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Abstract. Afforestation has been considered a critical nature-based solution to mitigate global warming. China has announced 

an ambitious afforestation plan covering an area of 73.78×104 km2 from 2020 to 2050. However, it is unclear where it will be 

suitable for afforestation under future climate change. Here, we carried out a finer resolution (25 by 25 km) dynamic 

downscaling of climate change for China using the Weather Research and Forecast (WRF) model nested with bias-corrected 

MPI–ESM1–2–HR model; then, using the Holdridge life zone model forced by the WRF model output, we mapped the 15 

climatological suitability for forest in China. The results showed that the potential forestation domain (PFD) at present (1995–

2014) approximated 500.75×104 km2, and it would increase to 518.25×104 km2, by about 3.49 %, to the period of 2041–2060 

under the shared socioeconomic pathways (SSP) scenario (SSP2–4.5). Considering the expansion of the future PFD caused by 

climate change, the afforestation area for each province was allocated into grid cells following the climatological suitability 

for the forest. The newly afforestation grid cells would be located around and to the east of the Hu Line (a geographical division 20 

line stretching from Heihe to Tengchong). Due to afforestation, the land cover would be modified. The conversion from 

grasslands to deciduous broadleaf forests in northern China took the most area, accounting for 40 % of the newly afforestation 

area. The grid cell-resolved afforestation dataset kept consistent with the provincial afforestation plan and the future 

climatological forest suitability. It would be valuable for investigating the impacts of future afforestation on various aspects, 

including the carbon budget, ecosystem services, water resources, and surface hydroclimate regime. 25 

1 Introduction 

Afforestation has been considered a reasonable nature-based solution for global warming (Rohatyn et al., 2022; Yu et al., 

2022). Afforestation could increase carbon stocks in terrestrial ecosystems by absorbing atmospheric carbon dioxide through 

its biogeochemical effect (Jayakrishnan and Bala, 2023; Zhu et al., 2019; Gundersen et al., 2021). Meanwhile, afforestation 

changes the surface energy and mass budgets, as well as the water cycle by modifying the surface albedo and roughness, as 30 

well as the partitioning between sensible and latent heat fluxes (Bonan, 2008; Breil et al., 2021; Wang et al., 2023).  Specifically, 
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afforestation causes warming effects through decreasing albedo and cooling effects through intensifying evapotranspiration, 

which can partly offset or amplify the cooling effects due to taking up carbon from the atmosphere (Arora and Montenegro, 

2011). Afforestation not only impacts climate, but also enhances forest ecosystem services such as maintenance and 

enhancement of habitat provisioning and species richness (Brockerhoff et al., 2017). In recent decades, China has implemented 35 

large-scale afforestation programs (Zhang et al., 2000), such as the Three-North Shelter Forest Program (Hu et al., 2021), the 

Grain for Green Program (Xiao, 2014), and the Natural Forest Conservation Program (Huang et al., 2019). These ecological 

engineering program programs have been beneficial for water conservation (Liu et al., 2023), mitigating climate warming (Yu 

et al., 2020), increasing terrestrial carbon sequestration (Shi and Han, 2014), reducing water erosion risk (Wang et al., 2021), 

and alleviating dust storm (Tan and Li, 2015). These initiatives have significantly increased China’s total forest cover from 40 

8.6 % in 1949 to 24.02 % in 2022 (Zhang and Song, 2006; Fu et al., 2023; Moore et al., 2016). It contributed to 42% of the 

land greening in China during 2000-2017 (Chen et al., 2019). 

In September 2020, the Chinese government declared a specific objective of achieving carbon neutrality before 2060 (Liu et 

al., 2022; Zhao et al., 2022). In pursuit of this goal, China is committed to expanding its forest area in the future, and new 

national afforestation plans have been introduced. For instance, the Action Plan for Carbon Dioxide Peaking Before 2030 45 

(State Council of China, 2021) outlines the China’s target to increase forest cover to 25 % by 2030. The National Forest 

Management Planning (2016–2050), issued by the State Forestry Administration of China in 2016, set the afforestation target 

of about 73.78×104 km2 from 2020 to 2050 in China. Such extensive afforestation in the future would lead to the land cover 

conversions from non-forestland to forestland, potentially causing series of effects through the above-mentioned physical 

progresses. It is crucial that the effects of afforestation are highly dependent on the afforestation location. For example, tropical 50 

afforestation may yield greater cooling effects than boreal afforestation (Arora and Montenegro, 2011). However, recent 

studies find that the afforestation benefits may be overestimated, sometimes is controversial, because the responses of global 

carbon cycle to anthropogenic land-use change are uncertain (Bastin et al., 2019; Veldman et al., 2019; Lewis et al., 2019). 

There is limited climate change net mitigation potential if tree planting in water-limited locations, such as in drylands (Rohatyn 

et al., 2022). It is thereby imperative to strategically allocate the national planned afforestation area to specific areas and project 55 

the possible land cover changes resulting from afforestation. 

Existing researches have studied climatic effects of future afforestation scenarios (Abiodun et al., 2013; Naik and Abiodun, 

2016; Diasso and Abiodun, 2018; Odoulami et al., 2019; Zhang et al., 2022). For example, Odoulami et al. (2019) fully 

replaced the savanna areas (between 8°N and 12°N) with evergreen broadleaf trees over West Africa to study the climate 

effects of future afforestation. The obvious increase in the total annual precipitation was found over the afforested area. 60 

Similarly, Abiodun et al. (2013) employed random afforestation scenarios to replace 25 %–100 % of the current land cover in 

Nigeria, and found a local cooling effect. In summary, these existing studies mostly employed idealistic and hypothetical 

afforestation scenarios, and neglected the future climatological suitability for forest. In addition, process-based dynamic global 

vegetation models (DGVMs), such as LPJ-GUESS, have been extensively used to explore the responses of potential natural 

vegetation distribution to climate change (Hickler et al., 2012; Verbruggen et al., 2021) and are also useful tools to quantify 65 
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future afforestation scenarios (Krinner et al., 2005; Horvath et al., 2021). The DGVMs driven by meteorological data generally 

consider complex biogeophysical, biogeochemical, and physiological progress, such as evapotranspiration, carbon–nitrogen 

interactions, photosynthesis, and so on (Cramer et al., 2001). Given that the mathematics representations of these processes 

and their parameters as well as future meteorological scenario data from GCMs have large uncertainties, their overlap may 

yield greater uncertainties (Jiang et al., 2012; Martens et al., 2021). 70 

The impact of future climate change is the most challenging. Previous studies (de Lima et al., 2022; Hinze et al., 2023) explored 

the responses of potential vegetation distribution to future climate change based on climate-vegetation models forced by the 

climate projection data of the global climate model (GCM). However, the resolution of the raw GCM is too coarser (~100 km–

300 km) to describe the finer land surface features at a regional scale (Varney, 2022; Turner et al., 2023; Song and Yan, 2022; 

Parsons, 2020). To overcome such shortage, downscaling techniques are widely used to translate GCM output to regional high-75 

resolution data. Statistical downscaling involves the establishment of statistical relationships between local climate variables 

and coarsely resolved atmospheric fields (Wilby and Dawson, 2013). However, it is not clear whether this historical statistical 

relationship is always stable in future climate scenarios. Meanwhile, statistical downscaling cannot ensure the physical 

consistency among meteorological variables. In contrast, the physically-based dynamical downscaling using a regional climate 

model (RCM) nested within a GCM could provide high-resolution climate simulations (Giorgi and Mearns, 1999; Mishra et 80 

al., 2014). The physical consistency is crucial to identify potential afforestation regions due to the multiple meteorological 

variables involved. Previous studies (Liu et al., 2020a; Bowden et al., 2021) have employed the dynamical downscaling 

approach to quantify the climatological suitability for nature vegetation. However, previous studies (Niu et al., 2019; Wu and 

Gao, 2020) used the raw GCM outputs as the lateral boundary conditions (LBCs) of RCM. It is well known that raw GCM 

outputs have some uncertainties, and the accuracy of LBCs is the most critical factor affecting the performance of dynamical 85 

downscaling due to the underlying biases propagated into RCM through the LBCs (Sato et al., 2007; Moalafhi et al., 2017; 

Karypidou et al., 2023). Therefore, high-accuracy LBCs are the key to obtaining robust future potential vegetation types. 

Correcting the GCM outputs before dynamical downscaling is necessary to reduce the underlying uncertainty. 

By taking into above mentioned background, this study aims to map the future afforestation distribution in China. It is 

highlighted that the results are constrained by both the national afforestation plan and future climate change. The national 90 

afforestation plan determines the total afforestation area of each province, and climate change determines where it is suitable 

for forest growth. The introduction is the first section of this paper. The second section will introduce the methodology. The 

discussion and conclusions are summarized in sections four and five. 

2 Method 

2.1 Data sources 95 

This study used three categories of data: (1) ground meteorology measurements data and satellite-observed land use/cover data, 

(2) national planned afforestation area data, (3) climate modelling data from GCM, and ERA5 reanalysis data. 



4 
 

2.1.1 Ground meteorology measurements data and land use/cover data 

This study used observed 2 m air temperature and precipitation data from the CN05.1 dataset (Wu and Gao, 2013). This dataset 

has a spatial resolution of 0.25°×0.25° and a temporal resolution of days from 1995 to 2014. The dataset was produced by 100 

interpolating more than 2400 meteorological stations in China using the ‘anomaly approach’. The CN05.1 dataset was widely 

been used to apply to evaluate the performance of regional climate model simulations in China (Yu et al., 2015; Huang and 

Gao, 2018; Yan et al., 2019; Gao et al., 2023). 

The land use type is a key parameter of RCM (Mallard and Spero, 2019; Yan et al., 2021). This study used the Moderate 

Resolution Imaging Spectroradiometer (MODIS) land cover type dataset (MCD12Q1) for the year 2020 (Fig. S1), with a 105 

spatial resolution of 500 m (Friedl et al., 2010). The MCD12Q1 featured a 17–class International Geosphere-Biosphere 

Programme (IGBP) classification scheme (Loveland et al., 2000). It could match the default first 17 categories of land use with 

Weather Research and Forecast (WRF) model (Table S1). The MCD12Q1 is highly accurate globally, with an overall accuracy 

of approximately 75% (Friedl et al., 2010; Sulla-Menashe et al., 2019). It was widely used to investigate land use and land 

cover change (You et al., 2020; Hou et al., 2022) and served as lower boundary conditions for climate modelling (Yu et al., 110 

2017; Ge et al., 2020; Zhao et al., 2021). 

2.1.2 National planned afforestation area data 

This study also used the national planned afforestation area data, which was from the National Forest Management Planning 

(2016–2050) (NFMP) released by the State Forestry Administration of China (2016). The NFMP presented the total national 

afforestation area of 73.78×104 km2 (equivalent to an increase China's forest cover by 7.7%) and the area corresponding to 115 

each province between 2020 and 2050 (Fig. 6d). The NFMP was utilized as a policy constraint to identify the future 

afforestation domain in China. 

2.1.3 Climate modelling data and ERA5 reanalysis data 

To select the optimal LBCs from GCM, Song et al. (2023) comprehensively evaluated the performances of GCM involved in 

the Coupled Model Intercomparison Project 6 (CMIP6). It was reported that the MPI–ESM1–2–HR model from the Max 120 

Planck Institute outperforms all other GCMs in East Asia. In detail, by comparing with other CMIP6 models, the MPI–ESM1–

2–HR model could also represent higher skill in simulating various climatic variables such as the sea surface temperature 

(Bhattacharya et al., 2022), mean temperature (Karim et al., 2020), total precipitation (Kamruzzaman et al., 2022), large–scale 

circulation (Han et al., 2022), and so on. The main configuration of the MPI–ESM1–2–HR model utilized in this study 

comprised the coupling atmospheric (ECHAM6.3) and ocean model (MPIOM version 1.6.2), JSBACH land surface scheme 125 

and HAMOCC ocean biogeochemistry model with the spatial resolution of 0.9375°×0.9375° latitude-longitude grid and more 

model detailed is described in Müller et al. (2018). Actually, the MPI–ESM–MR model involved in CMIP5, which was the 

precursor of the current MPI–ESM1–2–HR model, had been widely used as the LBCs to force the RCMs to carry out finer-
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resolution climate simulation (Kebe et al., 2017; Ozturk et al., 2018; Crespo et al., 2023). It is well known that there are several 

shared socioeconomic pathways (SSP) for future climate projections in the CMIP6. Here, we used the climate projections of 130 

the MPI–ESM1–2–HR model under the middle-of-the-road development (i.e., SSP2–4.5 scenario), which represented the most 

likely development path to occur (O'Neill et al., 2016).  

The ERA5 reanalysis data is the fifth generation global reanalysis product developed by the European Centre for Medium-

range Weather Forecast (ECMWF) (Hersbach et al., 2020). The state-of-the-art reanalysis data assimilated multi-source data 

including ground-based meteorological measurements data, satellite-observed data, and atmospheric sounding data based on 135 

4D-var ensemble data assimilation system (Hersbach et al., 2020). The 6–hourly ERA5 reanalysis data with a spatial resolution 

of 1.0°×1.0° from 1994 to 2014 was also used as the LBCs. Climate variables for ERA5 reanalysis data and the MPI–ESM1–

2–HR model include atmospheric fields (air temperature, specific humidity, zonal wind, meridional wind, geopotential height) 

and surface fields (i.e., sea-surface temperature, surface pressure, soil temperature and moisture). 

Despite performing better than other GCMs, the MPI–ESM1–2–HR model still exhibits biases. Hence, the corrections of 140 

climate mean and variance were carried out using the method referred by Xu and Yang (2012) according to Eq. (1) and Eq. 

(2). The ERA5 data was used as a reference to correct the MPI–ESM1–2–HR model outputs. The MPI–ESM1–2–HR model 

outputs were interpolated into grid cells of 1.0°×1.0° using the bilinear interpolation method to match the ERA5 grid cells. 

The bias-corrected 6–hourly data of MPI–ESM1–2–HR model kept the same means and variances as the ERA5 data (Fig. S2-

S3). This bias-corrected approach was applied to the atmospheric and surface fields. 145 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻 ×
𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺

+ 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸     (1) 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 ×
𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺

+ 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 + �𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 − 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻�    (2) 

Where, 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  are bias-corrected data of 6–hourly MPI–ESM1–2–HR models over the historical period (1994–2014) 

and future period (2040–2060), respectively. 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻 and 𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹  indicate anomaly by referring to the historical and future 

mean of MPI–ESM1–2–HR modeling, respectively. 𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺  indicate the standard deviation of ERA5 and MPI–150 

ESM1–2–HR simulations during the historical period, respectively. 𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸 /𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺   denotes variance-adjusted term. 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 

denotes the climatological mean of ERA5 data during historical period and 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐹𝐹 − 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺_𝐻𝐻  indicates the mean future 

climate change projected by MPI–ESM1–2–HR. 

 

2.2 Methodology 155 

The whole study consists of three steps. As shown by Fig. 1, the first step is to carry out dynamical downscaling and prepare 

a finer-resolution climate data; the second step is to run the Holdridge life zone model to identify forest suitable lands under 

future climate change scenarios; finally, the third step is to allocate the national afforestation plan area into grid cells at the 

size of 25 km, by taking into climatology suitability for the forest. 
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 160 
Figure 1: Outline for mapping the future afforestation spatial distribution of China (PVD: potential vegetation domain; WRF: 

Weather Research and Forecast model; MPI: MPI–ESM1–2–HR model) 

2.2.1 Dynamical downscaling of GCM outputs 

In this study, the WRF model served as RCM and was utilized to obtain high-resolution simulations (Skamarock et al., 2019). 

As an open-source community mesoscale numerical model, the WRF model has generally been used to investigate regional 165 

climate modelling (Wang and Kotamarthi, 2015; Cardoso et al., 2019; Moustakis et al., 2021), whether diagnosis (Ullah and 

Shouting, 2013; Lu et al., 2021), numerical weather prediction (Case et al., 2008; Zheng et al., 2016), land-atmosphere 

interactions (Wang et al., 2013; Zhang et al., 2020, 2021). Specifically, the WRF model has been demonstrated to reproduce 

the historical spatiotemporal characteristics of temperature (Politi et al., 2021), precipitation (Moustakis et al., 2022), and 

biomes classified (Zevallos and Lavado-Casimiro, 2022) well, and can successfully project the changes in temperature and 170 

precipitation over China (Hui et al., 2018). In this study, the WRF model configurations and physics parameterization (Hu et 

al., 2015) is detailed in Table 1. The simulation domain is shown in Fig. 2. 

 

 

 175 
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Table 1: Model configurations and physics parameterization for WRF simulations 

Simulation configuration Setting 

Model version WRF version 4.2 

Domain East Asia including the entire China (Fig. 2) 

Horizontal resolution 25km 

Number of grids 289 (east-west) ×212 (south-north) 

Vertical layers 40 

Model top pressure 50 hPa 

Initial and lateral boundary conditions ERA5 reanalysis and MPI–ESM1–2–HR 

Physics parameterization Optional 

Microphysics WSM 3–class simple ice (Hong et al., 2004) 

Longwave radiation CAM (Collins et al., 2004) 

Shortwave radiation CAM (Collins et al., 2004) 

Land surface model Noah-MP (Niu et al., 2011) 

Cumulus Grell-Devenyi (Grell and Dévényi, 2002) 

Boundary layer YSU (Noh et al., 2003) 

 

 
Figure 2: Model domain with topography. The black boundaries indicate each province in China. 180 



8 
 

For the historical period, the last two decades (from 1994 to 2014) were considered the historical period in this study because 

the historical simulation for GCM is up to 2014. Given that the NFMP is implemented for afforestation up to 2050, the 

simulation for the future period covers the decade around 2050, from 2040 to 2060. Three 21–year numerical experiments 

were performed using the WRF model (Table 2). The first two experiments, HIS_ERA and HIS_MPI, simulated the historical 

climate change (1994–2014) using ERA5 analysis and MPI–ESM1–2–HR models as LBCs and default land use, respectively. 185 

The future climate change experiment (FUT_MPI) used the 2020 MCD12Q1 land cover in simulating the future period (2040–

2060). All the WRF experiments were run for 21 years (1994–2014 and 2040–2060), but the first year (1994 and 2040) as 

spin-up time was discarded. The remaining 20–year period (1995–2014 and 2041–2060) was analysed. We compared the 

HIS_MPI and HIS_ERA experiments to validate simulation performance. The FUT_MPI experiment generated a high-

resolution future climate dataset under the SSP2–4.5 scenarios. 190 

 

Table 2: Detailed WRF numerical experiment design 

Experiment name Simulated periods Lateral boundary conditions Land use and land cover 

HIS_ERA 1994–2014 ERA5 analysis Default 

HIS_MPI 1994–2014 MPI–ESM1–2–HR Default 

FUT_MPI 2040–2060 MPI–ESM1–2–HR 2020 MCD12Q1 

 

2.2.2 Identify forest suitable lands under the future change scenario 

The distribution of terrestrial ecosystems is directly affected by some main climate factors (i.e., temperature) (Piao et al., 2011; 195 

Tatli and Dalfes, 2016). Therefore, the impact of future climate change on the forest suitable lands is a further need to be 

analysed. It is noted that the forest suitable lands in this study indicate the area of the potential forestation domain (PFD). The 

climate-vegetation models can describe the relationship between the potential vegetation domain (PVD) and the climatic 

conditions (Dan et al., 2005; Kummu et al., 2021; Anwar and Diallo, 2022). Among a series of climate-vegetation models, 

such as the Holdridge life zone (HLZ) model (Holdridge, 1947), BIOME4 model (Kaplan, 2001), BOX model (Box, 1981), 200 

LPJ-DVGM model (Sitch et al., 2003), MAPSS model (Neilson et al., 1992), IBIS model (Foley et al., 1996), HLZ model is 

a classification model for simulating the correlation between the potential terrestrial ecosystem types and climate change based 

on the conjunctions of key climate variables (Holdridge, 1947). In recent years, the HLZ model has been globally well-accepted 

and used to quantitatively identify the impacts of climate change on the distribution of PVD at the global (Elsen et al., 2022; 

Navarro et al., 2022), continental (Fan et al., 2019) and regional scales like China (Fan and Bai, 2021; Li et al., 2022).Therefore, 205 

the HLZ model was considered to obtain the spatial pattern of forest suitable lands in 2041–2060 under the SSP2–4.5 scenario 

over China. 
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The HLZ classification system requires daily temperature and monthly precipitation to obtain three bioclimatic variables: 

annual average biotemperature (AT), annual total precipitation (TP), and potential evapotranspiration ratio (PE). The output 

of the FUT_2020 experiment provides these meteorological variables. The HLZ model is estimated with the specific 210 

calculation formula as follows: 

 

𝐴𝐴𝐴𝐴(𝑡𝑡) =
∑ 𝑇𝑇(𝑗𝑗, 𝑡𝑡)𝑛𝑛
𝑗𝑗=1

𝑛𝑛
,    (3) 

𝑇𝑇𝑇𝑇(𝑡𝑡) = �𝑃𝑃(𝑗𝑗, 𝑡𝑡)
𝑛𝑛

𝑗𝑗=1

,     (4) 

𝑃𝑃𝑃𝑃(𝑡𝑡) =
58.93𝐴𝐴𝐴𝐴(𝑡𝑡)
𝑇𝑇𝑇𝑇(𝑡𝑡)

,     (5) 215 

𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) = �(𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑖𝑖0)2 + (𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑖𝑖0)2 + (𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝐸𝐸𝑖𝑖0)2 , (6) 

Where, 𝐴𝐴𝐴𝐴(𝑡𝑡), 𝑇𝑇𝑇𝑇(𝑡𝑡), and PE(t) are the AT (℃), TP (mm), and PE for each grid in the period t, respectively. 𝑇𝑇(𝑗𝑗, 𝑡𝑡) and 

𝑃𝑃(𝑗𝑗, 𝑡𝑡) are the mean temperature with values above 0 °C and below 30 °C and the total precipitation on the 𝑗𝑗 th day in the 

period 𝑡𝑡, respectively. 𝑛𝑛 is the number of years. 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)；𝑇𝑇𝑖𝑖0, 𝑃𝑃𝑖𝑖0, and 

𝐸𝐸𝑖𝑖0 are the reference values of the classification scheme of the AT logarithm, TP logarithm, and PE logarithm, respectively, at 220 

the central point of the 𝑖𝑖 th potential vegetation types in the HLZ model classification scheme. 𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) is the 𝑖𝑖 th potential 

vegetation types in the period 𝑡𝑡. A low HLZ value indicates greater potential vegetation opportunity. Fan et al. (2019) improved 

the HLZ model and revised the classification scheme applied to Eurasia well. In this study, the reference values of the 

classification scheme were used to quantify the distribution of potential vegetation types in China (Table S3), and more detail 

referred to Fan et al. (2019). Compared to the actual vegetation types, the HLZ model can reproduce the potential forest 225 

distribution and grassland-forest geographical boundary well (Fig. S4). 

2.2.3 The approach of the newly afforestation allocation 

In this section, we designed an approach to allocate the newly afforestation area for each province into grid cells. To obtain 

plausible afforestation scenarios, the overall principles were that future afforestation areas should consider both future climate 

change and national afforestation plan. The specific details are as follows:  230 

(1) The final total afforestation area should be consistent with the NFMP. 

(2) Present forestland, cropland, urban, wetland, and water bodies areas do not be encroached on. If the demand of the NFMP 

cannot be met, we just consider minimizing encroachment on cropland. It can establish the concept of sustainable development 

as well as avoid repeated afforestation in the future (Zomer et al., 2008). The present land cover dataset for the year 2020 is 

based on MCD12Q1. 235 
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(3) After afforestation, China's cultivated land area is not expected to fall below than 121.67×104 km2 according to the 

requirements of the National Land Planning Outline (2016–2030) (State Council of China, 2017). This ensures that the 

cultivated land area stays within the ‘red line’ and enhances people’s welfare. 

(4) Afforestation is implemented in areas where the potential vegetation types are forestlands in the context of future climate, 

according to the output of the HLZ model. This measure could ensure that future climate conditions are suitable for the growth 240 

of forests. 

(5) Areas with a low HLZ value are allowed priority afforestation. The HLZ metric is a comprehensive metric considering the 

biotemperature, precipitation, and potential evapotranspiration ratio. A low HLZ value means a greater opportunity to be 

potential forestlands according to the HLZ model. 

3 Results 245 

3.1 Model evaluation 

We evaluate the performance of the key climate variables and PVD based on the observation and two WRF simulations 

(HIS_ERA and HIS_MPI). The performance of the WRF simulation is quantified by the bias, mean absolute error (MAE), and 

spatial correlation coefficient (R) for the bioclimatic variables (AT, TP, and PE). Larger R values and smaller bias and MAE 

values indicate better performance. Figure 3 illustrates the spatial patterns of the observed and simulated multi-annual averaged 250 

(1995–2014) AT, TP, PE, and HLZ types in China. The WRF simulation can reproduce well the spatial distribution of the 

observations with an increasing northwest to southeast temperature and precipitation gradient. However, the underlying bias 

still remains against the observations (Fig. S5-S7). A more detailed inspection of the scatterplots finds that the spatial 

correlation coefficient between the observation and simulations (HIS_ERA) is 0.982 for AT, 0.795 for TP, and 0.754 for PE, 

respectively (Fig. 4). The simulated AT is generally underestimated in most regions, with the national-average bias of -0.974 ℃. 255 

Consistent with the previous studies (Meng et al., 2018), the largest cold biases are in the Tibetan Plateau and complex terrain 

region (Fig. S5), with a bias of more than -3.6 ℃, which could be attributed to the poor simulation of snow-ice albedo feedback 

progress (Ji and Kang, 2013). The simulated AT is relatively better in eastern China. The WRF simulation generally 

overestimates TP in most regions with a national-average bias of 92.883 mm (Fig. 4d). The wet bias could be attributed to 

inappropriate parameterization schemes (Ou et al., 2020; Zhao et al., 2023), coarse horizontal resolution (Lin et al., 2018; 260 

Rahimi et al., 2019), and inappropriate land-surface processes associated with soil moisture and frozen–thawing (Fu et al., 

2020; Yang et al., 2018). However, the scatterplot dispersion displays that the simulated TP exceeding 1200 mm in southern 

China is underestimated (Fig. S5). It is not surprising that the temperature is well-modelled, but the simulation capacity of 

precipitation-related variables is modest for the WRF model (Gao, 2020). It should note that the HIS_ERA simulation exhibits 

a highly consistent representation to that of HIS_MPI. The cross-correlations for three climate variables between HIS_ERA 265 

and HIS_MPI simulation show a high spatial correlation coefficient, and the scatter distribution is very close to the 1:1 line 

(Fig. 4). 
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The observed and simulated results of PVD are shown in Fig. 3j–3l. The Kappa statistic is applied to validate the observed and 

simulated accuracy of the PVD map from the HLZ model (Cohen, 1960). The Kappa coefficient ranges from 0 to 1.0, and the 

degree of agreement differs across these ranges. According to the description of Landis and Koch (1977), the Kappa coefficient 270 

values range of 0–0.2 is considered slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–

0.80 as substantial agreement, and 0.81–1.00 as almost perfect agreement. Overall, the WRF_ERA simulation could reproduce 

the distribution of PVD well in China. However, some minor differences in vegetation types are found. For example, in the 

northeast region of China, the WRF simulation could not precisely reproduce the observed extent of steppe types. Such 

misclassified zones could be attributed that the model overestimated the precipitation exceeding 220 mm in the transition zone 275 

of dry-wet climate (Fig. S5d); thus, the vegetation types are changed from steppe to cool temperature forest. Other 

disagreement types are found in southern China, where the observed subtropical forest expands northward up to 32°N. 

However, the simulation results reduce the extent. The dry bias of precipitation simulation in southern China could explain the 

source of uncertainty. Although the limited ability displayed by the models, the overall accuracy based on the Kappa coefficient 

indicates a substantial agreement between the observation and the WRF simulation. When compared with the observations, 280 

the Kappa coefficient is 0.648 for the HIS_ERA and 0.662 for the HIS_MPI. It suggests that a highly perfect agreement (Kappa 

coefficient =0.962) of the PVD between the HIS_MPI and HIS_ERA is shown in Fig. 3k–3l). The implementation suggests 

that the bias-corrected MPI–ESM1–2–HR model can replace the ERA5 reanalysis data as the LBCs of WRF to obtain similar 

accuracy in high-resolution simulations. Therefore, in the following analysis, the WRF model forced by the bias-corrected 

MPI–ESM1–2–HR model will be applied to project future climate change. 285 
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Figure 3: Spatial pattern of annual average biotemperature (AT), annual total precipitation (TP), potential evapotranspiration 

ratio (PE), and potential vegetation domain from Holdridge life zone (HLZ) model based on the observation (left), HIS_ERA 

simulation (center), and HIS_MPI simulation (right) during the period of 1995–2014. 
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 290 
Figure 4: Scatterplots of the annual average biotemperature (AT), annual total precipitation (TP), and potential 

evapotranspiration ratio (PE) for each grid against the observation and HIS_ERA, observation and HIS_MPI, HIS_MPI and 

HIS_ERA. HIS_ERA and HIS_MPI indicate the WRF simulation driven by ERA5 reanalysis data and the bias-corrected 

MPI–ESM1–2–HR model, respectively. The observation derives from CN05.1 dataset. Evaluation indexes included the bias, 

mean absolute error (MAE), and spatial correlation coefficient (R). The black dotted line indicates a 1:1 line. 295 

3.2 Future potential vegetable cover 

For the future simulation, the three key variables (AT, TP, and PE) of the HLZ model are obtained from the FUT_MPI 

experiment. The projected spatial distribution of PVD is presented in Fig. 5a. The most dominant vegetation types are forest, 

polar/tundra, and desert/scrub, accounting for 57.1 %, 20.1 %, and 17.7 % of the total area of China, respectively. The forest 

types are located in eastern China, characterized by the latitudinal direction distribution. The potential forest types from north 300 

to south are mainly cool temperate forests, warm temperate forests, and subtropical forests, in that order. It could be explained 

that temperature is the critical factor in defining the forest types due to the sufficient precipitation in eastern China. 

Flow diagrams are useful tools for precise changes in vegetation types, displaying whether the vegetation types are shifting 

and in which direction. The projected changes in the area for the vegetation types are shown in Fig. 5b. The results indicate 

that under future climate change, the PVD changes correspondingly. The total area of 10.4 % will be shifted in China. The 305 

northward expansion of subtropical forests replaces warm temperate forests, with an area of approximately 30.6×104 km2, 
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considered the largest shifted type (Fig. S8). In addition, projected future increases in temperature and precipitation have 

caused some non-forestland areas to transition into forested lands (Fig. S9). For example, in western China, areas that are 

polar/tundra and steppe at present have transitioned into cold temperate forest and cool temperate forest in the future, 

respectively, and the shifted area is 18.4×104 km2 and 1.7×104 km2, respectively. 310 

Overall, the PFD (1995–2014) covers approximately 500.75×104 km2. It is projected to expand to 518.25×104 km2, 

experiencing an increase of around 17.5×104 km2 (about 3.49 %) within the 2041–2060 under the SSP2–4.5 scenario. In eastern 

China, the main transition is interconversions between forest types. In western China, some non-forestland types turn into 

forest types. These changes indicate that the forest suitable region would be changed under future climate change, and it is 

necessary to consider the climatic contexts in terms of future large-scale afforestation. 315 

 
Figure 5: Projected spatial pattern of (a) potential vegetable types from HLZ model under the SSP2–4.5 scenario in the 

future period (2041–2060) from the FUT_ MPI simulation, and (b) area changes across historical baseline (1995–2014) and 

future period, where the calculations are based on FUT_MPI simulation versus HIS_MPI simulation. 

3.3 Identification of future potential afforestation location in China 320 

According to the approach of the newly afforestation allocation in section 2.2.3, we mapped the future afforestation distribution 

of China. First, historical open space regions for afforestation are identified. We excluded some ineligible regions, including 

present forestland, cropland, urban, wetland, and water bodies based on the 2020 MCD12Q1 land cover data (Fig. S1), and the 

remaining regions had been considered as open space regions for afforestation (Rohatyn et al., 2022). The results show that 

the total area of open space regions is about 612.88×104 km2 in China, with the majority located in southern and western China 325 

(Fig. 6a). 

The second step is to determine the distribution of future PFD. We used the map of potential vegetables derived from the 

outputs of the HLZ model (Fig. 5a) to select the forest types grids as future PFD under the SSP2–4.5 scenarios during 2041–
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2060. The future PFD was considered as the forest suitable lands constrained by future climate conditions. The forest suitable 

lands are mainly located in eastern China (Fig. 6b). The corresponding annual total precipitation is over 353.6 mm among the 330 

selected grids.  

Then, we combined the historical open space region (Fig. 6a) with the future PFD (Fig. 6b). It enables us to obtain the future 

potential afforestation areas (Fig. 6c). These regions provide suitable climate conditions for forest growth and can be utilized 

for afforestation implementation in the context of future climate change. The total area of potential afforestation regions is 

approximately 191.33×104 km2. 335 

There is no doubt that the potential afforestation area is extensive and unrealistic. Thus, according to the national tree planning 

policy, we further restricted the afforestation area. The NFMP released by the State Forestry Administration of China (2016) 

included the total area of planning afforestation in each province during 2020–2050 (Fig. 6d), and was considered a reference 

for future afforestation design. It notes that the potential afforestation area for individual provinces is usually larger than the 

national planned afforestation area (Table S2). Thus, we further constrained the potential afforestation areas following the 340 

HLZ value. Specifically, we sorted the HLZ value for each province on the potential afforestation region in ascending order 

(Fig. 6c), and the low HLZ value were allowed priority afforestation. We calculated the total afforestation area sequentially 

grid by grid, until it satisfied the NFMP policy requirements. The approach of total afforestation area for each province is 

calculated based on Eq. (7). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (0.55 𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.80𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � × 𝑟𝑟2  (7) 345 

Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 indicates the total afforestation area. 𝑟𝑟 indicates the spatial resolution (here, 𝑟𝑟 equals 25 km). 𝑁𝑁 indicates the 

amount of afforestation grids in historical land cover. The land cover types represent the area used for afforestation. Given the 

tree cover for woody savannas and savannas is 30–60 % and 10–30 % according to the IGBP classification scheme (Table S1), 

it means that approximately 45 % and 20% of the grid area for woody savannas and savannas has already been covered forests 

in the historical terms, respectively. Thus, to avoid repeated afforestation, the coefficients 0.55 and 0.80 are set. 350 

Especially, it is worth noting that the planned afforestation area is larger than the potential afforestation area in Henan and 

Shandong provinces (Table S2). A small amount of cropland has been scheduled for afforestation to meet the national 

afforestation demand. The occupied croplands are mainly located in mountain areas, where the regions are highly suitable for 

forest growth. With such an afforestation scenario design, 125.33×104 km2  croplands in China are still available for cultivation. 

It is also away from the protection ‘red line’ of 121.67×104 km2, released by the National Land Planning Outline (2016–2030) 355 

(State Council of China, 2017). 
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Figure 6: Spatial distribution of (a) historical open space region for afforestation, (b) future potential forestation domain 

(PFD) from HLZ model considered as the forest suitable lands, (c) potential afforestation region constrained by climate 360 

change, (d) national planned afforestation area in the individual provinces from the NFMP, (e) Chinese vegetation 

regionalization map. 

 

A Chinese vegetation regionalization map (Wu et al., 1980) was used to identify the forest types within each grid (Fig. 6e). 

Finally, the distribution of future potential afforestation regions in China is shown in Fig. 7. The findings show that the probable 365 

locations for future potential afforestation areas in China are around and to the east of the Hu Line (a geographical division 

line of climate zone, and population density, economic development in China, stretching from Heihe to Tengchong). Due to 

afforestation, the land cover would be modified. In northern China, the main conversions types are grasslands to deciduous 

broadleaf forests, as well as the largest conversions in China, accounting for 40 % of the newly afforestation area. The most 

intensive provinces are Shanxi and Shaanxi. In southwest China, the dominant conversions are from woody savannas and 370 

savannas to evergreen broadleaf forests. These conversions account for 26 % and 16% of the newly afforestation area, 

respectively. These land use conversions are majorly located in southwest China, such as Yunnan province, Sichuan province, 

and Guizhou province. Overall, the final total afforestation area in China is approximately 73.64×104 km2, consistent with the 

NFMP (73.78×104 km2). Therefore, for each province within the future afforestation region, we applied the approach 

mentioned above to ensure that the total afforestation area of individual provinces and extent were consistent with the national 375 

policies and future climate conditions, respectively. 
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Figure 7: Map of future potential afforestation distribution and shift types constrained by both national afforestation plan 

and climate change. Forest types from IGBP include Evergreen Needleleaf Forests (ENF), Evergreen Broadleaf Forests 

(EBF), Deciduous Needleleaf Forests (DNF), Deciduous Broadleaf Forests (DBF), and Mixed Forests (MF). The black 380 

dotted line indicates the Hu Line. 

4 Discussion 

The most probable geographical distribution of future potential afforestation regions in China has been investigated in this 

study. By comparing with existing studies, the total afforestation area in this study (73.64×104 km2) is larger than the existing 

studies. For example, Zhang et al. (2022) reported an obvious increase in potential forestation lands by 33.1×104 km2 under 385 

future climate scenarios (2070s) with the machine learning approach to predict the ecological niche of the forest. Xu (2023) 

reported that the area of prioritized potential forestation land was about 66.61×104 km2 in 2020 by spatial overlay analysis of 

multiple factors (i.e., climate, transportation, topography, land use). However, the effects of future climate change and national 

afforestation plan are ignored. Our results show that forest suitable lands will increase by 17.5×104 km2 under the SSP2–4.5 

scenario compared to historical period. The dataset would be valuable for studying the effects of future afforestation on carbon 390 

budget, ecosystem service, water resources, surface climate. 

Our findings indicated that future afforestation in China would mostly be located around and to the east of the Hu Line, 

consistent with Zhang et al. (2022). The area near the Hu Line is a transition zone characterized by dry-wet, agro-pastoral, and 

grassland-forest. This transition zone is highly sensitive to climate change (Li et al., 2015). Due to moisture limitations, 

historical forest distribution is mainly located east of the Hu Line. Crossing the Hu Line is challenging for forests (Liu, 2019). 395 

However, under the future climate change, the projected results show that the temperature and precipitation in China will 
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increase by the middle of the 21st century under the SSP2–4.5 scenario compared to the historical period (Yang et al., 2021). 

A similar conclusion is also derived from our projection (Fig. S9). The response of PFD to future climate change could be 

slightly modified. Therefore, only a small proportion of future potential afforestation areas are in the western region of the Hu 

Line, such as the Loess Plateau region. It reminds us that afforestation planning should consider vegetation responses to future 400 

climate change. 

Afforestation can provide temperature benefits (e.g., cooling the land surface) according to previous studies (Peng et al., 2014; 

Yu et al., 2020; Breil et al., 2024). However, the biophysical response of afforestation on temperature varies spatially. At a 

global scale, it is common sense that afforestation causes the warming effect in high-latitude regions due to the albedo-

dominant radiation effect, while the cooling effect in low-latitude regions due to the evapotranspiration-dominant non-radiation 405 

effect (Bonan, 2008; Arora and Montenegro, 2011). Thus, afforestation-induced regional temperature changes depend on the 

net effects. Afforestation also can cause daytime cooling but nighttime warming (Yuan et al., 2022), and increase the surface 

temperature in winter, but decrease in other seasons (Ma et al., 2017). Differential responses in season and daily lead to more 

larger uncertainties in the net effects induced by afforestation. Therefore, a more realistic afforestation scenario is necessary 

to quantify the effects of afforestation on temperature under future climate change background and develop climate change 410 

mitigation policies. 

Although the resolution of our dynamical downscaled simulation (25 km) is finer than raw GCMs (~100 km), it is difficult to 

meet the needs of afforestation planning in areas with complex topography. Convection-permitting climate modelling at the 

kilometre-scale has recently been developed to reproduce better mesoscale atmospheric processes (Prein et al., 2015; Lucas‐

Picher et al., 2021), and obviously improve the WRF simulation, especially precipitation (Knist et al., 2020). However, 415 

improving the resolution implies higher computational costs. In contrast, statistical downscaling methods are also known to 

obtain high-resolution climate data with fewer computational resources (Tang et al., 2016). It assumes that the historical 

relationship between local climate variables and the large-scale circulation remains fixed in the future term (Wilby and Dawson, 

2013). The multi-model ensemble means from the CMIP6 statistical downscaling can significantly reduce the biases compared 

to individual models (Gebrechorkos et al., 2019). Thus, some statistical downscaled CMIP6 datasets (Gebrechorkos et al., 420 

2023; Lin et al., 2023; Thrasher et al., 2022), with a resolution of 0.1°-0.25° covering the global land, can be applied to explore 

the future global potential afforestation area in following work. However, it is noted that the statistical downscaling data may 

have a limitation, as the covariance among the variables may not align with physical laws. 

This study may have some limitations and uncertainties. Following the approach of existing studies (Ma et al., 2023; Qiu et 

al., 2022), we also utilized the bias-correction LBCs in dynamical downscaling. However, the model uncertainty in the future 425 

climate projection is difficult to quantify because one GCM is used to nest into the WRF model. The projected result generally 

exhibits variations based on the choice of driving GCMs (Gao et al., 2022). This divergence can be attributed to the inherent 

configurations and physics parameterization of the GCMs, distinct radiative forcing scenarios, and varying equilibrium climate 

sensitivities found in CMIP6 models (Zuo et al., 2023; Bukovsky and Mearns, 2020). For instance, the high emission scenario 

could lead to higher temperature and stronger precipitation in China relative to middle emission (Yang et al., 2021). The 430 
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obvious differences are found in the northern China. It implies that there are greater opportunities for afforestation in semi-

arid areas. Thus, the suitability of future forest lands depends on emission scenarios (Liu et al., 2020b; Elsen et al., 2022). 

Exploring the impacts of different SSPs on the distribution of potential afforestation regions would be an intriguing avenue for 

future research. To address the concerns about model uncertainty, exploring WRF forced by multiple bias-corrected CMIP6 

models can help uncover the source of uncertainty. Utilizing ensemble means for downscaled climate simulation would 435 

contribute to a more robust projection. Additionally, the selection of different physics parameterization schemes in the WRF 

model can also influence the simulation performance (Gbode et al., 2019). Selecting the most suitable combination is beneficial 

to reduce the underlying bias. Out of all the factors limiting afforestation allocation, we used the HLZ value to constrain the 

afforestation distribution. Previous studies found that precipitation was a key meteorological factor that restricts forest 

distribution, especially in the mid-latitude regions (Hansen et al., 2005; Fang et al., 2005). If the areas with high precipitation 440 

were allowed priority afforestation, we obtained a similar future potential afforestation distribution (Fig. S10). Future studies 

should comprehensively consider additional factors, such as local economic development, soil physicochemical properties, 

and provincial tree planning policy. 

5 Conclusions 

This study evaluated the performance of the WRF model in simulating the PVD from the HLZ model in China during the 445 

historical period (1995–2014). The projected shifts in the potential vegetable types were explored under the SSP2–4.5 scenario 

during the future period (2041–2060) relative to the historical period. Based on these data, the most probable distribution of 

future potential afforestation was obtained by constraining both future climate contexts and national afforestation plans in 

China. We could draw the main conclusions as follows: 

The output of the WRF model forced by the ERA5 analysis and bias-corrected MPI–ESM1–2–HR model could capture the 450 

spatial distribution of the PVD from the HLZ model over China through comparisons with CN05.1 dataset during the historical 

period. However, the WRF simulation did not precisely reproduce the observed extent of steppe types in northeast China and 

subtropical forests in southern China. Such misclassifications might be attributed to the bias of the precipitation simulation. 

Overall, in terms of the nationwide potential forestation domain, the WRF model could reproduce the spatial distribution well 

over China. 455 

Under the SSP2–4.5 scenario, the PVD would obviously shift during 2041–2060 compared to the historical period. The largest 

shifted type was warm temperate forests to subtropical forests over southern China. The new forest suitable lands would 

increase by about 17.5×104 km2 in China due to projected increased in temperature and precipitation. In addition, considering 

both the future climate change and national tree planning policy, we found that the probable locations for future afforestation 

were around and to the east of the Hu Line, with a total area of approximately 73.64×104 km2. The main shift types were 460 

grasslands to deciduous broadleaf forests in northern China, woody savannas, and savannas to evergreen broadleaf forests in 
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southwest China. The findings of this study could provide a dataset for exploring the effects of future afforestation, and this 

method can guide designing future gridded afforestation regions for other countries. 
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