
Response to Reviewer Comments 
General comments 

The article “Mapping the Future Afforestation Distribution of China Constrained by National 

Afforestation Plan and Climate Change” explored the distribution of future potential 

afforestation areas based on future high-resolution climate data from the WRF model and 

HLZ model. It is highlighted that the afforestation scenario is constrained by both the 

climatological suitability for tree and national afforestation plan. The climatology suitability 

for tree is decided by future climate conditions and determines the potentially available 

afforestation domain. The national afforestation plan determines the total afforestation area. 

The potential value is to provide the design framework for locations of future afforestation. 

Overall, the article is suitable for the scope of Biogeosciences, I recommend that the authors 

address the concerns below in a minor revision prior to publication. 

Response: Thank you for your help in improving this manuscript. These comments are valuable 

and very helpful for revising and improving our paper. We have studied the comments and have 

made revisions carefully. I hope these major revisions meet with approval. The point-by-point 

responses to the reviewer’s comments are as follows: 

 

Specific comments 

Method: I'm confused about the spatial resolution of the article and please provide an 

explanation. Firstly, the authors emphasize the “high-resolution simulations” in this article. 

However, the spatial resolution is only 25 km. The other high-resolution climate dataset 

product (i.e., WorldClim data, https://www.worldclim.org/data/index.html.) is available at the 

~1km spatial resolution. I'm confused if that description is appropriate, and please illustrate 

the advantages of WRF simulation in this study. L115: Why the spatial resolution of ERA5 

reanalysis data is 1.0°×1.0°. In ECMWF, the highest resolution of the ERA5 product is 

0.25°×0.25°, which is close to WRF simulation (25 km). In the HIS_ERA experiment, is 

downscaling 1.0° ERA5 data to 25 km necessary? L89: The spatial resolution of MCD12Q1 is 

500m, which is different from the WRF simulation (25km). How do you match it well? Please 

give some detailed information. 



Response: Thank you for your suggestion. In this study, the spatial resolution of the WRF 

simulation is 25- by 25-km, which is higher than the raw CMIP6 model, ranging from 

2.8125°×2.8125° (CanESM5 model) to 0.6667°×0.5° (INM-CM5-0 model). This is the meaning of 

high-resolution simulation in this paper. Additionally, the WorldClim data is spatially interpolated 

global climate data, with a spatial resolution of 1- by 1-km. Compared to the WorldClim data, the 

dynamical downscaling climate data (i.e., the WRF model output) has the advantage of keeping 

physical consistency constraints among these variables such as the hydrostatic equilibrium and the 

geostrophic wind balance. The physically consistent variables are an important basis for this study. 

 Second, on the behalf of ERA5 reanalysis data, there are actually multiple resolutions of 

datasets from the ECMWF. The aim of downscaled ERA5 is to evaluate the accuracy of the 

downscaled MPI–ESM1–2–HR model. In order to enhance the comparability of downscaled ERA5 

reanalysis data and the MPI–ESM1–2–HR model, we used ERA reanalysis data with a grid size 

closer to that of the MPI–ESM1–2–HR model. 

 Third, in this study, we filled the 500-meter resolution of the MODIS data into the 25-km 

resolution of the WRF model grids by aggregating the MODIS pixels within a 25x25 km grid cell 

and calculating the area fraction of each land use type within the 25x25 km grid cell. 

 

L218: “Areas with high precipitation are allowed priority afforestation.” In this study, 

precipitation is treated as a key meteorological factor that restricts forest distribution. Indeed, 

precipitation is critical for forest growth. However, a single climate variable is slightly simple 

rather than representing climatology suitability for tree. Multivariate comprehensive 

indicators affecting forest growth are more appropriate. In this study, the essence of the HLZ 

model is the distance to the three bioclimatic variables. I recommend considering the distance 

as a comprehensive indicator to quantify the climatology suitability for tree. 

Response: We agree with this comment. In the revised manuscript, the HLZ value as a 

comprehensive indicator has been used to quantify the climatology suitability for afforestation. 

Areas with a low HLZ value are allowed priority afforestation. Because a low HLZ value means a 

greater opportunity to be potential forestlands. Following this new method, we find that the probable 

locations for future potential afforestation areas in China are around and to the east of the Hu Line. 

 



 
Figure 1: Map of future potential afforestation distribution under constraining of national 

afforestation planning total area and future climate changes and the afforestation-induced vegetation 

types conversions. Forest types from IGBP include Evergreen Needleleaf Forests (ENF), Evergreen 

Broadleaf Forests (EBF), Deciduous Needleleaf Forests (DNF), Deciduous Broadleaf Forests 

(DBF), and Mixed Forests (MF). The black dotted line indicates the Hu Line. 

 

L204: In the section on the approach of the newly afforestation allocation, I'm confused about 

the definition of forest. Please clarify it. For the national afforestation plan (NFMP), the total 

afforestation area is 73.78×104 km2. How to define the total afforestation area? I wonder 

whether the definition from the State Forestry Administration of China agrees with this study. 

Response: This study remains consistent with the definition of forest of China's State Forestry 

Administration. In the statistical context of China's State Forestry Administration, the term "forest 

area" is essentially synonymous with "woodland area." This designation is based on the criterion 

that the fraction of tree canopy cover exceeds 20%. The total afforestation area of 73.78×104 km2 

implies that we will be planting trees across this area. It is anticipated that the trees would grow in 

health and the fraction of tree canopy cover could exceed 20%. Thereby, afforestation implicates 

that non-woodland would be replaced by woodland. Given the need to ensure food security, urban 

expansion, and ecological protection in the future, future afforestation cannot occupy cropland, 

urban, and wetlands (including water bodies). Therefore, the implementation of future afforestation 

in this study occurs mainly on the present grassland, savanna, and woody savanna. 



 

L113: The authors use the SSP2–4.5 scenario (the middle-of-the-road development) to 

represent the climate future projections. However, this study only used one model projections 

rather than multiple model ensemble mean. Following the methodology of CMIP6 climate 

projection, scenario-based climate projection may have large uncertainties. It is suggested the 

revision to address this issue. It is also worthy to discuss effects of single model projection 

uncertainties on the research result of this study. 

Response: Following this comment, we revised the discussion. In the revised manuscript, the model 

scenarios and uncertainties are discussed, as follows: 

This study may have some limitations and uncertainties. Following the approach of existing 

studies (Ma et al., 2023; Qiu et al., 2022), we also utilized the bias-correction LBC in dynamical 

downscaling. However, the model uncertainty in the future climate projection is difficult to quantify 

because one GCM is used to nest into the WRF model. The projected result generally exhibits 

variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed 

to the inherent configurations and physics parameterization of the GCMs, distinct radiative forcing 

scenarios, and varying equilibrium climate sensitivities found in CMIP6 models (Zuo et al., 2023; 

Bukovsky and Mearns, 2020). For instance, the high emissions scenario could lead to higher 

temperature and stronger precipitation in China (Yang et al., 2021). Consequently, the suitability of 

land for future forests may change accordingly. Exploring the impacts of different SSPs on the 

distribution of potential afforestation regions would be an intriguing avenue for future research.  

To address the concerns about model uncertainty, exploring WRF forced by multiple bias-

corrected CMIP6 models can help uncover the source of uncertainty. Utilizing ensemble means for 

downscaled climate simulation would contribute to a more robust projection. Additionally, the 

selection of different physics parameterization schemes in the WRF model can also influence the 

simulation performance (Gbode et al., 2019). Selecting the most suitable combination is beneficial 

to reduce the underlying bias. 

Although the resolution of our dynamical downscaled simulation (25 km) is finer than raw 

GCMs (~100 km), it is difficult to meet the needs of afforestation planning in areas with complex 

topography. Convection-permitting climate modelling at the kilometre-scale has recently been 

developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐Picher et 



al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). 

However, increasing the resolution of the simulation implies higher computational costs. In contrast, 

statistical downscaling methods are also known to obtain high-resolution climate data with fewer 

computational resources (Tang et al., 2016). It assumes that the historical relationship between local 

climate variables and the large-scale circulation remains fixed in the future term (Wilby and Dawson, 

2013). The multi-model ensemble means from the CMIP6 statistical downscaling can significantly 

reduce the biases compared to individual models (Gebrechorkos et al., 2019). Thus, some statistical 

downscaled CMIP6 datasets (Gebrechorkos et al., 2023; Lin et al., 2023; Thrasher et al., 2022), with 

a resolution of 0.1°-0.25° covering the global land, can be applied to explore the future global 

potential afforestation area in following work. However, it is noted that the statistically downscaling 

data may have a limitation, as the covariance among the variables may not align with physical laws. 
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L353: “Our findings indicated that future afforestation in China would mostly occur around 

and to the east of the Hu Line, consistent with Zhang et al. (2022).” The authors try to compare 

other similar studies on future potential afforestation distribution. More result differences 

should be discussed. I suggest to highlight the innovation and implications of the article by 

comparing with existing studies. 

Response: In the revision, we discussed the innovation and implications of the article by comparing 

with existing studies, as follows:  

The most probable geographical distribution of future potential afforestation regions in China 

has been investigated in this study. Compared with previous studies, the total afforestation area in 

this study is greater than theirs. For example, Zhang et al. (2022) reported future climate changes 

may lead to an increase in suitable forestation lands by 33.1×104 km2 (2070s) through predicting 

the ecological niche of the forest using the machine learning approach. Xu et al. (2023) found that 

the area of prioritized potential forestation land was about 66.61×104 km2 in 2020 through spatial 

overlay analysis by considering multiple factors including climate, transportation, topography, land 

use and so on. This study is oriented towards national afforestation plans to identify future potential 

afforestation regions referring to climate change scenarios and land use patterns. The overall result 

is a more realistic and plausible afforestation scenario. The dataset would be valuable for studying 

the effects of future afforestation on carbon budget, ecosystem service, water resources, and surface 

climate. 

 

References 
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L180-186: Why the Holdridge life zone (HLZ) model is suitable for simulating the potential 

vegetation types in China. The author simply describes the extensive application of the HLZ 

model. I suggest validating the accuracy of the HLZ model. It is necessary to compare 

potential vegetation types with true vegetation types. Please add it to the Supplement Material. 



Response: Following this suggestion, we included a comparison between potential vegetation from 

the HLZ model and the actual vegetation. The actual vegetation in the year 2005 refers to China’s 

Land-Use/cover Datasets (CLUDs), which has a spatial resolution of 1- by 1 km and covers the 

entire China (Liu et al., 2014). The overall accuracy of CLUDs is above 90% (Liu et al., 2010). We 

find that the HLZ model can reproduce the potential forest distribution and grassland-forest 

geographical boundary well.  

 

Reference 
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Sciences, 20, 483-494. 

 

 

Figure 2. Comparison of actual (a) and potential (b) nature vegetation types. The actual vegetation 

types refer to China’s Land-Use/cover Datasets (CLUDs) for the year 2005. The potential vegetation 

types derived from the HLZ model are based on the average of 1995-2014. 

 

L125: The authors have done substantial work on numerical experiments. For example, the 

authors correct the lateral boundary conditions rather than the raw GCM before dynamic 

downscaling. It is a very good solution to reduce the underlying bias. I suggest adding the 



comparison of raw GCM, bias-corrected GCM, and observation. 

Response: To select the excellent performance of GCM, our previous (Song et al., 2023) studies 

comprehensively evaluated the performance of the GCM involved in CMIP6. It was reported that 

the MPI–ESM1–2–HR model from the Max Planck Institute outperforms all other GCMs in East 

Asia. We have added the comparison of the raw MPI–ESM1–2–HR model, bias-corrected MPI–

ESM1–2–HR model, and the observation. The bias-corrected MPI–ESM1–2–HR model can reduce 

the underlying biases. The results are as follows: 

 



 

Figure 3: Comparison of ERA5 reanalysis data with raw (No_BC_MPI) and bias-corrected 

historical MPI–ESM1–2–HR model (BC_MPI) at the pressure of 850 hPa for the period 1995–2014. 



The odd rows represent the spatial distribution of climatology, and the even rows represent the 

differences. 

 

 

Figure 4: Comparison of ERA5 reanalysis data with raw (No_BC_MPI) and bias-corrected 

historical MPI–ESM1–2–HR model (BC_MPI) at the different pressure levels and months. 

 



Reference 

Song, S., Zhang, X., Gao, Z., & Yan, X. (2023). Evaluation of atmospheric circulations for 

dynamic downscaling in CMIP6 models over East Asia. Climate Dynamics, 60(7-8), 2437-2458. 

 

L351: This article emphasizes “The dataset would be valuable for studying the effects of future 

afforestation on carbon budget, ecosystem service, water resources, surface climate”. Would 

the data set be available to the public, especially in Figure 7? 

Response: Yes. This dataset is available from the corresponding author upon request. 

 

L234: “The WRF simulation generally overestimates TP in most regions with a national-

average bias of 92.883 mm”. According to Figure 3d-3f, the obvious overestimate is over the 

southeast Tibetan Plateau. It is suggested to explain the potential reasons of these bias in the 

revision. 

Response: The southeastern Tibetan Plateau (TP) is characterized by complex terrain. Regional 

climate models (RCMs) generally overestimate precipitation over the TP (Wang et al., 2021; Liu, et 

al., 2023). The wet bias could be attributed to inappropriate parameterization schemes (Ou et al., 

2020; Zhao et al., 2023), coarse horizontal resolution (Lin et al., 2018; Rahimi et al., 2019), and 

inappropriate land-surface processes associated with soil moisture and frozen–thawing (Fu et al., 

2020; Yang et al., 2018). For example, a high-resolution simulation can reproduce more realistic 

terrain characteristics and reduce the wet bias because finer resolutions decrease the water vapour 

transport towards the TP due to improving resolving orographic drag (Lin et al., 2018). An improved 

cloud macrophysics scheme can increase low cloud cover and reduce latent heat flux and land 

surface temperature, which leads to a more stable atmosphere and less precipitation (Zhao et al., 

2023). 
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Table 1: Why this parameterization scheme of the WRF model is appropriate in this study. 

Please give a specific reason or reference. 

Response: The reference was included in the revision. 

 

Reference 

Hu, Y., Zhang, X. Z., Mao, R., Gong, D. Y., Liu, H. B., & Yang, J. (2015). Modeled responses 

of summer climate to realistic land use/cover changes from the 1980s to the 2000s over eastern 

China. Journal of Geophysical Research: Atmospheres, 120(1), 167-179. 

 

 



L300: What is the meaning of “The corresponding annual total precipitation is over 353.6 mm 

among the selected grids”? How to obtain the value of 353.6 mm. Please clarify it. 

Response: In the HLZ model, the minimum precipitation for forests is prescribed as 353.6 mm.  

In the revision, it is revised as:  

Their annual precipitation is all above 353.6 mm, which is prescribed as a precipitation limitation 

for forests in the HLZ model.  

 

L311: “It is generally common sense that afforestation is highly constrained by precipitation.” 

Please add specific explanations or references. 

Response: The references were included in the revision. 

 

References 
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Fang, J., Piao, S., Zhou, L., He, J., Wei, F., Myneni, R. B., et al. (2005). Precipitation patterns 

alter growth of temperate vegetation. Geophysical Research Letters, 32(21). 

 

L275: To what does “total area” refer to? Is it the whole nation? Please clarify. 

Response: The “total area” refers to the entire China land area. 

 

Figure 5b: The flow diagrams are not clear, and please give specific values. 

Response: The flow diagram was improved and specific values are included. 



 

Figure 5: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–

4.5 scenario in the future periods (2041–2060) from the FUT_ MPI simulation, and (b) area changes 

across historical baseline (1995–2014) and future periods, where the calculations are based on FUT_ 

MPI simulation versus HIS_ MPI simulation. 

 

Eq. (2): “ ,  , and ”. Please correct it. 

Response: The Equation (2) was corrected in the revision. 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 ×
𝑆𝑆𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺

+ 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 + �𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 − 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻�    (2) 

 

Figure 3 and Figure 4: For Figure 3 and Figure 4 captions, suggest not to use the abbreviations 

“HLZ”, “AT”, “TP”, and “PE”. 

Response: The full names were included in the captions. 

 

L208: “national afforestation plan” is redundant. Please use the “NFMP”. 

Response: It is revised. 

 

L98: “The total national afforestation area is about 73.78×104 km2 from 2020 to 2050”. Please 

give specific forest cover. 

Response: It was revised as follows: 

The national afforestation plan shows a total afforestation area of about 73.78×104 km2 



(equivalent to an increase China's forest cover by 7.7%) from 2020 to 2050. 

 

Figure 2: No citation for Figure 2 in the text. 

Response: The citation of Figure 2 was included in the revision. 

 

Figure 6: Please do not use the abbreviations in the figure captions. 

Response: All full name is presented in the captions in revision. 

 

L338: “woody savannas” replaces “Woody savannas”. 

Response: It is revised. 


