
Response to Reviewer Comments 
In this manuscript, Song, Zhang, and Yan mapped the future afforestation distribution of 

China under political guidance and climate change. It is a good example to serve the society 

using numerical techniques. Overall, this manuscript is clear-written, easy to understand, and 

seems to be methodologically sound. I like the most of plots in this manuscript. However, I still 

have several comments that should be addressed below. 

Response: We thank the reviewer for all the constructive comments provided. These comments are 

valuable and very helpful for revising and improving our paper. We have studied the comments 

carefully and have made revisions to the revised version. I hope these major revisions meet with 

approval. The point-by-point responses to the reviewer’s comments are as follows: 

 

Specific comments: 

Line 20: Please explain the Hu Line. Readers outside are not familiar with this geographical 

division. 

Response: We have added the explanation in the abstract as follows: 

The newly afforestation grid cells would be located around and to the east of the Hu Line (a 

geographical division line stretching from Heihe to Tengchong). 

We have added the details in the results as follows: 

Hu Line, a geographical division line of climate zone, and population density, economic 

development in China, stretches from Heihe to Tengchong. 

 

Line 24: Replace “surface climate” with “surface hydroclimate regime”. 

Response: It is revised. 

 

Line 29: Afforestation not only influences the land surface energy and mass budgets, but also 

affects the water cycle. Water cycle should be mentioned, since in the main text PRCP and ET 

are analyzed. 

Response: We have added it as follows: 

Forests change the surface energy, mass budgets, and water cycle by modifying the physical 



properties of the land surface, such as albedo and roughness.  

 

Lines 27-32: The authors listed several papers describing the benefits of afforestation. More 

details would be helpful for readers to understand the impacts of afforestation from the 

process level. 

Response: We have included the details as follows: 

Afforestation could increase carbon stocks in terrestrial ecosystems by absorbing atmospheric 

carbon dioxide through its biogeochemical effect (Jayakrishnan et al., 2023; Zhu et al., 2019; 

Gundersen et al., 2021). Meanwhile, afforestation changes the surface energy, mass budgets, and 

water cycle by modifying the physical properties of the land surface, such as albedo and roughness, 

and the partitioning between sensible and latent heat fluxes through biogeophysical progress as well 

(Bonan, 2008; Breil et al., 2021; Wang et al., 2023). Specifically, afforestation causes warming 

effects due to the decreased albedo and cooling effects due to increased evapotranspiration, which 

can partly offset or amplify the cooling effects due to taking up carbon from the atmosphere. 

 

Line 33: “Aggressively” is not a positive word. 

Response: We have deleted it. 

 

Line 36: Add the time constraint for global greening. 

Response: We have included it. “China’s total forest cover has increased from 8.6 % in 1949 to 

24.02 % in 2022 (Zhang and Song, 2006; Fu et al., 2023; Moore et al., 2016), resulting in a 42% 

contribution to the greening in China during 2000-2017 (Chen et al., 2019).” 

 

Line 44: Please refine this sentence: “trigger consequent effects on climate change, 

hydrological processes, carbon budget, ecosystem services”. 

Response: We agree that this sentence is difficult to understand. We have refined it as follows: 

Such large-scale afforestation in the future would modify the land cover conversions from non-

forestland to forestland. These conversions could cause consequent effects on climate change (Wang 

et al., 2023), hydrological processes (Tian et al., 2022), carbon budget (Maneke‐Fiegenbaum et al., 

2021), ecosystem services (Wang and Li, 2022), etc. 
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Line 45-46: Please provide the details for “sensitive to wetland reduction caused by 

afforestation” and “properties and intensities of these effects are highly dependent on the 

afforestation location and area. ” I left confused about how the authors conclude. 

Response: Thank you for your suggestion. We replaced an example as follows: 

It is crucial that the effects of afforestation are highly dependent on the afforestation location 

and area. For example, tropical afforestation leads to greater cooling effects than boreal afforestation 

(Arora and Montenegro, 2011). Therefore, it is urgent to arrange the national planned afforestation 

area to specific areas and project the possible land cover changes due to afforestation. 

 

Reference 

Arora, V. K., & Montenegro, A. (2011). Small temperature benefits provided by realistic 

afforestation efforts. Nature Geoscience, 4(8), 514-518. 

 

Line 49-55: The authors listed several papers and did not explain their findings on climate 

impact; in addition, please identify the deficiency of “employ idealistic and hypothetical 



afforestation scenarios”. 

Response: We have added the findings on climate impact as follows: 

Odoulami et al. (2019) fully replaced the savanna areas (between 8°N and 12°N) with 

evergreen broadleaf trees over West Africa to investigate the climate effects of future afforestation. 

The obvious increase in the total annual precipitation was found over the afforested area. Similarly, 

Abiodun et al. (2013) employed random afforestation options to replace 25 %–100 % of the current 

land cover in Nigeria and found a local cooling effect induced by afforestation. 

The deficiency of “employ idealistic and hypothetical afforestation scenarios” is that the 

afforestation scenarios were set by the authors themselves, and both the national afforestation plan 

and the future climate change constraint are neglected. 

 

Lines 63-71: Besides the dynamic downscaling, it would be beneficial to discuss the statistical 

downscaling. Moreover, dynamic vegetation studies for future projections in China are 

relevant to this topic, and the related studies should be mentioned in the literature review. 

Response: Following your suggestion, we will restructure it. We have added the dynamic vegetation 

and statistical downscaling studies in the revised manuscript as follows: 

For statistical downscaling, the revision in the introduction is as follows: 

However, the resolution of the raw GCM is much coarser (~100 km–300 km) to describe the 

fine land surface features at the regional scale (Varney, 2022; Turner et al., 2023; Song and Yan, 

2022; Parsons, 2020). To overcome such shortage, downscaling techniques are widely used to 

translate GCM output to high-resolution data. Statistical downscaling involves the establishment of 

statistical relationships between local climate variables and large-scale atmospheric fields (Wilby 

and Wigley, 1997). However, it is not clear whether this historical statistical relationship is always 

stable in future periods. Statistical downscaling cannot ensure the physical consistency among 

meteorological variables. In contrast, the physically-based dynamic downscaling using a regional 

climate model (RCM) nested within a GCM could provide high-resolution climate simulations 

(Giorgi and Mearns, 1999; Mishra et al., 2014). The physical consistency is crucial to identify 

potential afforestation regions due to the multiple meteorological variables involved. Previous 

studies (Liu et al., 2020; Bowden et al., 2021) have employed the dynamical downscaling approach 

to quantify the climatological suitability for each nature vegetation type. 



For statistical downscaling, the revision in the discussion is as follows: 

Although the resolution of our dynamic downscaled simulation (25 km) is finer than raw 

GCMs (~100 km), it is difficult to meet the needs of afforestation planning in areas with complex 

topography. Convection-permitting climate modelling at the kilometre-scale has recently been 

developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐Picher et 

al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). 

However, increasing the resolution of the simulation implies higher computational costs. In contrast, 

statistical downscaling methods are also known to obtain high-resolution climate data with few 

computational resources (Tang et al., 2016). The multi-model ensemble means from statistical 

downscaling CMIP6 can significantly reduce the biases compared to individual models 

(Gebrechorkos et al., 2019). Thus, some statistically downscaled CMIP6 datasets (Gebrechorkos et 

al., 2023; Lin et al., 2023; Thrasher et al., 2022), with a resolution of 0.1°-0.25° covering the global 

land, can be applied to explore the future global potential afforestation area in following work. 

However, it is noted that the statistically downscaling data may have a limitation, as the covariance 

among the variables may not align with physical laws. 

For dynamic vegetation, the revision in the introduction is as follows: 

 In addition, process-based dynamic global vegetation models (DGVMs) are also useful tools 

to help quantify future afforestation scenarios (Krinner et al., 2005; Horvath et al., 2021). The 

DGVMs (i.e., LPJ-GUESS) have commonly been applied to explore the responses of potential 

natural vegetation distribution to climate change (Hickler et al., 2012; Verbruggen et al., 2021). The 

DGVMs driven by meteorological data generally consider complex biogeophysical, biogeochemical, 

and physiological progress, such as evapotranspiration, carbon–nitrogen interactions, 

photosynthesis, and so on (Cramer et al., 2001). Given that both model process parameters and 

future meteorological data from GCMs represent a large source of uncertainty in DGVMs, the 

double overlap can lead to great uncertainties (Jiang et al., 2012; Martens et al., 2021). 
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Line 67: Please talk about the uncertainties for GCMs. 

Response: Following your suggestion, we will restructure the discussion. We have added it as 

follows: 

This study may have some limitations and uncertainties. Following the approach of existing 

studies (Ma et al., 2023; Qiu et al., 2022), we also utilize the bias-correction LBC in dynamical 

downscaling. However, the model uncertainty in the future climate projection is difficult to quantify 

because one GCM is used to nest into the WRF model. The projected result generally exhibits 

variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed 

to the inherent configurations and physics parameterization of the GCMs, distinct radiative forcing 

scenarios, and varying equilibrium climate sensitivities found in CMIP6 models (Zuo et al., 2023; 

Bukovsky and Mearns, 2020). For instance, the high emissions scenario could lead to higher 

temperature and stronger precipitation in China (Yang et al., 2021). Consequently, the suitability of 

land for future forests may change accordingly. Exploring the impacts of different SSPs on the 

distribution of potential afforestation regions would be an intriguing avenue for future research. To 

address the concerns on model uncertainty, using WRF forced by multiple bias-correction CMIP6 



model can explore the source of uncertainty, and the ensemble means for downscaled climate 

simulation would help to obtain a more robust projection. In addition, the different combinations of 

physics parameterization schemes in the WRF model also influence the simulation performance 

(Gbode et al., 2019). Selecting the optimal combination is beneficial for reducing underlying bias. 
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Lines 79-80: please add sequence numbers for three categories. 

Response: We have added it as follows: 

This study used three categories of data: (1) ground meteorology measurements data, satellite-

observed land use/cover data, (2) national planned afforestation area data, (3) climate modelling 

data from GCM, and ERA5 reanalysis data. 



 

Figure 2: The red text on a dark blue background is hard to read. 

Response: We changed it from red to white to make it easier to read. 

 

Figure 1: Model domain with topography. The black boundaries indicate each province in China. 

 

Lines 162-163: Did the authors test whether the model has reached the equilibrium state with 

only one year of spinning up? 

Response: The spin-up time of the WRF model is important to reach the physical equilibrium state 

and to avoid inhomogeneities. Its length is determined by the quality of initial conditions inputs. In 

this study, we use the ERA5 reanalysis data and the MPI–ESM1–2–HR model as the initial 

conditions. They generally reach the equilibrium state in a short time due to the physical consistency 

between the variables. Previous studies have demonstrated that 4- to 8-day for atmospheric variables 

and 1-year spin-up time for soil moisture and temperature is enough (Zhong et al., 2007; Katragkou 

et al., 2015). Therefore, the model can reach the equilibrium state in this study. 
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Line 164: Delete the space between FUT_  and MPI. 

Response: We have deleted it. 

 

Line 212: Please change the unit mu into a standard international unit. 

Response: We have changed “1.825 billion mu” to “121.67×104 km2 ”. 

 

Figure 3: in addition to the difference in FigS2. A pattern correlation and RMSE for AT, TP, 

and PE in Fig.3 would be beneficial. 

Response: We have added it to the supplementary material. 



 

Figure 2: Comparison of observation, HIS_ERA and HIS_MPI based on RMSE. HIS_ERA and 

HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data and bias-corrected MPI–

ESM1–2–HR model, respectively. The observation derives from the CN05.1 dataset. 

 

 



Figure 3: Comparison of observation, HIS_ERA and HIS_MPI based on spatial correlation 

coefficient. HIS_ERA and HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data 

and bias-corrected MPI–ESM1–2–HR model, respectively. The observation derives from the 

CN05.1 dataset. 

 

Figure 4: Maybe I missed something, but adding texts to identify the difference among a, b, 

and c would be helpful. More info in the caption also would be beneficial for reader to 

understand this figure. One interesting finding from the figure is that the model tends to 

underestimate the TP in the high value (>1600 mm) category and overestimate the PE in the 

high value (>3; unit?) category. 

Response: We have added more information to the caption of Figure 4. “ Figure 4: Scatterplots of 

the annual average biotemperature (AT), annual total precipitation (TP), and potential 

evapotranspiration ratio (PE) for each grid against the observation and HIS_ERA, observation and 

HIS_MPI, HIS_MPI, and HIS_ERA. HIS_ERA and HIS_MPI indicate the WRF simulation driven 

by ERA5 reanalysis data and the bias-corrected MPI–ESM1–2–HR model, respectively. The 

observation derives from the CN05.1 dataset. Evaluation indexes included the bias, mean absolute 

error (MAE), and spatial correlation coefficient (R). The black dotted line indicates a 1:1 line.” 

We find that the simulated TP exceeding 1600 mm in southern China is underestimated and the 

simulated PE exceeding 3 in northwest China is overestimated. The WRF model generally 

overestimates light rain, and underestimates heavy rain, especially extreme precipitation (Mugume 

et al, 2018). Therefore, it is necessary to further improve the simulation accuracy of the WRF model. 
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Figure 5: Please add some values for change in the Fig. 5b. 

Response: The flow diagram was improved and specific values are included. 



 

Figure 4: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–

4.5 scenario in the future periods (2041–2060) from the FUT_ MPI simulation, and (b) area changes 

across historical baseline (1995–2014) and future periods, where the calculations are based on FUT_ 

MPI simulation versus HIS_ MPI simulation. 

 

Figure 6: Some text overlaps with the map. 

Response: We have changed it. 

 
Figure 5: Spatial distribution of (a) historical open space region for afforestation, (b) future potential 

forestation domain (PFD) from HLZ model considered as the forest suitable lands, (c) potential 

afforestation region constrained by climate change, (d) national planned afforestation areas in the 

individual provinces from the NFMP, (e) Chinese vegetation regionalization map. 


