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Abstract. Afforestation has been considered a critical nature-based solution to mitigate global warming. China has announced 

an ambitious afforestation plan covering an area of 73.78×104 km2 from 2020 to 2050. However, it is unclear where it will be 

suitable for afforestation under future climate change. Here, we carried out a finer resolution (25 by 25 km) of dynamic 

downscaling of climate change dynamic downscaling for China using the Weather Research and Forecast (WRF)WRF model 

nested with bias-corrected MPI–ESM1–2–HR model; then, using the Holdridge life zone model forced by the WRF model 15 

output, we mapped the climatological suitability for forest in China. The results showed that the potential forestation domain 

(PFD) at present (1995–2014) approximated 500.75×104 km2, and it would increase to 518.25×104 km2, by about 3.49 %, to 

the period of 2041–2060 under the shared socioeconomic pathways (SSP2SSP) –4.5 scenario (SSP2–4.5). Considering the 

expansion of the future PFD caused by climate change, the afforestation area for each province was allocated into grid cells 

following the climatological suitability for the forest. The newly afforestation grid cells would be locatedoccur around and to 20 

the east of the Hu Line (a geographical division line stretching from Heihe to Tengchong). Due to afforestation, the land cover 

would be modified. The conversion offrom grasslands to deciduous broadleaf forests in northern China coveredtakesook the 

most area, accounting for 41 40 % of the newly afforestation area. The grid cell-resolved afforestation dataset waskeepspt 

consistent with the provincial afforestation plan and the future climatological forest suitability. It would be valuable for 

investigating the impacts of future afforestation on various aspects, including the carbon budget, ecosystem services, water 25 

resources, and surface hydroclimate regimesurface climate. 

1 Introduction 

Afforestation has been considered a reasonable nature-based solutionmitigation strategy for global warming (Rohatyn et al., 

2022; Yu et al., 2022). Afforestation could increase carbon stocks in terrestrial ecosystems by absorbing atmospheric carbon 

dioxide through its biogeochemical effect (Jayakrishnan and Bala, 2023; Zhu et al., 2019; Gundersen et al., 2021). Meanwhile, 30 

afforestation changes the surface energy, and mass budgets, andas well as the water cycle by modifying the physical properties 
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of the land surface, such as albedo and roughness, andas well as the partitioning between sensible and latent heat fluxes through 

biogeophysical progress as well (Bonan, 2008; Breil et al., 2021; Wang et al., 2023). The key mechanism is that forests could 

both increase carbon stocks in terrestrial ecosystems by absorbing atmospheric carbon dioxide (the biogeochemical effect) 

(Jayakrishnan et al., 2023; Zhu et al., 2019; Gundersen et al., 2021) and change the surface energy and mass budgets by 35 

modifying the physical properties of the land surface, such as albedo and roughness, and the partitioning between sensible and 

latent heat fluxes (the biogeophysical effect) (Bonan, 2008; Breil et al., 2021; Wang et al., 2023). Specifically, afforestation 

causes warming effects due to thethrough decreaseding albedo and cooling effects due tthrough o increasedintensifying 

evapotranspiration, which can partly offset or amplify the cooling effects due to taking up carbon from the atmosphere (Arora 

and Montenegro, 2011). In addition to mitigating climate warmingclimate change, aAfforestation couldnot only impacts 40 

climate, but also enhance forest ecosystem services, such as maintenanceaining and enhancingenhancement of habitat 

provisioning and species richness (Brockerhoff et al., 2017). In recent decades, Thus, China has aggressively implemented 

large-scale afforestation programs in the most recent decades (Zhang et al., 2000), such as the Three-North Shelter Forest 

Program (Hu et al., 2021), the Grain for Green Program (Xiao, 2014), and the Natural Forest Conservation Program (Huang 

et al., 2019). These initiatives have significantly increased  China’sincreased China’s total forest cover has increased from 8.6 % 45 

in 1949 to 24.02 % in 2022 (Zhang and Song, 2006; Fu et al., 2023; Moore et al., 2016),.  Theseese afforestation programs  

resulting in a contributed to 42% contribution toof the land greening earth in China duringduring 2000-2017 (Chen et al., 2019). 

In September 2020, the Chinese government declared a specific objective of achieving carbon neutrality before 2060 (Liu et 

al., 2022; Zhao et al., 2022).   In pursuit of this goal, China is committed to expandingintends to expand the its forest area in 

the future, and some new national afforestation plans have been issuedintroduced. For exampleinstance, China would expand 50 

the forest cover to 25 % by 2030, which was presented in the Action Plan for Carbon Dioxide Peaking Before 2030 (State 

Council of China, 2021) outlines the China’s target to increase forest cover to 25 % by 2030. The National Forest Management 

Planning (2016–2050), issued by the State Forestry Administration of China (in 2016), set the afforestation aimstarget of about 

73.78×104 km2 from 2020 to 2050 in China. Such large-scaleextensive afforestation in the future would modifylead to the land 

cover conversions from non-forestland to forestland, potentially causing . The conversions could cause and trigger series 55 

ofconsequential effects through on climate change, hydrological processes, carbon budget, ecosystem services, etcaccording 

to the above-mentioned physical progresses. . It is crucial that the effects of afforestation are highly dependent on the 

afforestation location. For example, tropical afforestation may yield leads to greater cooling effects than boreal afforestation 

(Arora and Montenegro, 2011). However, recent studies find that the afforestation benefits may be overestimated, sometimes 

is controversial, because the responses of global carbon cycle to anthropogenic land-use change are uncertain (Bastin et al., 60 

2019; Veldman et al., 2019; Lewis et al., 2019). There is limited climate change net mitigation potential if tree planting in 

water-limited locations, such as in drylands (Rohatyn et al., 2022). Therefore, iIt is thereby urgent to arrange imperative to 

strategically allocate the national planned afforestation area to specific areas and project the possible land cover changes due 

toresulting from afforestation. 
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For example, northern and western China were more sensitive to wetland reduction caused by afforestation than southern 65 

China (Xi et al., 2022). It is crucial that the properties and intensities of these effects are highly dependent on the afforestation 

location and area. Therefore, it is urgent to arrange the planned afforestation area to specific areas and project the possible land 

cover changes due to afforestation. 

PreviousExisting researches have studiedieds have involvedclimatic effects of future afforestation scenarios (Abiodun et al., 

2013; Naik and Abiodun, 2016; Diasso and Abiodun, 2018; Odoulami et al., 2019; Zhang et al., 2022). For example, Odoulami 70 

et al. (2019) fully replaced the savanna areas (between 8°N and 12°N) with evergreen broadleaf trees over West Africa to 

investigatestudy the climate effects of future afforestation. The obvious increase in the total annual precipitation was found 

over the afforested area. Similarly, Abiodun et al. (2013) employed random afforestation scenariosoptions to replace 25 %–

100 % of the current land cover in Nigeria, and found a local cooling effect induced by afforestation..  In China, Zhang et al. 

(2022) attempted to identify the location of future potential afforestation using the machine learning approach to predict the 75 

ecological niche of the forest. NeverthelessIn summary, these existing above-mentioned studies mostly employed idealistic 

and hypothetical afforestation scenarios, and neglected the effects of . future climatological suitability for forest. In addition, 

process-based dynamic global vegetation models (DGVMs), such as LPJ-GUESS, have been extensively used to explore the 

responses of potential natural vegetation distribution to climate change (Hickler et al., 2012; Verbruggen et al., 2021) and are 

also useful tools to help  quantify future afforestation scenarios (Krinner et al., 2005; Horvath et al., 2021). The DGVMs (i.e., 80 

LPJ-GUESS) have commonly been applied to explore the responses of potential natural vegetation distribution to climate 

change (Hickler et al., 2012; Verbruggen et al., 2021). The DGVMs driven by meteorological data generally consider complex 

biogeophysical, biogeochemical, and physiological progress, such as evapotranspiration, carbon–nitrogen interactions, 

photosynthesis, and so on (Cramer et al., 2001). Given that the mathematics representations of these processes and their both 

model processparameters as well as and future meteorological scenario data from GCMs represent a main source of uncertainty 85 

in DGVMshave large uncertainties, theirir double overlap canmay yield lead to greater uncertainties (Jiang et al., 2012; 

Martens et al., 2021).These studies consider neither the national planned afforestation area nor the changes in forest suitable 

areas due to future climate change. Therefore, these studies hardly provide policymaker guidance on climate change mitigation. 

The impact of future climate change is the most challenging of the two aspects mentioned above. Previous studies (de Lima et 

al., 2022; Hinze et al., 2023) explored the responses of potential vegetation distribution to future climate change based on 90 

climate-vegetation models forced by the climate projection data of the global climate model (GCM). However, the resolution 

of the raw GCM is muchtoo coarser (~100 km–300 km) to describe the finer land surface features at a regional scale (Varney, 

2022; Turner et al., 2023; Song and Yan, 2022; Parsons, 2020). To overcome such shortage, downscaling techniques are widely 

used to translate GCM output to regional high-resolution data. Statistical downscaling involves the establishment of statistical 

relationships between local climate variables and large-scalecoarsely resolved atmospheric fields (Wilby and Dawson, 2013). 95 

However, it is not clear whether this historical statistical relationship is always stable in future periodsclimate scenarios. 

Meanwhile, S statisticals downscaling cannot ensure the physical consistency among meteorological variables. In contrast, the 

physically-based dynamical downscaling using a regional climate model (RCM) nested within a GCM could provide high-
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resolution climate simulations (Giorgi and Mearns, 1999; Mishra et al., 2014). The physical consistency is crucial to identify 

potential afforestation regions due to the multiple meteorological variables involved. Previous studies (Liu et al., 2020; 100 

Bowden et al., 2021) have employed the dynamical downscaling approach to quantify the climatological suitability for each 

nature vegetation type. the dynamic downscaling using a regional climate model (RCM) nested within a GCM could obtain 

high-resolution climate information and ensure the physical consistency among meteorological variables (Mishra et al., 2014), 

which had been used to quantify the climatological suitability for each type of vegetation (Liu et al., 2020; Bowden et al., 

2021). However, previous studies (Niu et al., 2019; Wu and Gao, 2020) used the raw GCM outputs as the lateral boundary 105 

conditions (LBCs) of RCM. It is well known that raw GCM outputs have some uncertainties, and the accuracy of LBCs is the 

most critical factor affecting the performance of dynamical downscaling due to the underlying biases propagated into RCM 

through the LBCs (Sato et al., 2007; Moalafhi et al., 2017; Karypidou et al., 2023). Therefore, high-accuracy LBCs are the 

key to obtaining robust future potential vegetation types. Correcting the GCM outputs before dynamical downscaling is 

necessary to reduce the underlying uncertainty. 110 

By taking into above mentioned background, this study aims to map the future afforestation distribution in China. It is 

highlighted that the results are constrained by both the national afforestation plan and future climate change. The national 

afforestation plan determines the total area afforestation area of each province, and climate change determines where it is 

suitable for forest growth. The introduction is the first section of this paper. The second section will introduce the methodology 

and data, and the third will present the results. The discussion and conclusions are summarized in sections four and five.Finally, 115 

the fourth section will summarize this study. 

2 Method 

2.1 Data sources 

This study used three categories of data: (1) ground meteorology measurements data and, satellite-observed land use/cover 

data, (2) national planned afforestation area data, (3) climate modelling data from GCM, and ERA5 reanalysis data. 120 

2.1.1 Ground meteorology measurements data and land use/cover data 

This study used observed 2 m air temperature and precipitation data from the CN05.1 dataset (Wu and Gao, 2013). This dataset 

has a spatial resolution of 0.25°×0.25° and a temporal resolution of days from 1995 to –2014. The dataset was produced by 

interpolating more than 2400 meteorological stations in China using the ‘anomaly approach’. The CN05.1 dataset was widely 

been used to apply to evaluate the performance of regional climate model simulations in China (Yu et al., 2015; Huang and 125 

Gao, 2018; Yan et al., 2019; Gao et al., 2023). 

The land use (LU) type is a key parameter of RCM (Mallard and Spero, 2019; Yan et al., 2021). This study used the Moderate 

Resolution Imaging Spectroradiometer (MODIS) land cover type dataset (MCD12Q1) for the year 2020 (Fig. S1), with a 

spatial resolution of 500 m (Friedl et al., 2010). The MCD12Q1 featureds a 17–class International Geosphere-Biosphere 



5 

 

Programme (IGBP) classification scheme (Loveland et al., 2000). It can could match the default first 17 categories of land use 130 

with Weather Research and Forecast (WRF) model (Table S1). The MCD12Q1 is highly accurate globally, with an overall 

accuracy of approximately 75% (Friedl et al., 2010; Sulla-Menashe et al., 2019). It was widely used to investigate land use 

and land cover change (You et al., 2020; Hou et al., 2022) and served as lower boundary conditions for climate modelling (Yu 

et al., 2017; Ge et al., 2020; Zhao et al., 2021). 

2.1.2 National planned afforestation area data 135 

This study also used the national planned afforestation area data, which was from the National Forest Management Planning 

(2016–2050) (NFMP) released by the State Forestry Administration of China (2016). The NFMP presents presented the total 

national afforestation area of 73.78×104 km2 (equivalent to an increase China's forest cover by 7.7%) and the area 

corresponding to each province between 2020 and 2050 (Fig. 6e6d). The NFMPnational policy was utilized as a policy 

constraint to identify the future afforestation domain in China. 140 

2.1.3 Climate mModelling data and ERA5 reanalysis data 

To select the optimalexcellent performance ofLBCs from GCM, Song et al. (2023) comprehensively evaluated the 

performances of GCM involved in the Coupled Model Intercomparison Project 6 (CMIP6). It was reported that the MPI–

ESM1–2–HR model from the Max Planck Institute outperforms all other GCMs in East Asia. In detail, by comparing with 

other CMIP6 models, the MPI–ESM1–2–HR model could also represent higher skill in simulating various climatic variables 145 

such as the sea surface temperature (Bhattacharya et al., 2022), mean temperature (Karim et al., 2020), total precipitation 

(Kamruzzaman et al., 2022), large–scale circulation (Han et al., 2022), and so on. The main configuration of the MPI–ESM1–

2–HR model utilized in this study comprises comprised the coupling atmospheric (ECHAM6.3) and ocean model (MPIOM 

version 1.6.2), JSBACH land surface scheme and HAMOCC ocean biogeochemistry model with the spatial resolution of 

0.9375°×0.9375° latitude-longitude grid and more model detailed is described in Müller et al. (2018). Actually, The the MPI–150 

ESM–MR model involved in CMIP5, which was the precursor of the current MPI–ESM1–2–HR model, had been widely used 

as the LBCs to force the RCMs to carry out finer-resolution climate simulation (Kebe et al., 2017; Ozturk et al., 2018; Crespo 

et al., 2023). It is well known that there are several shared socioeconomic pathways (SSPs) for future climate projections in 

the CMIP6. Here, we used the climate projections of the MPI–ESM1–2–HR model under the middle-of-the-road development 

(i.e., SSP2–4.5 scenario), which represented the most likely development path to occur (O'NeillO’Neill et al., 2016).  155 

Meanwhile, the 6–hourly ERA5 reanalysis data (Hersbach et al., 2020; Mahto and Mishra, 2019) with a spatial resolution of 

1.0°×1.0° from the European Centre for Medium-range Weather Forecast (ECMWF) was also used in this study.The ERA5 

reanalysis data is the fifth generation global reanalysis product developed by the European Centre for Medium-range Weather 

Forecast (ECMWF) (Hersbach et al., 2020). The state-of-the-art reanalysis data assimilated multi-source data including 

ground-based meteorological measurements data, satellite-observed data, and atmospheric sounding data based on 4D-var 160 

ensemble data assimilation system (Hersbach et al., 2020). The 6–hourly ERA5 reanalysis data with a spatial resolution of 
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1.0°×1.0° from 1994 to 2014 was also used as the LBCs. Climate variables for ERA5 reanalysis data and the MPI–ESM1–2–

HR model include atmospheric fields (air temperature, specific humidity, zonal wind, meridional wind, geopotential height) 

and surface fields (i.e., sea-surface temperature, surface pressure, soil temperature and moisture). 

 165 

Despite performing better than other GCMs, the MPI–ESM1–2–HR model still exhibits biases. Hence, the corrections of 

climate mean and variance were carried out using the method referred by Xu and Yang (2012) according to Eq. (1) and Eq. 

(2). The ERA5 data was used as a reference to correct the MPI–ESM1–2–HR model outputs. The MPI–ESM1–2–HR model 

outputs were interpolated into grid cells of 1.0°×1.0° using the bilinear interpolation method to match the ERA5 grid cells. 

The bias-corrected 6–hourly data of MPI–ESM1–2–HR model kept the same means and variances as the ERA5 data (Fig. S2-170 

S3). This bias-corrected approach was applied to the  atmospheric and surface fieldsvariables such as air temperature, specific 

humidity, zonal wind, meridional wind, geopotential height, etc. 

𝐻𝑐𝑜𝑟 = 𝐷𝐺𝐶𝑀_𝐻 ×
𝑆𝐷𝐸𝑅𝐴

𝑆𝐷𝐺𝐶𝑀

+ 𝑀𝐸𝑅𝐴     (1) 

𝐹𝑐𝑜𝑟 = 𝐷𝐺𝐶𝑀_𝐹𝑀𝐹
×

𝑆𝐷𝐸𝑅𝐴

𝑆𝐷𝐺𝐶𝑀

+ 𝑀𝐸𝑅𝐴 + (𝑀𝐺𝐶𝑀_𝐹𝑀𝐹
− 𝑀𝐺𝐶𝑀_𝐻𝑀𝐻

)    (2) 

Where, 𝐻𝑐𝑜𝑟  and 𝐹𝑐𝑜𝑟 are bias-corrected data of 6–hourly MPI–ESM1–2–HR models over the historical period (1994–2014) 175 

and future period (2040–2060), respectively. 𝐷𝐺𝐶𝑀_𝐻 and 𝐷𝐺𝐶𝑀_𝐹  indicate anomaly by referring to the historical and future 

mean of MPI–ESM1–2–HR modeling, respectively. 𝑆𝐷𝐸𝑅𝐴  and 𝑆𝐷𝐺𝐶𝑀  indicate the standard deviation of ERA and MPI–

ESM1–2–HR simulations during the historical period, respectively. 𝑆𝐷𝐸𝑅𝐴 /𝑆𝐷𝐺𝐶𝑀   denotes variance-adjusted term. 𝑀𝐸𝑅𝐴 

denotes the climatological mean of ERA data during historicaly period and 𝑀𝐺𝐶𝑀_𝐹 − 𝑀𝐺𝐶𝑀_𝐻  indicates the mean future 

climate change projected by MPI–ESM1–2–HR. 180 

 

2.2 Methodology 

The whole study consists of three steps. As shown by Fig. 1, the first step is to carry out dynamical downscaling and prepare 

a finer- resolution of climate data; the second step is to run the Holdridge life zone model to identify forest suitable lands under 

future climate change scenarios; finally, the third step is to allocate the national afforestation planning area into grid cells at 185 

the size of 25 km, by taking into climatology suitability for the forest. 
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Figure 1: Outline for mapping the future afforestation spatial distribution of China (PVD: potential vegetation domain; WRF: 

Weather Research and Forecast model; MPI: MPI–ESM1–2–HR model) 

2.2.1 Dynamical downscaling of GCM outputs 190 

In this study, the WRF model served as RCM and was utilized to obtain high-resolution simulations (Skamarock et al., 2019). 

As an open-source community mesoscale numerical model, the WRF model has generally been used to investigate regional 

climate modelling (Wang and Kotamarthi, 2015; Cardoso et al., 2019; Moustakis et al., 2021), whether diagnosis (Ullah and 

Shouting, 2013; Lu et al., 2021), numerical weather prediction (Case et al., 2008; Zheng et al., 2016), land-atmosphere 

interactions (Wang et al., 2013; Zhang et al., 2020, 2021). Specifically, the WRF model has been demonstrated to reproduce 195 

the historical spatiotemporal characteristics of temperature (Politi et al., 2021), precipitation (Moustakis et al., 2022), and 

biomes classified (Zevallos and Lavado-Casimiro, 2022) well, and can successfully project the changes in temperature and 

precipitation over China (Hui et al., 2018). In this study, the WRF model configurations and physics parameterization (Hu et 

al., 2015) is detailed in Table 1. The simulation domain is shown in Fig. 2. 

 200 
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Table 1: Model configurations and physics parameterization for WRF simulations 

Simulation configuration Setting 

Model version WRF version 4.2 

Domain East Asia including the entire China (Fig. 2) 

Horizontal resolution 25km 

Number of grids 289 (east-west) ×212 (south-north) 

Vertical layers 40 

Model top pressure 50 hPa 

Initial and lateral boundary conditions ERA5 reanalysisanalysis and MPI–ESM1–2–HR 

Physics parameterization Optional 

Microphysics WSM 3–class simple ice (Hong et al., 2004) 

Longwave radiation CAM (Collins et al., 2004) 

Shortwave radiation CAM (Collins et al., 2004) 

Land surface model Noah-MP (Niu et al., 2011) 

Cumulus Grell-Devenyi (Grell and Dévényi, 2002) 

Boundary layer YSU (Noh et al., 2003) 

 205 

 

Figure 2: Model domain with topography. The black boundaries indicate each province in China. 
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For the historical period, the last two decades (from 1994 to 2014) were considered the historical period in this study because 

the historical simulation for GCM is up to 2014. Given that the NFMP is implemented for afforestation up to 2050, the 210 

simulation for the future period covers the decade around 2050, from 2040 to 2060. Three 21–year numerical experiments 

were performed using the WRF model (Table 2). The first two experiments, HIS_ERA and HIS_MPI, simulated the historical 

climate change (1994–2014) using ERA5 analysis and MPI–ESM1–2–HR models as LBCs and default land use, respectively. 

The future climate change experiment (FUT_ MPI) used the 2020 MCD12Q1 land cover in simulating the future period (2040–

2060). All the WRF experiments were run for 21 years (1994–2014 and 2040–2060), but the first year (1994 and 2040) as 215 

spin-up time was discarded. The remaining 20–year period (1995–2014 and 2041–2060) was analysed. We compared the 

HIS_MPI and HIS_ERA experiments to validate simulation performance. The FUT_ MPI experiment generated a high-

resolution future climate dataset under the SSP2–4.5 scenarios. 

 

 220 

 

 

 

 

Table 2: Detailed WRF numerical experiment design 225 

Experiment name Simulated periodyearss Lateral boundary conditions Land use and land cover 

HIS_ERA 1994–2014 ERA5 analysis Default 

HIS_MPI 1994–2014 MPI–ESM1–2–HR Default 

FUT_ MPI 2040–2060 MPI–ESM1–2–HR 2020 MCD12Q1 

 

2.2.2 Identify forest suitable lands under the future change scenario 

The distribution of terrestrial ecosystems is directly affected by some main climate factors (i.e., temperature) (Piao et al., 2011; 

Tatli and Dalfes, 2016). Therefore, the impact of future climate change on the forest suitable lands is a further need to be 

analyzedanalysed. It is noted that the forest suitable lands in this study indicate the area of the potential forestation domain 230 

(PFD). The climate-vegetation models can describe the relationship between the potential vegetation domain (PVD) and the 

climatic conditions (Dan et al., 2005; Kummu et al., 2021; Anwar and Diallo et al., 2022). Among a series of climate-vegetation 

models, such as the Holdridge life zone (HLZ) model (Holdridge, 1947), BIOME4 model (Kaplan, 2001), BOX model (Box, 

1981), LPJ-DVGM model (Sitch et al., 2003), MAPSS model (Neilson et al., 1992), IBIS model (Foley et al., 1996), HLZ 
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model is a classification model for simulating the correlation between the potential terrestrial ecosystem types and climate 235 

change based on the conjunctions of key climate variables (Holdridge, 1947). In recent years, the HLZ model has been globally 

well-accepted and used to quantitatively identify the impacts of climate change on the distribution of PVD at the global (Elsen 

et al., 2022; Navarro et al., 2022), continental (Fan et al., 2019) and regional scales, such as like in China (Fan and Bai, 2021; 

Li et al., 2022). Therefore, the HLZ model was considered to obtain the spatial pattern of forest suitable lands in 2041–2060 

under the SSP2–4.5 scenario over China. 240 

The HLZ classification system requires daily temperature and monthly precipitation to obtain three bioclimatic variables: 

annual average biotemperature (AT), annual total precipitation (TP), and potential evapotranspiration ratio (PE). The output 

of the FUT_2020 experiment provides these meteorological variables. The HLZ model is estimated with the specific 

calculation formula as follows: 

 245 

𝐴𝑇(𝑡) =
∑ 𝑇(𝑗, 𝑡)𝑛

𝑗=1

𝑛
,    (3) 

𝑇𝑃(𝑡) = ∑ 𝑃(𝑗, 𝑡)

𝑛

𝑗=1

,     (4) 

𝑃𝐸(𝑡) =
58.93𝐴𝑇(𝑡)

𝑇𝑃(𝑡)
,     (5) 

𝐻𝐿𝑍(𝑡) = √(𝑇𝐸𝑀(𝑡) − 𝑇𝑖0)2 + (𝑃𝐸𝑅(𝑡) − 𝑃𝑖0)2 + (𝑃𝐸𝑇(𝑡) − 𝐸𝑖0)2 , (6) 

Where, 𝐴𝑇(𝑡), 𝑇𝑃(𝑡), and PE(t) are the AT (℃), TP (mm), and PE for each grid in the period t, respectively. 𝑇(𝑗, 𝑡) and 250 

𝑃(𝑗, 𝑡) are the mean temperature with values above 0 °C and below 30 °C and the total precipitation on the 𝑗 th day in the 

period 𝑡, respectively. 𝑛 is the number of years. 𝑇𝐸𝑀(𝑡) = 𝑙𝑛𝐴𝑇(𝑡), 𝑃𝐸𝑅(𝑡) = 𝑙𝑛𝑇𝑃(𝑡), 𝑃𝐸𝑇(𝑡) = 𝑙𝑛𝑃𝐸(𝑡)；𝑇𝑖0, 𝑃𝑖0, and 

𝐸𝑖0 are the reference values of the classification scheme of the AT logarithm, TP logarithm, and PE logarithm, respectively, at 

the central point of the 𝑖 th potential vegetation types in the HLZ model classification scheme. 𝐻𝐿𝑍(𝑡) is the 𝑖 th potential 

vegetation types in the period 𝑡. A low HLZ value indicates greater potential vegetation opportunity. Fan et al. (2019) improved 255 

the HLZ model and revised the classification scheme applied to Eurasia well. In this study, the reference values of the 

classification scheme are were used to quantify the distribution of potential vegetation types in China (Table S3), and more 

detail referreferreds to Fan et al. (2019). Compared to the actual vegetation types, the HLZ model can reproduce the potential 

forest distribution and grassland-forest geographical boundary well (Fig. S4). 

2.2.3 The approach of the newly afforestation allocation 260 

In this section, we designed an approach to allocate the newly afforestation area for each province into grid cells. To obtain 

plausible afforestation scenarios, the overall principles were that future afforestation areas should consider both future climate 

change and national afforestation plans. The specific details are as follows:  
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(1) The final total afforestation area should be consistent with the national afforestation plan (NFMP). 

(2) Present forestland, cropland, urban, wetland, and water bodies areas do not be encroached  onon afforestation. If the demand 265 

of in principle, the NFMP cannot be met, we just consider minimizing encroachment on cropland. whichIt can establish the 

concept of sustainable development as well as avoid repeatedduplication of afforestation in the future (Zomer et al., 2008). 

The present land cover dataset for the year 2020 is based on MCD12Q1. 

(3) After afforestation, China's cultivated land area is not expected to fall below than 121.67×104 km21.825 billion mu 

according to the requirements of the National Land Planning Outline (2016–2030) (State Council of China, 2017). This ensures 270 

that the cultivated land area stays within the ‘red line’ and enhances people’s welfare. 

(4) Afforestation is implemented in areas where the potential vegetation types indicate are forestlandsforests in the context of 

future climate, according to the output of the HLZ model. This measure could ensure that future climate conditions are suitable 

for the growth of forests. 

(5) Areas with a low HLZ valuehigh precipitation are allowed priority afforestation. The HLZ metric is a comprehensive metric 275 

considering the biotemperature, precipitation, and potential evapotranspiration ratio. This is because A low HLZ value means 

a greater opportunity to be potential forestlands according to the HLZ modelprecipitation is a key meteorological factor that 

restricts forest distribution, especially in the mid-latitude regions (Hansen et al., 2005; Fang et al., 2005). 

3 Results 

3.1 Model evaluation 280 

We evaluate the performance of the key climate variables and PVD based on the observation and two WRF simulations 

(HIS_ERA and HIS_MPI). The performance of the WRF simulation is quantified by the bias, mean absolute error (MAE), and 

spatial correlation coefficient (R) for the bioclimatic variables (AT, TP, and PE). Larger R values and smaller bias and MAE 

values indicate better performance. Figure 3 illustrates the spatial patterns of the observed and simulated multi-annual averaged 

(1995–2014) AT, TP, PE, and HLZ types in China. The WRF simulation can reproduce well the spatial distribution of the 285 

observations with an increasing northwest to southeast temperature and precipitation gradient. However, the underlying bias 

still remains against the observations (Fig. S2S5-S7). A more detailed inspection of the scatterplots finds that the spatial 

correlation coefficient between the observation and simulations (HIS_ERA) is 0.982 for AT, 0.795 for TP, and 0.754 for PE, 

respectively (Fig. 4). The simulated AT is generally underestimated in most regions, with the national-average bias of -0.974 ℃. 

Consistent with the previous studies (Meng et al., 2018), the largest cold biases are located inare in the Tibetan Plateau and 290 

complex terrain region (Fig. S2S5), with a bias of more than -3.6 ℃, which could be attributed to the poor simulation of snow-

ice albedo feedback progress (Ji and Kang, 2013). The simulated AT is relatively better in eastern China. The WRF simulation 

generally overestimates TP in most regions with a national-average bias of 92.883 mm (Fig. 4d). The wet bias could be 

attributed to inappropriate parameterization schemes (Ou et al., 2020; Zhao et al., 2023), coarse horizontal resolution (Lin et 

al., 2018; Rahimi et al., 2019), and inappropriate land-surface processes associated with soil moisture and frozen–thawing (Fu 295 
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et al., 2020; Yang et al., 2018). However, the scatterplot dispersion displays that the simulated TP exceeding 1200 mm in 

southern China is underestimated (Fig. S2S5). It is not surprising that the temperature is well-modeledmodelled, but the 

simulation capacity of precipitation-related variables is modest for the WRF model (Gao, 2020). It should note that the 

HIS_ERA simulation exhibits a highly consistent representation to that of HIS_MPI. The cross-correlations for three climate 

variables between HIS_ERA and HIS_MPI simulation show a high spatial correlation coefficient, and the scatter distribution 300 

is very close to the 1:1 line (Fig. 4). 

The observed and simulated results of PVD are shown in Fig. 3 (j–3l). The Kappa statistic is applied to validate the observed 

and simulated accuracy of the PVD map from the HLZ model (Cohen, 1960). The Kappa coefficient ranges from 0 to 1.0, and 

the degree of agreement differs across these ranges. According to the description of Landis and Koch (1977), the Kappa 

coefficient values range of 0–0.2 is considered slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 305 

0.61–0.80 as substantial agreement, and 0.81–1.00 as almost perfect agreement. Overall, the WRF_ERA simulation could 

reproduce the distribution of PVD well in China. However, some minor differences in vegetation types are found. For example, 

in the northeast region of China, the WRF simulation could not precisely reproduce the observed extent of steppe types. Such 

misclassified zones could be attributed that the model overestimated the precipitation exceeding 220 mm in the transition zone 

of dry-wet climate (Fig. S2dS5d); thus, the vegetation types are changed from steppe to cool temperature forest. Other 310 

disagreement types are found in southern China, where the observed subtropical forest expands northward up to 32°N. 

However, the simulation results reduce the extent. The dry bias of precipitation simulation in southern China could explain the 

source of uncertainty. Although the limited ability displayed by the models, the overall accuracy based on the Kappa coefficient 

indicates a substantial agreement between the observation and the WRF simulation. When compared with the observations, 

the Kappa coefficient is 0.648 for the HIS_ERA and 0.662 for the HIS_MPI. It suggests that a highly perfect agreement (Kappa 315 

coefficient =0.962) of the PVD between the HIS_MPI and HIS_ERA is shown in Fig. 3(k–3l). The implementation suggests 

that the bias-corrected MPI–ESM1–2–HR model can replace the ERA5 reanalysis data as the LBCs of WRF to obtain similar 

accuracy in high-resolution simulations. Therefore, in the following analysis, the WRF model forced by the bias-corrected 

MPI–ESM1–2–HR model will be applied to project future climate change. 
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 320 

Figure 3: Spatial pattern of annual average biotemperature (AT), annual total precipitation (TP), potential evapotranspiration 

ratio (PE), and potential vegetation domain from Holdridge life zone (HLZ)HLZ model based on the observation (left), 

HIS_ERA simulation (center), and HIS _MPI simulation (right) during the periods of 1995–2014. 
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Figure 4: Scatterplots of the annual average biotemperature (AT)AT, annual total precipitation (TP)TP, and potential 325 

evapotranspiration ratio (PE)PE for each grid against the observation and HIS_ERA, observation and HIS_MPI, HIS_MPI, 

and HIS_ERA. HIS_ERA and HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data and the bias-corrected 

MPI–ESM1–2–HR model, respectively. The observation derives from CN05.1 dataset. EvaluationEvaluate indexes included 

the bias, mean absolute error (MAE), and spatial correlation coefficient (R). The black dotted line indicates a 1:1 line. 

3.2 Future potential vegetable cover 330 

For the future simulation, the three key variables (AT, TP, and PE) of the HLZ model are obtained from the FUT_MPI 

experiment. The projected spatial distribution of PVD is presented in Fig. 5a. The most dominant vegetation types are forest, 

polar/tundra, and desert/scrub, accounting for 57.1 %, 20.1 %, and 17.7 % of the total area of China, respectively. The forest 

types are located in eastern China, characterized by the latitudinal direction distribution. The potential forest types from north 

to south are mainly cool temperate forests, warm temperate forests, and subtropical forests, in that order. It could be explained 335 

that temperature is the critical factor in defining the forest types due to the sufficient precipitation in eastern China. 

Flow diagrams are useful tools for precise changes in vegetation types, displaying whether the vegetation types are shifting 

and in which direction. The projected changes in the area for the vegetation types are shown in Fig. 5b. The results indicate 

that under future climate change, the PVD changes correspondingly. The total area of 10.4 % will be shifted in China. The 

northward expansion of subtropical forests replaces warm temperate forests, with an area of approximately 30.6×104 km2, 340 
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considered the largest shifted type (Fig. S4S8). In addition, projected future increases in temperature and precipitation have 

caused some non-forestland areas to transition into forested lands (Fig. S3S9). For example, in western China, areas that are 

polar/tundra and steppe at present have transitioned into cold temperate forest and cool temperate forest in the future, 

respectively, and the shifted area is 18.4×104 km2 and 1.7×104 km2, respectively. 

Overall, the PFD (1995–2014) covers approximately 500.75×104 km2. It is projected to expand to 518.25×104 km2, 345 

experiencing an increase of around 17.5×104 km2 (about 3.49 %) within the 2041–2060 under the SSP2–4.5 scenario. In eastern 

China, the main transition is interconversions between forest types. In western China, some non-forestland types turn into 

forest types. These changes indicate that the forest suitable region would be changed under future climate change, and it is 

necessary to consider the climatic contexts in terms of future large-scale afforestation. 

 350 

Figure 5: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–4.5 scenario in the 

future periods (2041–2060) from the FUT_ MPI simulation, and (b) area changes across historical baseline (1995–2014) and 

future periods, where the calculations are based on FUT_ MPI simulation versus HIS_ MPI simulation. 

3.3 Identification of future potential afforestation location in China 

According to the approach of the newly afforestation allocation in section 2.2.3, we mapped the future afforestation distribution 355 

of China. First, historical open space regions for afforestation are identified. We excluded some ineligible regions, including 

present forestland, cropland, urban, wetland, and water bodies based on the 2020 MCD12Q1 land cover data (Fig. S1), and the 

remaining regions have had been considered as open space regions for afforestation (Rohatyn et al., 2022). The results show 

that the total area of open space regions is about 612.88×104 km2 in China, with the majority located in southern and western 

China (Fig. 6a). 360 

The second step is to determine the distribution of future PFD. We used the map of potential vegetables derived from the 

outputs of the HLZ model (Fig. 5a) to select the forest types grids as future PFD under the SSP2–4.5 scenarios during 2041–
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2060. The future PFD is was considered as the forest suitable lands constrained by future climate conditions. The forest suitable 

lands are mainly located in eastern China (Fig. 6b). The corresponding annual total precipitation is over 353.6 mm among the 

selected grids.  365 

Then, we combined the historical period's open space region (Fig. 6a) with the future PFD (Fig. 6b). It enables us to obtain the 

future potential afforestation areas (Fig. 6c). These regions provide suitable climate conditions for forest growth and can be 

utilized for afforestation implementation in the context of future climate change. The total area of potential afforestation 

regions is approximately 191.33×104 km2. 

There is no doubt that the potential afforestation area is extensive and unrealistic. Thus, according to the national tree planning 370 

policy, we further restricted the afforestation area. The NFMP released by the State Forestry Administration of China (2016) 

includes the total area of planning afforestation in each province during 2020–2050 (Fig. 6e6d), considered a reference for 

future afforestation design. It notes that the potential afforestation area for individual provinces is usually larger than the 

national planned afforestation area (Table S2). Thus, we further constrained the potential afforestation areas following the 

climatology suitability for the foresHLZ valuet. Specifically, we sorted the HLZ value for each province on the potential 375 

afforestation region in ascending order (Fig. 6c), and the low HLZ value are allowed priority afforestation. We calculated the 

total afforestation area sequentially grid by grid, until it satisfies the NFMP policy requirements. The approach of total 

afforestation area for each province is calculated based on Eq. (7). It is generally common sense that afforestation is highly 

constrained by precipitation. It provides solid proof that areas with high total annual precipitation should be given priority for 

afforestation theoretically. Then, we sort the projected total grid precipitation for each province on the potential afforestation 380 

region in descending order (Fig. 6d). We calculate the total afforestation area sequentially grid by grid, until it satisfies the 

NFMP policy requirements. The approach of total afforestation area for each province is calculated based on Eq. (7). 

𝐴𝑟𝑒𝑎 = (0.55 𝑁𝑊𝑜𝑜𝑑𝑦 𝑆𝑠𝑎𝑣𝑎𝑛𝑛𝑎𝑠 + 0.80𝑁𝑆𝑎𝑣𝑎𝑛𝑛𝑎𝑠 + 𝑁𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠 and +𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 ) × 𝑟2  (7) 

Where 𝐴𝑟𝑒𝑎 indicates the total afforestation area. 𝑟 indicates the spatial resolution (here, 𝑟 equals 25 km). 𝑁 indicates the 

amount of afforestation grids in historical land cover. The land cover types represent the area used for afforestation. Given the 385 

tree cover for woody savannas and savannas is 30–60 % and 10–30 % according to the IGBP classification scheme (Table S1), 

it means that approximately 45 % and 20% of the grid area for woody savannas and savannas has already been covered forests 

in the historical terms, respectively. Thus, to avoid repeated afforestation, the coefficients 0.55 and 0.80 are set. 

The coefficients 0.55 and 0.8 are set because the tree cover for Woody Savannas and Savannas is 30–60 % and 10–30 %, 

respectively. Thus, this means that some forest land has already been covered, and approximately 55 % and 80% of the area 390 

(Table S1), respectively, is currently available for afforestation.  

Especially, it is worth noting that the planned afforestation area is larger than the potential afforestation area in Henan and 

Shandong provinces (Table S2). A small amount of cropland has been scheduled for afforestation to meet the national 

afforestation demand. The occupied croplands are mainly located in mountain areas, where the regions are highly suitable for 

forest growth. With such an afforestation scenario design, 125.33×104 km21.88 billion mu of croplands in China are still 395 
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available for cultivation. It is also away from the protection ‘red line’ of 121.67×104 km2 1.865 billion mu, released by the 

National Land Planning Outline (2016–2030) (State Council of China, 2017). 

 

 

Figure 6: Spatial distribution of (a) historical open space region for afforestation, (b) future potential forestation domain 400 

(PFD) from HLZ model considered as the forest suitable lands, (c) potential afforestation region constrained by climate 

change, (d) national planned afforestation area in the individual provinces from the NFMP, (e) Chinese vegetation 

regionalization map.Spatial distribution of (a) historical open space region for afforestation, (b) future PFD from HLZ model 

considered as the forest suitable lands, (c) potential afforestation region constrained by climate change, (d) Annual total 

precipitation from the output of experiment FUT_2020, (e) national planned afforestation areas in the individual provinces 405 

from the NFMP, (f) Chinese vegetation regionalization map. 

 

A Chinese vegetation regionalization map (Wu et al., 1980) is was used to identify the forest types within each grid (Fig. 6f6e). 

Finally, the distribution of future potential afforestation regions in China is shown in Fig. 7. The findings show that the probable 

locations for future potential afforestation areas in China are around and to the east of the Hu Line (. a geographical division 410 

line of climate zone, and population density, economic development in China, stretching from Heihe to Tengchong). Due to 

afforestation, the land cover would be modified. In northern China, the main conversions types are grasslands to deciduous 

broadleaf forests, as well as the largest conversions in China, accounting for 40 % of the newly afforestation area. The most 

intensive provinces are Shanxi and Shaanxi. In southwest China, the dominant conversions are from woody savannas and 

savannas to evergreen broadleaf forests. These conversions account for 26 % and 16% of the newly afforestation area, 415 

respectively. These land use conversions are majorly located in southwest China, such as Yunnan province, Sichuan province, 

and Guizhou province. Overall, The main shift types are grasslands to deciduous broadleaf forests (41 %) in northern China, 

Woody savannas (19 %), and savannas (14 %) to evergreen broadleaf forests in southwest China. tThe final total afforestation 
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area in China is approximately 73.5164×104 km2, consistent with the NFMP (73.78×104 km2). Therefore, for each province 

within the future afforestation region, we appliedy the approach mentioned above to ensure that the total afforestation area of 420 

individual provinces and extent is consistent with the national policies and future climate conditions, respectively. 

 

Figure 7: Map of future potential afforestation distribution and shift types constrained by both national afforestation plan 

and climate change. Forest types from IGBP include Evergreen Needleleaf Forests (ENF), Evergreen Broadleaf Forests 

(EBF), Deciduous Needleleaf Forests (DNF), Deciduous Broadleaf Forests (DBF), and Mixed Forests (MF). The black 425 

dotted line indicates the Hu Line. 

4 Discussion 

The most probable geographical distribution of future potential afforestation regions in China has been investigated in this 

study. By Ccomparing with existing ed to previous studies, the total afforestation area in this study (73.64×104 km2) is larger 

than othersthe existing studies. For example, Zhang et al. (2022) foundreported an obvious increase in potential forestation 430 

lands by 33.1×104 km2 under future climate scenarios (2070s)  based onwith the machine learning approach to predict the 

ecological niche of the forest. Xu (2023) foundreported that the area of prioritized potential forestation land was about 

66.61×104 km2 in 2020 using by multiple factors (i.e., climate, transportation, topography, land use) spatial overlay analysis 

of multiple factors (i.e., climate, transportation, topography, land use). However, the effects of future climate change and 

national afforestation plan on forest suitable lands are ignored. Our results show that forest suitable lands will increase by 435 

17.5×104 km2 under the SSP2–4.5 scenario compared to historical period. Overall, our finding is a more realistic and plausible 

afforestation scenarioOur finding was a more realistic and plausible afforestation scenario than previous studies (Zhang et al., 

2022; Xu, 2023) because it considered the effects of both the national afforestation plan and future climate change. The dataset 
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would be valuable for studying the effects of future afforestation on carbon budget, ecosystem service, water resources, surface 

climate. 440 

Our findings indicated that future afforestation in China would mostly occur be located around and to the east of the Hu Line, 

consistent with Zhang et al. (2022). The area near the Hu Line is a transition zone characterized by dry-wet, agro-pastoral, and 

grassland-forest. This transition zonezone is highly sensitive to climate change (Li et al., 2015). Due to moisture limitations, 

historical forest distribution is mainly located east of the Hu Line. Crossing the Hu Line is challenging for forests (Liu, 2019). 

However, under the future climate change, the projected results show that the temperature and precipitation in China will 445 

increase by the middle of the 21st century under the SSP2–4.5 scenario compared to the historical periods (Yang et al., 2021). 

A similar conclusion is also derived from our projection (Fig. S3S9). The response of PFD to future climate change could be 

slightly modified. Therefore, only a small proportion of future potential afforestation areas are located inare in the western 

region of the Hu Line, such as the Loess Plateau region. It does not disrupt the forest distribution pattern of the Hu Line. It 

reminds us that afforestation planning should consider vegetation responses to future climate change. 450 

Although the resolution of our dynamical downscaled simulation (25 km) is finer than raw GCMs (~100 km), it is difficult to 

meet the needs of afforestation planning in areas with complex topography. Convection-permitting climate modelling at the 

kilometre-scale has recently been developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐

Picher et al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). However, 

improving the resolution implies higher computational costs. In contrast, statistical downscaling methods are also known to 455 

obtain high-resolution climate data with fewer computational resources (Tang et al., 2016). It assumes that the historical 

relationship between local climate variables and the large-scale circulation remains fixed in the future term (Wilby and Dawson, 

2013). The multi-model ensemble means from the CMIP6 statistical downscaling can significantly reduce the biases compared 

to individual models (Gebrechorkos et al., 2019). Thus, some statistical downscaled CMIP6 datasets (Gebrechorkos et al., 

2023; Lin et al., 2023; Thrasher et al., 2022), with a resolution of 0.1°-0.25° covering the global land, can be applied to explore 460 

the future global potential afforestation area in following work. However, it is noted that the statistical downscaling data may 

have a limitation, as the covariance among the variables may not align with physical laws. 

This study may have some limitations and uncertainties. Following the approach of existing studies (Ma et al., 2023; Qiu et 

al., 2022), we also utilized the bias-correction LBCs in dynamical downscaling. However, the model uncertainty in the future 

climate projection is difficult to quantify because one GCM is used to nest into the WRF model. The projected result generally 465 

exhibits variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed to the inherent 

configurations and physics parameterization of the GCMs, distinct radiative forcing scenarios, and varying equilibrium climate 

sensitivities found in CMIP6 models (Zuo et al., 2023; Bukovsky and Mearns, 2020). For instance, the high emissions scenario 

could lead to higher temperature and stronger precipitation in China (Yang et al., 2021). Consequently, the suitability of land 

for future forests may change accordingly. Exploring the impacts of different SSPs on the distribution of potential afforestation 470 

regions would be an intriguing avenue for future research. To address the concerns about model uncertainty, exploring WRF 

forced by multiple bias-corrected CMIP6 models can help uncover the source of uncertainty. Utilizing ensemble means for 
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downscaled climate simulation would contribute to a more robust projection. Additionally, the selection of different physics 

parameterization schemes in the WRF model can also influence the simulation performance (Gbode et al., 2019). Selecting 

the most suitable combination is beneficial to reduce the underlying bias.  475 

The source of uncertainties in this study is the LBCs and the factors limiting the allocation of the afforestation areas for each 

province. We employed one GCM nested into the WRF model. Previous studies (Wu and Gao, 2020; Hui et al., 2022) used 

different GCMs as LBCs to obtain dynamic downscaling results that aimed to compare model variations and explore simulation 

uncertainties. However, the expense of using multiple GCMs forced by the WRF model would be high. In this study, we 

employed an approach that selects the optimal model for dynamic downscaling over China and then corrects it. The MPI–480 

ESM1–2–HR model had been considered as the optimal LBCs in China among 13 CMIP6 models according to the previous 

performance evaluation (Song et al., 2023). The climate state and standard deviation of the MPI–ESM1–2–HR model had been 

corrected as well, referring to the ERA5 analysis in our study. Others applied this similar bias-corrected approach and exhibited 

better agreement with the observation, which was consistent with this study (Xu and Yang, 2012; Kim et al., 2020; Gado et 

al., 2021). This study highlighted a marked reduction in uncertainty resulting from lower boundary conditions (LBCs). Out of 485 

all the factors limiting afforestation allocation, we used the HLZ value to constrain the afforestation distribution. Previous 

studies found that precipitation was a key meteorological factor that restricts forest distribution, especially in the mid-latitude 

regions (Hansen et al., 2005; Fang et al., 2005). If the areas with high precipitation were allowed priority afforestation, we 

obtained a similar future potential afforestation distribution (Fig. S10). the annual total precipitation was considered the most 

limited factor in this study. Future studies should comprehensively consider additional factors, such as local economic 490 

development, soil physicochemical properties, and provincial tree planning policy. 

5 Conclusions 

This study evaluated the performance of the WRF model in simulating the PVD from the HLZ model in China during the 

historical periods (1995–2014). The projected shifts in the potential vegetable types were explored under the SSP2–4.5 scenario 

during the future periods (2041–2060) relative to the historical periods. Based on these data, the most probable distribution of 495 

future potential afforestation was obtained by constraining both future climate contexts and national afforestation plans in 

China. We could draw the main conclusions as follows: 

The output of the WRF model forced by the ERA5 analysis and bias-corrected MPI–ESM1–2–HR model could capture the 

spatial distribution of the PVD from the HLZ model over China through comparisons with CN05.1 dataset during the historical 

periods. However, the WRF simulation did could not precisely reproduce the observed extent of steppe types in northeast 500 

China and subtropical forests in southern China. Such misclassifications could might be attributed to the bias of the 

precipitation simulation. Overall, in terms of the nationwide potential forestation domain, the WRF model could reproduce the 

spatial distribution well over China. 
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Under the SSP2–4.5 scenario, the PVD would obviously shift during 2041–2060 compared to the historical period. The largest 

shifted type was warm temperate forests to subtropical forests over southern China. The new forest suitable lands would 505 

increase by about 17.5×104 km2 in China due to projected increased in temperature and precipitation. In addition, considering 

both the future climate change and national tree planning policy, we found that the probable locations for future afforestation 

are were around and to the east of the Hu Line, with a total area of approximately 73.5164×104 km2. The main shift types were 

grasslands to deciduous broadleaf forests in northern China, Woody woody savannas, and savannas to evergreen broadleaf 

forests in southwest China. The findings of this study could provide a dataset for exploring the effects of future afforestation, 510 

and this method can guide designing future gridded afforestation regions for other countries. 
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