
Response to RC1 Comments 
General comments 

The article “Mapping the Future Afforestation Distribution of China Constrained by National 

Afforestation Plan and Climate Change” explored the distribution of future potential 

afforestation areas based on future high-resolution climate data from the WRF model and 

HLZ model. It is highlighted that the afforestation scenario is constrained by both the 

climatological suitability for tree and national afforestation plan. The climatology suitability 

for tree is decided by future climate conditions and determines the potentially available 

afforestation domain. The national afforestation plan determines the total afforestation area. 

The potential value is to provide the design framework for locations of future afforestation. 

Overall, the article is suitable for the scope of Biogeosciences, I recommend that the authors 

address the concerns below in a minor revision prior to publication. 

Response: Thank you for your help in improving this manuscript. These comments are valuable 

and very helpful for revising and improving our paper. We have studied the comments and have 

made revisions carefully. I hope these major revisions meet with approval. The point-by-point 

responses to the reviewer’s comments are as follows: 

Specific comments 

Method: I'm confused about the spatial resolution of the article and please provide an 

explanation. Firstly, the authors emphasize the “high-resolution simulations” in this article. 

However, the spatial resolution is only 25 km. The other high-resolution climate dataset 

product (i.e., WorldClim data, https://www.worldclim.org/data/index.html.) is available at the 

~1km spatial resolution. I'm confused if that description is appropriate, and please illustrate 

the advantages of WRF simulation in this study. L115: Why the spatial resolution of ERA5 

reanalysis data is 1.0°×1.0°. In ECMWF, the highest resolution of the ERA5 product is 

0.25°×0.25°, which is close to WRF simulation (25 km). In the HIS_ERA experiment, is 

downscaling 1.0° ERA5 data to 25 km necessary? L89: The spatial resolution of MCD12Q1 is 

500m, which is different from the WRF simulation (25km). How do you match it well? Please 

give some detailed information. 



Response: Thank you for your suggestion. In this study, the spatial resolution of the WRF 

simulation is 25- by 25-km, which is higher than the raw CMIP6 model, ranging from 

2.8125°×2.8125° (CanESM5 model) to 0.6667°×0.5° (INM-CM5-0 model). This is the meaning of 

high-resolution simulation in this paper. Additionally, the WorldClim data is spatially interpolated 

global climate data, with a spatial resolution of 1- by 1-km. Compared to the WorldClim data, the 

dynamical downscaling climate data (i.e., the WRF model output) has the advantage of keeping 

physical consistency constraints among these variables such as the hydrostatic equilibrium and the 

geostrophic wind balance. The physically consistent variables are an important basis for this study. 

 Second, on the behalf of ERA5 reanalysis data, there are actually multiple resolutions of 

datasets from the ECMWF. The aim of downscaled ERA5 is to evaluate the accuracy of the 

downscaled MPI–ESM1–2–HR model. In order to enhance the comparability of downscaled ERA5 

reanalysis data and the MPI–ESM1–2–HR model, we used ERA reanalysis data with a grid size 

closer to that of the MPI–ESM1–2–HR model. 

 Third, in this study, we filled the 500-meter resolution of the MODIS data into the 25-km 

resolution of the WRF model grids by aggregating the MODIS pixels within a 25x25 km grid cell 

and calculating the area fraction of each land use type within the 25x25 km grid cell. 

L218: “Areas with high precipitation are allowed priority afforestation.” In this study, 

precipitation is treated as a key meteorological factor that restricts forest distribution. Indeed, 

precipitation is critical for forest growth. However, a single climate variable is slightly simple 

rather than representing climatology suitability for tree. Multivariate comprehensive 

indicators affecting forest growth are more appropriate. In this study, the essence of the HLZ 

model is the distance to the three bioclimatic variables. I recommend considering the distance 

as a comprehensive indicator to quantify the climatology suitability for tree. 

Response: We agree with this comment. In the revised manuscript, the HLZ value as a 

comprehensive indicator has been used to quantify the climatology suitability for afforestation. 

Areas with a low HLZ value are allowed priority afforestation. Because a low HLZ value means a 

greater opportunity to be potential forestlands. Following this new method, we find that the probable 

locations for future potential afforestation areas in China are around and to the east of the Hu Line. 



Figure 1: Map of future potential afforestation distribution under constraining of national 

afforestation planning total area and future climate changes and the afforestation-induced vegetation 

types conversions. Forest types from IGBP include Evergreen Needleleaf Forests (ENF), Evergreen 

Broadleaf Forests (EBF), Deciduous Needleleaf Forests (DNF), Deciduous Broadleaf Forests 

(DBF), and Mixed Forests (MF). The black dotted line indicates the Hu Line. 

L204: In the section on the approach of the newly afforestation allocation, I'm confused about 

the definition of forest. Please clarify it. For the national afforestation plan (NFMP), the total 

afforestation area is 73.78×104 km2. How to define the total afforestation area? I wonder 

whether the definition from the State Forestry Administration of China agrees with this study. 

Response: This study remains consistent with the definition of forest of China's State Forestry 

Administration. In the statistical context of China's State Forestry Administration, the term "forest 

area" is essentially synonymous with "woodland area." This designation is based on the criterion 

that the fraction of tree canopy cover exceeds 20%. The total afforestation area of 73.78×104 km2 

implies that we will be planting trees across this area. It is anticipated that the trees would grow in 

health and the fraction of tree canopy cover could exceed 20%. Thereby, afforestation implicates 

that non-woodland would be replaced by woodland. Given the need to ensure food security, urban 

expansion, and ecological protection in the future, future afforestation cannot occupy cropland, 

urban, and wetlands (including water bodies). Therefore, the implementation of future afforestation 

in this study occurs mainly on the present grassland, savanna, and woody savanna. 



L113: The authors use the SSP2–4.5 scenario (the middle-of-the-road development) to 

represent the climate future projections. However, this study only used one model projections 

rather than multiple model ensemble mean. Following the methodology of CMIP6 climate 

projection, scenario-based climate projection may have large uncertainties. It is suggested the 

revision to address this issue. It is also worthy to discuss effects of single model projection 

uncertainties on the research result of this study. 

Response: Following this comment, we revised the discussion. In the revised manuscript, the model 

scenarios and uncertainties are discussed, as follows: 

This study may have some limitations and uncertainties. Following the approach of existing 

studies (Ma et al., 2023; Qiu et al., 2022), we also utilized the bias-correction LBC in dynamical 

downscaling. However, the model uncertainty in the future climate projection is difficult to quantify 

because one GCM is used to nest into the WRF model. The projected result generally exhibits 

variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed 

to the inherent configurations and physics parameterization of the GCMs, distinct radiative forcing 

scenarios, and varying equilibrium climate sensitivities found in CMIP6 models (Zuo et al., 2023; 

Bukovsky and Mearns, 2020). For instance, the high emissions scenario could lead to higher 

temperature and stronger precipitation in China (Yang et al., 2021). Consequently, the suitability of 

land for future forests may change accordingly. Exploring the impacts of different SSPs on the 

distribution of potential afforestation regions would be an intriguing avenue for future research.  

To address the concerns about model uncertainty, exploring WRF forced by multiple bias-

corrected CMIP6 models can help uncover the source of uncertainty. Utilizing ensemble means for 

downscaled climate simulation would contribute to a more robust projection. Additionally, the 

selection of different physics parameterization schemes in the WRF model can also influence the 

simulation performance (Gbode et al., 2019). Selecting the most suitable combination is beneficial 

to reduce the underlying bias. 

Although the resolution of our dynamical downscaled simulation (25 km) is finer than raw 

GCMs (~100 km), it is difficult to meet the needs of afforestation planning in areas with complex 

topography. Convection-permitting climate modelling at the kilometre-scale has recently been 

developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐Picher et 



al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). 

However, increasing the resolution of the simulation implies higher computational costs. In contrast, 

statistical downscaling methods are also known to obtain high-resolution climate data with fewer 

computational resources (Tang et al., 2016). It assumes that the historical relationship between local 

climate variables and the large-scale circulation remains fixed in the future term (Wilby and Dawson, 

2013). The multi-model ensemble means from the CMIP6 statistical downscaling can significantly 

reduce the biases compared to individual models (Gebrechorkos et al., 2019). Thus, some statistical 

downscaled CMIP6 datasets (Gebrechorkos et al., 2023; Lin et al., 2023; Thrasher et al., 2022), with 

a resolution of 0.1°-0.25° covering the global land, can be applied to explore the future global 

potential afforestation area in following work. However, it is noted that the statistically downscaling 

data may have a limitation, as the covariance among the variables may not align with physical laws. 
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L353: “Our findings indicated that future afforestation in China would mostly occur around 

and to the east of the Hu Line, consistent with Zhang et al. (2022).” The authors try to compare 

other similar studies on future potential afforestation distribution. More result differences 

should be discussed. I suggest to highlight the innovation and implications of the article by 

comparing with existing studies. 

Response: In the revision, we discussed the innovation and implications of the article by comparing 

with existing studies, as follows:  

The most probable geographical distribution of future potential afforestation regions in China 

has been investigated in this study. Compared with previous studies, the total afforestation area in 

this study is greater than theirs. For example, Zhang et al. (2022) reported future climate changes 

may lead to an increase in suitable forestation lands by 33.1×104 km2 (2070s) through predicting 

the ecological niche of the forest using the machine learning approach. Xu et al. (2023) found that 

the area of prioritized potential forestation land was about 66.61×104 km2 in 2020 through spatial 

overlay analysis by considering multiple factors including climate, transportation, topography, land 

use and so on. This study is oriented towards national afforestation plans to identify future potential 

afforestation regions referring to climate change scenarios and land use patterns. The overall result 

is a more realistic and plausible afforestation scenario. The dataset would be valuable for studying 

the effects of future afforestation on carbon budget, ecosystem service, water resources, and surface 

climate. 

References 

Zhang, L., Sun, P., Huettmann, F., & Liu, S. (2022). Where should China practice forestry in a 

warming world?. Global Change Biology, 28(7), 2461-2475. 
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L180-186: Why the Holdridge life zone (HLZ) model is suitable for simulating the potential 

vegetation types in China. The author simply describes the extensive application of the HLZ 

model. I suggest validating the accuracy of the HLZ model. It is necessary to compare 

potential vegetation types with true vegetation types. Please add it to the Supplement Material. 



Response: Following this suggestion, we included a comparison between potential vegetation from 

the HLZ model and the actual vegetation. The actual vegetation in the year 2005 refers to China’s 

Land-Use/cover Datasets (CLUDs), which has a spatial resolution of 1- by 1 km and covers the 

entire China (Liu et al., 2014). The overall accuracy of CLUDs is above 90% (Liu et al., 2010). We 

find that the HLZ model can reproduce the potential forest distribution and grassland-forest 

geographical boundary well.  

Reference 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., et al. (2014). Spatiotemporal 
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Figure 2. Comparison of actual (a) and potential (b) nature vegetation types. The actual vegetation 

types refer to China’s Land-Use/cover Datasets (CLUDs) for the year 2005. The potential vegetation 

types derived from the HLZ model are based on the average of 1995-2014. 

L125: The authors have done substantial work on numerical experiments. For example, the 

authors correct the lateral boundary conditions rather than the raw GCM before dynamic 

downscaling. It is a very good solution to reduce the underlying bias. I suggest adding the 



comparison of raw GCM, bias-corrected GCM, and observation. 

Response: To select the excellent performance of GCM, our previous (Song et al., 2023) studies 

comprehensively evaluated the performance of the GCM involved in CMIP6. It was reported that 

the MPI–ESM1–2–HR model from the Max Planck Institute outperforms all other GCMs in East 

Asia. We have added the comparison of the raw MPI–ESM1–2–HR model, bias-corrected MPI–

ESM1–2–HR model, and the observation. The bias-corrected MPI–ESM1–2–HR model can reduce 

the underlying biases. The results are as follows: 



Figure 3: Comparison of ERA5 reanalysis data with raw (No_BC_MPI) and bias-corrected 

historical MPI–ESM1–2–HR model (BC_MPI) at the pressure of 850 hPa for the period 1995–2014. 



The odd rows represent the spatial distribution of climatology, and the even rows represent the 

differences. 

Figure 4: Comparison of ERA5 reanalysis data with raw (No_BC_MPI) and bias-corrected 

historical MPI–ESM1–2–HR model (BC_MPI) at the different pressure levels and months. 



Reference 

Song, S., Zhang, X., Gao, Z., & Yan, X. (2023). Evaluation of atmospheric circulations for 

dynamic downscaling in CMIP6 models over East Asia. Climate Dynamics, 60(7-8), 2437-2458. 

L351: This article emphasizes “The dataset would be valuable for studying the effects of future 

afforestation on carbon budget, ecosystem service, water resources, surface climate”. Would 

the data set be available to the public, especially in Figure 7? 

Response: Yes. This dataset is available from the corresponding author upon request. 

L234: “The WRF simulation generally overestimates TP in most regions with a national-

average bias of 92.883 mm”. According to Figure 3d-3f, the obvious overestimate is over the 

southeast Tibetan Plateau. It is suggested to explain the potential reasons of these bias in the 

revision. 

Response: The southeastern Tibetan Plateau (TP) is characterized by complex terrain. Regional 

climate models (RCMs) generally overestimate precipitation over the TP (Wang et al., 2021; Liu, et 

al., 2023). The wet bias could be attributed to inappropriate parameterization schemes (Ou et al., 

2020; Zhao et al., 2023), coarse horizontal resolution (Lin et al., 2018; Rahimi et al., 2019), and 

inappropriate land-surface processes associated with soil moisture and frozen–thawing (Fu et al., 

2020; Yang et al., 2018). For example, a high-resolution simulation can reproduce more realistic 

terrain characteristics and reduce the wet bias because finer resolutions decrease the water vapour 

transport towards the TP due to improving resolving orographic drag (Lin et al., 2018). An improved 

cloud macrophysics scheme can increase low cloud cover and reduce latent heat flux and land 

surface temperature, which leads to a more stable atmosphere and less precipitation (Zhao et al., 

2023). 

References 

Lin, C., Chen, D., Yang, K., & Ou, T. (2018). Impact of model resolution on simulating the 

water vapor transport through the central Himalayas: implication for models’ wet bias over the 

Tibetan Plateau. Climate Dynamics, 51, 3195-3207. 

Zhao, D., Lin, Y., Dong, W., Qin, Y., Chu, W., Yang, K., et al. (2023). Alleviated WRF summer 



wet bias over the Tibetan Plateau using a new cloud macrophysics scheme. Journal of Advances in 
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Table 1: Why this parameterization scheme of the WRF model is appropriate in this study. 

Please give a specific reason or reference. 

Response: The reference was included in the revision. 

Reference 

Hu, Y., Zhang, X. Z., Mao, R., Gong, D. Y., Liu, H. B., & Yang, J. (2015). Modeled responses 

of summer climate to realistic land use/cover changes from the 1980s to the 2000s over eastern 

China. Journal of Geophysical Research: Atmospheres, 120(1), 167-179. 



L300: What is the meaning of “The corresponding annual total precipitation is over 353.6 mm 

among the selected grids”? How to obtain the value of 353.6 mm. Please clarify it. 

Response: In the HLZ model, the minimum precipitation for forests is prescribed as 353.6 mm.  

In the revision, it is revised as:  

Their annual precipitation is all above 353.6 mm, which is prescribed as a precipitation limitation 

for forests in the HLZ model.  

L311: “It is generally common sense that afforestation is highly constrained by precipitation.” 

Please add specific explanations or references. 

Response: The references were included in the revision. 

References 

Harvey, J. E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz‐García, R., et al. 

(2020). Tree growth is influenced by a warming winter climate and summer moisture availability in 

northern temperate forests. Global Change Biology, 26(4), 2505-2518. 

Fang, J., Piao, S., Zhou, L., He, J., Wei, F., Myneni, R. B., et al. (2005). Precipitation patterns 

alter growth of temperate vegetation. Geophysical Research Letters, 32(21). 

L275: To what does “total area” refer to? Is it the whole nation? Please clarify. 

Response: The “total area” refers to the entire China land area. 

Figure 5b: The flow diagrams are not clear, and please give specific values. 

Response: The flow diagram was improved and specific values are included. 



Figure 5: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–

4.5 scenario in the future periods (2041–2060) from the FUT_ MPI simulation, and (b) area changes 

across historical baseline (1995–2014) and future periods, where the calculations are based on FUT_ 

MPI simulation versus HIS_ MPI simulation. 

Eq. (2): “ ,  , and ”. Please correct it. 

Response: The Equation (2) was corrected in the revision. 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 ×
𝑆𝑆𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺

+ 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 + �𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 − 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻�    (2)

Figure 3 and Figure 4: For Figure 3 and Figure 4 captions, suggest not to use the abbreviations 

“HLZ”, “AT”, “TP”, and “PE”. 

Response: The full names were included in the captions. 

L208: “national afforestation plan” is redundant. Please use the “NFMP”. 

Response: It is revised. 

L98: “The total national afforestation area is about 73.78×104 km2 from 2020 to 2050”. Please 

give specific forest cover. 

Response: It was revised as follows: 

The national afforestation plan shows a total afforestation area of about 73.78×104 km2 



(equivalent to an increase China's forest cover by 7.7%) from 2020 to 2050. 

 

Figure 2: No citation for Figure 2 in the text. 

Response: The citation of Figure 2 was included in the revision. 

 

Figure 6: Please do not use the abbreviations in the figure captions. 

Response: All full name is presented in the captions in revision. 

 

L338: “woody savannas” replaces “Woody savannas”. 

Response: It is revised. 



Response to RC2 Comments 
General comments: 

This manuscript attempted to map the future afforestation distribution in China. This 

future afforestation distribution plays an important role in land-atmosphere interactions and 

carbon cycle research, but it hardly been obtained so far. The authors provided a technological 

roadmap to deal with it. Compared to previous idealistic and hypothetical afforestation 

scenarios, this study designed a plausible afforestation scenario due to considering the national 

afforestation plan. The study also did a relatively good job at dynamical downscaling of GCM 

outputs in terms of future climate projection. Overall, the study adopted a novel perspective 

and robust technique for identifying future potential afforestation domains. 

I find that this paper is very intriguing and important and lots of additional work behind 

this study is worth further exploring. The manuscript could be accepted as I believe. On the 

other hand, I also have several minor comments. I hope that these comments can improve the 

manuscript. My comments are given below. 

Response: We thank you for your interest in our study. These comments are valuable and very 

helpful for revising and improving our paper. We have studied the comments carefully and have 

made revisions to the revised version. I hope these major revisions meet with approval. The point-

by-point responses to the reviewer’s comments are as follows: 

Specific comments: 

Why is the SSP2–4.5 scenario selected? There are several shared socioeconomic pathways 

(SSPs) for future climate projections in the CMIP6. The study results may be dependent on 

the selection of SSPs. Why is the SSP2–4.5 scenario suitable for your studies? 

Response: CMIP6 used a new scenario projection framework combined with the SSPs (i.e., SSP1-

2.6, SSP2-4.5, SSP5-8.5). It is indeed that projected precipitation and temperature vary across the 

SSPs. Thus, the future forests suitable lands may be divergent. It is reported that the middle-of-the-

road development (SSP2–4.5 scenario) represented the most likely development path to occur in 

China. Therefore, this study used the SSP2–4.5 scenario. In future, we can further compare the 

effects of different SSPs on the distribution of potential afforestation regions. 



By comparing potential vegetation domain simulation with observation, some disagreement 

could be found. For example, in southern China, the observed subtropical forest expands 

northward up to 32°N. However, the simulation results reduce the extent. Given the bias in 

the WRF model simulation, why does this simulation still make sense? 

Response: In this study, the main role of the WRF simulation is to identify the extent of forest 

suitable land. In order to reduce the effect of the WRF simulation, this study has corrected the bias 

of the lateral boundary conditions. Compared with the actual forest pattern, the WRF simulation 

could reproduce the distribution of potential forest regions in China well. Compared to the national 

afforestation plan, the bias in the extent of forest suitable land due to WRF simulation has a small 

impact on the results of this study. 

This study only used an MPI–ESM1–2–HR model as the lateral boundary of WRF model. It 

may fail to obtain robust future climate projections. The NEX-GDDP-CMIP6 (NASA Earth 

eXchange Global Daily Downscaled Projections CMIP6 Data) datasets contain multiple 

GCMs and SSPs with a spatial resolution of 0.25° × 0.25°, which is approximate same with 

this study of 25- by 25-km. Why not use this dataset? The relevant reference is “Thrasher, B., 

Wang, W., Michaelis, A., Melton, F., Lee, T., & Nemani, R. (2022). NASA global daily 

downscaled projections, CMIP6. Scientific Data, 9(1), 262.” 

Response: Thank you for bringing this recent study to our attention. The NEX-GDDP-CMIP6 

datasets are developed by the statistical downscaling algorithm. Compared to the NEX-GDDP-

CMIP6 datasets, the dynamic downscaling climate data (i.e., WRF model output) has the advantage 

of keeping physical consistency constraints between variables such as the hydrostatic equilibrium 

and geostrophic wind balance. Thus, dynamical downscaling climate data is used in this study. The 

discussion on the statistical downscaling was included in the revision, as follows: 

Although the resolution of our dynamical downscaled simulation (25 km) is finer than raw 

GCMs (~100 km), it is difficult to meet the needs of afforestation planning in areas with complex 

topography. Convection-permitting climate modelling at the kilometre-scale has recently been 

developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐Picher et 

al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). 



However, increasing the resolution of the simulation implies higher computational costs. In contrast, 

statistical downscaling methods are also known to obtain high-resolution climate data with fewer 

computational resources (Tang et al., 2016). It assumes that the historical relationship between local 

climate variables and the large-scale circulation remains fixed in the future term (Wilby and Dawson, 

2013). The multi-model ensemble means from the CMIP6 statistical downscaling can significantly 

reduce the biases compared to individual models (Gebrechorkos et al., 2019). Thus, some statistical 

downscaled CMIP6 datasets (Gebrechorkos et al., 2023; Lin et al., 2023; Thrasher et al., 2022), with 

a resolution of 0.1°-0.25° covering the global land, can be applied to explore the future global 

potential afforestation area in following work. However, it is noted that the statistically downscaling 

data may have a limitation, as the covariance among the variables may not align with physical laws. 
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(2023). A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate 



impact analyses. Scientific Data, 10(1), 611. 

Lin, H., Tang, J., Wang, S., Wang, S., & Dong, G. (2023). Deep learning downscaled high-

resolution daily near surface meteorological datasets over East Asia. Scientific Data, 10(1), 890. 
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From Figure 6c to Figure 7, you further constrained the afforestation area through the total 

precipitation. Precipitation is important but not the only determinant of afforestation 

allocation. More other factors may be needed to be considered. 

Response: We agree with this comment. In the revised manuscript, the HLZ value as a 

comprehensive indicator has been used to quantify the climatology suitability for afforestation. 

Areas with a low HLZ value are allowed priority afforestation. Because a low HLZ value means a 

greater opportunity to be potential forestlands. Following this new method, we find that the probable 

locations for future potential afforestation areas in China are around and to the east of the Hu Line. 

Figure 1: Map of future potential afforestation distribution under constraining of national 

afforestation planning total area and future climate changes and the afforestation-induced vegetation 

types conversions. Forest types from IGBP include Evergreen Needleleaf Forests (ENF), Evergreen 

Broadleaf Forests (EBF), Deciduous Needleleaf Forests (DNF), Deciduous Broadleaf Forests 

(DBF), and Mixed Forests (MF). The black dotted line indicates the Hu Line. 



It’s not clear that “This bias-corrected approach was applied to the variables such as air 

temperature, specific humidity, zonal wind, meridional wind, geopotential height, etc.” in Line 

121. In addition to these five meteorological variables, were there other variables bias-

corrected? More detail please. 

Response: In fact, there are a total of 16 bias-corrected variables. These include five atmospheric 

fields, i.e. air temperature, specific humidity, zonal wind, meridional wind, geopotential height, and 

eleven surface fields, i.e. surface temperature, sea-surface temperature, surface pressure, sea ice 

cover, sea-level pressure, soil temperature, soil moisture, near-surface temperature, relative 

humidity, zonal and meridional wind. 

The authors need to add more descriptions of the future potential afforestation distribution 

and shift types (Figure 7). It seems that this part of the manuscript is too short. 

Response: We have expanded this description as follows: 

The findings show that the probable locations for future potential afforestation areas in China 

would be around and to the east of the Hu Line. Due to afforestation, the land cover would be 

modified. In northern China, the dominant conversion is from grasslands to deciduous broadleaf 

forests. Such conversion is also the most dominant land use change due to afforestation. It accounts 

for 40 % of the newly afforestation area. In detail, among the provinces in northern China, the largest 

conversion from grassland to deciduous broadleaf forest may occur in Shanxi and Shaanxi. In 

southwest China, the dominant conversions are from woody savannas and savannas to evergreen 

broadleaf forests. These conversions account for 26 % and 16% of the newly afforestation area, 

respectively. These land use conversions are majorly located in southwest China, such as Yunnan 

province, Sichuan province, and Guizhou province. 

In line 209, here, it is stated that the cropland does not encroach on afforestation. However, 

Figure 7 shows that the shift types include croplands to MF and croplands to DBF. Is that a 

contradiction here? This should be commented. 

Response: We have revised the manuscript. In the revision, the criteria for identifying potential 

afforestation areas were changed to minimize encroachment on cropland. If the historical grassland, 



savannas and woody savannas do not meet the demand of the national afforestation plan, we just 

consider encroachment on the cropland. The result shows that a small amount of cropland has been 

scheduled for afforestation to meet the national afforestation requirement. Overall, 1.88 billion mu 

croplands in China are still available for cultivation. It is also away from the protection ‘red line’ of 

1.865 billion mu, released by the National Land Planning Outline (2016–2030) (State Council of 

China, 2017). 

In line 292, “We exclude some ineligible regions, including present forestland, cropland, urban, 

wetland, and water bodies based on the 2020 MCD12Q1 land cover data”. This sentence is 

repeated. The definition of “historical open space regions” has been clarified in section 2.2.3. 

Response: In the revision we deleted it. 

Line 114. The presentation on the ERA5 dataset is too short. Which meteorological variables 

are used in the study? What is the time scale and spatial extent? 

Response: In the revision, we introduced more detail about EAR5 as follows: 

The ERA5 reanalysis data is the fifth generation global reanalysis product developed by the 

European Centre for Medium-range Weather Forecast (ECMWF) (Hersbach et al., 2020). The state-

of-the-art reanalysis data assimilates multi-source data including ground-based meteorological 

measurements data, satellite-observed data, and atmospheric sounding data based on 4D-var 

ensemble data assimilation system (Hersbach et al., 2020). The 6–hourly ERA5 reanalysis data with 

a spatial resolution of 1.0°×1.0° from 1994 to 2014 was also used as the lateral boundary conditions. 

The related meteorological variables for the MPI–ESM1–2–HR model and ERA5 reanalysis data 

included atmospheric fields (air temperature, specific humidity, zonal wind, meridional wind, 

geopotential height) and surface fields (i.e., sea-surface temperature, sea ice cover, soil temperature 

and soil moisture, etc.). 
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Technical corrections: 

Line 100 – “Climate Modelling” replace “Climate modelling”. 

Response: It is revised. 

Table 1 – Give specific model top pressure. 

Response: We have added it. The model top pressure is 50hPa in this study. 

Line 125 – Check the Equation (2). 

Response: We apologize for this mistake. We have corrected the Equation (2): 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 ×
𝑆𝑆𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺

+ 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 + �𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 − 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻�    (2)

Line 393– “Woody savannas” -> “woody savannas” 

Response: Done. 

Line 76 – “The fourth section will be the discussion.” 

Response: We have refined it as follows: 

The discussion and conclusions are summarized in sections four and five. 

Table 1 – This should be “Initial and lateral boundary conditions” 

Response: It is revised. 

Line 14 – 7. In the abstract section, the abbreviation (WRF) should be the full name. Make 

sure the reader understandings. 

Response: All full name is presented in the captions in revision. 

Table 1 – “ERA5 analysis” -> “ERA5 reanalysis” 

Response: Done. 



Line 102– “CMIP6”. Add full name. 

Response: The full name is the Coupled Model Intercomparison Project 6 (CMIP6). 

Line 17– “SSP”. Add full name. 

Response: The full name is the shared socioeconomic pathways (SSP). 

Line 20– “occur” -> “be located” 

Response: It is revised. 

Line 54– “employ” -> “employed” 

Response: Done. 

Line 74– “the total area afforestation” -> “the total afforestation area” 

Response: Done. 

Line 83– “from 1995–2014” -> “from 1995 to 2014” 

Response: It is revised. 

Line 89– “features” -> “featured” 

Response: Done. 

Line 378– “historical periods” -> “historical period” 

Response: Done. 



Response to RC3 Comments 
In this manuscript, Song, Zhang, and Yan mapped the future afforestation distribution of 

China under political guidance and climate change. It is a good example to serve the society 

using numerical techniques. Overall, this manuscript is clear-written, easy to understand, and 

seems to be methodologically sound. I like the most of plots in this manuscript. However, I still 

have several comments that should be addressed below. 

Response: We thank the reviewer for all the constructive comments provided. These comments are 

valuable and very helpful for revising and improving our paper. We have studied the comments 

carefully and have made revisions to the revised version. I hope these major revisions meet with 

approval. The point-by-point responses to the reviewer’s comments are as follows: 

Specific comments: 

Line 20: Please explain the Hu Line. Readers outside are not familiar with this geographical 

division. 

Response: We have added the explanation in the abstract as follows: 

The newly afforestation grid cells would be located around and to the east of the Hu Line (a 

geographical division line stretching from Heihe to Tengchong). 

We have added the details in the results as follows: 

Hu Line, a geographical division line of climate zone, and population density, economic 

development in China, stretches from Heihe to Tengchong. 

Line 24: Replace “surface climate” with “surface hydroclimate regime”. 

Response: It is revised. 

Line 29: Afforestation not only influences the land surface energy and mass budgets, but also 

affects the water cycle. Water cycle should be mentioned, since in the main text PRCP and ET 

are analyzed. 

Response: We have added it as follows: 

Forests change the surface energy, mass budgets, and water cycle by modifying the physical 



properties of the land surface, such as albedo and roughness. 

Lines 27-32: The authors listed several papers describing the benefits of afforestation. More 

details would be helpful for readers to understand the impacts of afforestation from the 

process level. 

Response: We have included the details as follows: 

Afforestation could increase carbon stocks in terrestrial ecosystems by absorbing atmospheric 

carbon dioxide through its biogeochemical effect (Jayakrishnan et al., 2023; Zhu et al., 2019; 

Gundersen et al., 2021). Meanwhile, afforestation changes the surface energy, mass budgets, and 

water cycle by modifying the physical properties of the land surface, such as albedo and roughness, 

and the partitioning between sensible and latent heat fluxes through biogeophysical progress as well 

(Bonan, 2008; Breil et al., 2021; Wang et al., 2023). Specifically, afforestation causes warming 

effects due to the decreased albedo and cooling effects due to increased evapotranspiration, which 

can partly offset or amplify the cooling effects due to taking up carbon from the atmosphere. 

Line 33: “Aggressively” is not a positive word. 

Response: We have deleted it. 

Line 36: Add the time constraint for global greening. 

Response: We have included it. “China’s total forest cover has increased from 8.6 % in 1949 to 

24.02 % in 2022 (Zhang and Song, 2006; Fu et al., 2023; Moore et al., 2016), resulting in a 42% 

contribution to the greening in China during 2000-2017 (Chen et al., 2019).” 

Line 44: Please refine this sentence: “trigger consequent effects on climate change, 

hydrological processes, carbon budget, ecosystem services”. 

Response: We agree that this sentence is difficult to understand. We have refined it as follows: 

Such large-scale afforestation in the future would modify the land cover conversions from non-

forestland to forestland. These conversions could cause consequent effects on climate change (Wang 

et al., 2023), hydrological processes (Tian et al., 2022), carbon budget (Maneke‐Fiegenbaum et al., 

2021), ecosystem services (Wang and Li, 2022), etc. 
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Line 45-46: Please provide the details for “sensitive to wetland reduction caused by 

afforestation” and “properties and intensities of these effects are highly dependent on the 

afforestation location and area. ” I left confused about how the authors conclude. 

Response: Thank you for your suggestion. We replaced an example as follows: 

It is crucial that the effects of afforestation are highly dependent on the afforestation location 

and area. For example, tropical afforestation leads to greater cooling effects than boreal afforestation 

(Arora and Montenegro, 2011). Therefore, it is urgent to arrange the national planned afforestation 

area to specific areas and project the possible land cover changes due to afforestation. 

Reference 

Arora, V. K., & Montenegro, A. (2011). Small temperature benefits provided by realistic 

afforestation efforts. Nature Geoscience, 4(8), 514-518. 

Line 49-55: The authors listed several papers and did not explain their findings on climate 

impact; in addition, please identify the deficiency of “employ idealistic and hypothetical 



afforestation scenarios”. 

Response: We have added the findings on climate impact as follows: 

Odoulami et al. (2019) fully replaced the savanna areas (between 8°N and 12°N) with 

evergreen broadleaf trees over West Africa to investigate the climate effects of future afforestation. 

The obvious increase in the total annual precipitation was found over the afforested area. Similarly, 

Abiodun et al. (2013) employed random afforestation options to replace 25 %–100 % of the current 

land cover in Nigeria and found a local cooling effect induced by afforestation. 

The deficiency of “employ idealistic and hypothetical afforestation scenarios” is that the 

afforestation scenarios were set by the authors themselves, and both the national afforestation plan 

and the future climate change constraint are neglected. 

Lines 63-71: Besides the dynamic downscaling, it would be beneficial to discuss the statistical 

downscaling. Moreover, dynamic vegetation studies for future projections in China are 

relevant to this topic, and the related studies should be mentioned in the literature review. 

Response: Following your suggestion, we will restructure it. We have added the dynamic vegetation 

and statistical downscaling studies in the revised manuscript as follows: 

For statistical downscaling, the revision in the introduction is as follows: 

However, the resolution of the raw GCM is much coarser (~100 km–300 km) to describe the 

fine land surface features at the regional scale (Varney, 2022; Turner et al., 2023; Song and Yan, 

2022; Parsons, 2020). To overcome such shortage, downscaling techniques are widely used to 

translate GCM output to high-resolution data. Statistical downscaling involves the establishment of 

statistical relationships between local climate variables and large-scale atmospheric fields (Wilby 

and Wigley, 1997). However, it is not clear whether this historical statistical relationship is always 

stable in future periods. Statistical downscaling cannot ensure the physical consistency among 

meteorological variables. In contrast, the physically-based dynamic downscaling using a regional 

climate model (RCM) nested within a GCM could provide high-resolution climate simulations 

(Giorgi and Mearns, 1999; Mishra et al., 2014). The physical consistency is crucial to identify 

potential afforestation regions due to the multiple meteorological variables involved. Previous 

studies (Liu et al., 2020; Bowden et al., 2021) have employed the dynamical downscaling approach 

to quantify the climatological suitability for each nature vegetation type. 



For statistical downscaling, the revision in the discussion is as follows: 

Although the resolution of our dynamic downscaled simulation (25 km) is finer than raw 

GCMs (~100 km), it is difficult to meet the needs of afforestation planning in areas with complex 

topography. Convection-permitting climate modelling at the kilometre-scale has recently been 

developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐Picher et 

al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). 

However, increasing the resolution of the simulation implies higher computational costs. In contrast, 

statistical downscaling methods are also known to obtain high-resolution climate data with few 

computational resources (Tang et al., 2016). The multi-model ensemble means from statistical 

downscaling CMIP6 can significantly reduce the biases compared to individual models 

(Gebrechorkos et al., 2019). Thus, some statistically downscaled CMIP6 datasets (Gebrechorkos et 

al., 2023; Lin et al., 2023; Thrasher et al., 2022), with a resolution of 0.1°-0.25° covering the global 

land, can be applied to explore the future global potential afforestation area in following work. 

However, it is noted that the statistically downscaling data may have a limitation, as the covariance 

among the variables may not align with physical laws. 

For dynamic vegetation, the revision in the introduction is as follows: 

In addition, process-based dynamic global vegetation models (DGVMs) are also useful tools 

to help quantify future afforestation scenarios (Krinner et al., 2005; Horvath et al., 2021). The 

DGVMs (i.e., LPJ-GUESS) have commonly been applied to explore the responses of potential 

natural vegetation distribution to climate change (Hickler et al., 2012; Verbruggen et al., 2021). The 

DGVMs driven by meteorological data generally consider complex biogeophysical, biogeochemical, 

and physiological progress, such as evapotranspiration, carbon–nitrogen interactions, 

photosynthesis, and so on (Cramer et al., 2001). Given that both model process parameters and 

future meteorological data from GCMs represent a large source of uncertainty in DGVMs, the 

double overlap can lead to great uncertainties (Jiang et al., 2012; Martens et al., 2021). 
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Line 67: Please talk about the uncertainties for GCMs. 

Response: Following your suggestion, we will restructure the discussion. We have added it as 

follows: 

This study may have some limitations and uncertainties. Following the approach of existing 

studies (Ma et al., 2023; Qiu et al., 2022), we also utilize the bias-correction LBC in dynamical 

downscaling. However, the model uncertainty in the future climate projection is difficult to quantify 

because one GCM is used to nest into the WRF model. The projected result generally exhibits 

variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed 

to the inherent configurations and physics parameterization of the GCMs, distinct radiative forcing 

scenarios, and varying equilibrium climate sensitivities found in CMIP6 models (Zuo et al., 2023; 

Bukovsky and Mearns, 2020). For instance, the high emissions scenario could lead to higher 

temperature and stronger precipitation in China (Yang et al., 2021). Consequently, the suitability of 

land for future forests may change accordingly. Exploring the impacts of different SSPs on the 

distribution of potential afforestation regions would be an intriguing avenue for future research. To 

address the concerns on model uncertainty, using WRF forced by multiple bias-correction CMIP6 



model can explore the source of uncertainty, and the ensemble means for downscaled climate 

simulation would help to obtain a more robust projection. In addition, the different combinations of 

physics parameterization schemes in the WRF model also influence the simulation performance 

(Gbode et al., 2019). Selecting the optimal combination is beneficial for reducing underlying bias. 
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Lines 79-80: please add sequence numbers for three categories. 

Response: We have added it as follows: 

This study used three categories of data: (1) ground meteorology measurements data, satellite-

observed land use/cover data, (2) national planned afforestation area data, (3) climate modelling 

data from GCM, and ERA5 reanalysis data. 



Figure 2: The red text on a dark blue background is hard to read. 

Response: We changed it from red to white to make it easier to read. 

Figure 1: Model domain with topography. The black boundaries indicate each province in China. 

Lines 162-163: Did the authors test whether the model has reached the equilibrium state with 

only one year of spinning up? 

Response: The spin-up time of the WRF model is important to reach the physical equilibrium state 

and to avoid inhomogeneities. Its length is determined by the quality of initial conditions inputs. In 

this study, we use the ERA5 reanalysis data and the MPI–ESM1–2–HR model as the initial 

conditions. They generally reach the equilibrium state in a short time due to the physical consistency 

between the variables. Previous studies have demonstrated that 4- to 8-day for atmospheric variables 

and 1-year spin-up time for soil moisture and temperature is enough (Zhong et al., 2007; Katragkou 

et al., 2015). Therefore, the model can reach the equilibrium state in this study. 
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of precipitation over China using different cumulus convective schemes. Atmospheric 
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precipitation using the WRF model over eastern China. Journal of Geophysical Research: 

Atmospheres, 128(1), e2022JD036448. 

Zhong, Z., Yijia, H. U., Jinzhong, M. I. N., & Honglei, X. U. (2007). Numerical experiments 

on the spin-up time for seasonal-scale regional climate modeling. Journal of Meteorological 

Research, 21(4), 409–419. 

Katragkou, E., García Díez, M., Vautard, R., Sobolowski, S. P., Zanis, P., Alexandri, G., 

Cardoso, A., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, 

S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., & Jacob, D. (2015). Regional 

climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics 

ensemble. Geoscientific Model Development, 8(3), 603–618. 

Line 164: Delete the space between FUT_  and MPI. 

Response: We have deleted it. 

Line 212: Please change the unit mu into a standard international unit. 

Response: We have changed “1.825 billion mu” to “121.67×104 km2 ”. 

Figure 3: in addition to the difference in FigS2. A pattern correlation and RMSE for AT, TP, 

and PE in Fig.3 would be beneficial. 

Response: We have added it to the supplementary material. 



 

Figure 2: Comparison of observation, HIS_ERA and HIS_MPI based on RMSE. HIS_ERA and 

HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data and bias-corrected MPI–

ESM1–2–HR model, respectively. The observation derives from the CN05.1 dataset. 

 

 



Figure 3: Comparison of observation, HIS_ERA and HIS_MPI based on spatial correlation 

coefficient. HIS_ERA and HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data 

and bias-corrected MPI–ESM1–2–HR model, respectively. The observation derives from the 

CN05.1 dataset. 

 

Figure 4: Maybe I missed something, but adding texts to identify the difference among a, b, 

and c would be helpful. More info in the caption also would be beneficial for reader to 

understand this figure. One interesting finding from the figure is that the model tends to 

underestimate the TP in the high value (>1600 mm) category and overestimate the PE in the 

high value (>3; unit?) category. 

Response: We have added more information to the caption of Figure 4. “ Figure 4: Scatterplots of 

the annual average biotemperature (AT), annual total precipitation (TP), and potential 

evapotranspiration ratio (PE) for each grid against the observation and HIS_ERA, observation and 

HIS_MPI, HIS_MPI, and HIS_ERA. HIS_ERA and HIS_MPI indicate the WRF simulation driven 

by ERA5 reanalysis data and the bias-corrected MPI–ESM1–2–HR model, respectively. The 

observation derives from the CN05.1 dataset. Evaluation indexes included the bias, mean absolute 

error (MAE), and spatial correlation coefficient (R). The black dotted line indicates a 1:1 line.” 

We find that the simulated TP exceeding 1600 mm in southern China is underestimated and the 

simulated PE exceeding 3 in northwest China is overestimated. The WRF model generally 

overestimates light rain, and underestimates heavy rain, especially extreme precipitation (Mugume 

et al, 2018). Therefore, it is necessary to further improve the simulation accuracy of the WRF model. 

 

Reference 

Mugume, I., Basalirwa, C., Waiswa, D., Nsabagwa, M., Ngailo, T. J., Reuder, J., & Semujju, 

M. (2018). A comparative analysis of the performance of COSMO and WRF models in quantitative 

rainfall prediction. International Journal of Marine and Environmental Sciences, 12(2), 130-138. 

 

Figure 5: Please add some values for change in the Fig. 5b. 

Response: The flow diagram was improved and specific values are included. 



 

Figure 4: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–

4.5 scenario in the future periods (2041–2060) from the FUT_ MPI simulation, and (b) area changes 

across historical baseline (1995–2014) and future periods, where the calculations are based on FUT_ 

MPI simulation versus HIS_ MPI simulation. 

 

Figure 6: Some text overlaps with the map. 

Response: We have changed it. 

 
Figure 5: Spatial distribution of (a) historical open space region for afforestation, (b) future potential 

forestation domain (PFD) from HLZ model considered as the forest suitable lands, (c) potential 

afforestation region constrained by climate change, (d) national planned afforestation areas in the 

individual provinces from the NFMP, (e) Chinese vegetation regionalization map. 
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