO2 observations with uncertainties 580 

equivalent to the highest-quality observations collected by research ships (± 2 μatm; Sabine et al., 581 

2020; Sutton et al., 2021), and can operate at a high speed so that the spatial extent and seasonal 582 

cycle of meridional gradients can be covered. The approach of combining high-accuracy Saildrone 583 

USV and SOCAT observations represents thus a promising solution to improve future surface 584 
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ocean pCO2 reconstructions and the accuracy of the ocean carbon sink. Lastly, we show that the 585 

large variability in bias, and the weakening of the global and Southern Ocean carbon sink in the 586 

2000s, may be partially an artefact of Southern Ocean undersampling.  587 

Code availability 588 

Data analysis scripts will be made available in a GitHub repository upon publication.   589 
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