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1. Segment geometry estimation

a. Travel time model

We employ  the  travel  time  model  introduced  by  Scharfe  et  al.  (2009) to

estimate the travel time (𝜏) in the Elbe River:

(I)    τ (t )=
Q ref

Q (t )

τref
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where Qref is 270 m3/s, and 𝜏ref is 240 hours. While this model was developed

for  the  entire  German  Elbe  (585  km),  we  assume  the  flow  velocity  is

distributed homogeneously and adjust it for the length of our segment (111

km).

b. Channel area model

To predict channel area (A), we use a power law relationship, A(t) = aQ(t)b,

between  discharge  (Q)  and  channel  area  (Booker  and  Dunbar,  2008).  To

parameterize  this  relationship,  we  apply  the  Normalized  Difference  Water

Index (NDWI) algorithm (Gao, 1996) on Sentinel 2 images with a 10-meter

resolution,  taken during various discharge conditions (186-1020 m3 s-1) and

with a maximum of 10% cloud cover over the study area.

c. Channel depth model

To predict channel depth (Z), we also use a power law relationship of the form

Z(t)=aQ(t)b (Modi et al., 2022). We fit the parameters based on data from the

Elbe (Aberle et al., 2010).
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2. Gaussian error propagation

We use gaussian error propagation to quantify the uncertainty for the mass

balance estimates

(II)     σ Robs
=√σ Lin

2 +σ Lout
2

where σ  is the absolute error of any term. The errors in L result from the errors

in C and Q

(III)     σ L=√σC
2 Q2+σQ

2 C 2

for σC and σQ we assume a constant value of 10 % of the current C or Q value.

We  did  not  assess  Robs on  days  where  Q  was  larger  than  the  90th  flow

percentile or where 
Qi n−Qout

Qi n
 was larger than 0.05 (18 % of all days). This led

to an exclusion of 18 % of all dates, most of which (84%) occurred during

high flows winter.
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3. Interpolation of hourly dissolved oxygen time series

As daily DO curves are usually sinusoidal (Correa-González et al., 2014) and data

from the Elbe confirms this general assumption (Kamjunke et al., 2021; their Fig. 5)

we use a sine wave based approach to interpolate  hourly DO concentrations from

observed daily minimum, maximum, and mean values. We use a sine wave of the

form

(IV)        y ( x )=mean+amplitude∗cos( 2 π
period

( x−p hase ))
and base the parameters mean, amplitude, period (τ ), and phase (ϕ) on the measured

DO concentrations

(V)

DO (hour )=DOmean (day )+
DOmax (day )−D Omin (day )

2
cos ( 2π

τ (day ) (h our−ϕ (day )
24

τ ( day )))
where 𝜏 is the period of the sine chosen to satisfy that 𝜏/2 is the time between the peak

(ϕ) and low (ѱ) of DO concentrations. ϕ and ѱ, however, are only available for 25 %

of all days (n≈2000), so we derived transfer functions (Fig. S6a, b) that estimates  𝜏
and  ϕ for each day of the year based on daylight hours (time between sunrise and

sunset).

(VI) τ (day )=2 (i+m∗daylig h t h ours )

As ϕ follows a sinusoidal curve itself during the year, we approximate it using a sine

function

(VII) ϕ (day )=16+2cos 2π
365 (day-180))

This approach leads to dates where the period of the sine  𝜏 is  less than 24 hours

(especially during winter), which means less than 24 hours of DO concentrations are

simulated. We use linear interpolation for missing hours, filling a maximum of 12

consecutive hours. We validate this approach by comparing the simulated hourly DO

concentrations  with  2  years  (2015,  2016)  high  frequency  (30-minute)  sensor

measurements  from  the  same  site  (Fig.  S7)  provided  by  the  Niedersächsischer

Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN).
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4. Metabolism model implementation and validation

We estimated  gross  primary  production  (gpp),  ecosystem respiration  (er),  and the

light use efficiency (k600) by solving Eq. 4 using a Bayesian inference approach with

Monte Carlo Markov Chain (MCMC) simulations. For gpp and er, we used minimally

informed priors N~(µ=5, σ=10) based on a previous study  (Hall  et  al.,  2016).  To

define the priors for k600, we used unpublished estimations from another study in the

Elbe and set them to N~(µ=6, σ=2). We ran the model for each day using 4 chains

with 10,000 iterations and a burn-in phase of 1,000, aiming for an acceptance rate of

20%.  To  assess  the  likelihood  of  each  iteration,  we  compared  the  observed  and

simulated hourly DO changes, assuming that the errors were distributed according to

a  half-Cauchy  distribution  with  a  scale  of  10.   We  use  the  mean  and  standard

deviation of the resulting accepted gpp, er, and k600 values for further analysis. The

MCMC model was implemented using the Python package  pymc3 (Salvatier et al.,

2016).

We estimated gpp, er, and K600 for 9770 days in the Elbe main stream. Even though

we selected  wide  priors  for  gpp and  er,  only  2.6  % of  days  resulted  in  negative

estimations.  Over  the  entire  time  series,  k600  shows  a  clear  seasonal  pattern

oscillating  between 0  (August)  and 5  (March)  m d-1 while  the  amplitude  slightly

increases  (Fig.  S8).  This  was  also  reported  by  Arroita  et  al.  (2019) following

improvements in water quality caused by improved wastewater treatment. On 16 % of

all days, k600 was negative,  and those days occurred when residence times, water

temperatures were high and DOsat is > 100% (Fig. S8). 

Regarding the goodness of fit of the Bayesian model, there was no trend in R2 values

over the time series (median 0.86). During winter, R2 tends to be lower (median = 0.5)

than during the rest of the year (Fig. S10a). However, the daily variability of DO is

lower during winter, leading to low root mean square errors (median > 0.35 mmol m-3

day-1)  during  winter  seasons  (Fig.  11c).

For further analyses, we only consider gpp, er, and k600 estimates from dates with

non-negative GPP and ER values, where the RMSE is < 0.35 g O2 m-3 day-1 or the R2

value is higher than 0.75 (7940 days or 81 %). GPP estimations from our study are

similar to findings from (Kamjunke et al., 2021), who found GPP peaks of 20 g O2 m-2

day-1 for the Elbe during summer. 
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An important consideration when interpreting metabolic estimates is the areal extent

over  which  the  single  station  method integrates.   Following  Chapra  and Di Toro

(1991), this can be estimated as follows

(IX)        ae= 3 v
k 600 z

where v is the flow velocity [m d-1], k600 is the gas exchange coefficient [m d-1] and z

is the channel depth [m]. By using median the median flow velocity (74.000 m d -1),

median k600 (2.9 m d-1), and median channel depth (2.8 m), we arrive at an areal

extent of 196 km covered by this approach, which is 76 % longer than the investigated

segment. However, Kamjunke et al. (2022) showed that ER and NPP rates did change

relatively little during the last 200 km of the Elbe compared to its entire length during

periods  of  high  biological  activity,  so  we  assume  the  single  station  metabolism

estimation reflects the spatial scale of the DIN balance.
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5. Figures

Figure S1.  Fraction of the Havels (Gage: Havelberg-Stadt) discharge divided by the 
discharge of the Elbe (Gage: Neu-Darchau) (Fig.1a, b). Circles show raw data, and 
the red line is the multi-year mean for each day.

7



Figure S2: Fraction of NO2-N from dissolved inorganic DIN for the 
input (Schnackenburg) and output (Geesthacht) sampling sites of the 
mass balance in %.
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Figure S3: Measured vs WRTDS simulated daily N concentrations for the Elbe at the
outlet of the investigated river segment (Geesthacht).
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Figure S4. The discharge-based transfer function for channel depth, travel time, and channel 
surface area. The dashed red lines show the 5th and the 95th, and the solid red line shows the 
50th flow percentile for the period 1978-2021 from the Gage Neu Darchau. In panel b), both the 
travel time along the entire Elbe (left y-axis) and the travel time along the investigated segment 
(right y-axis) are shown.

10



Figure S5. Maximal effect a temperature (T) error of 1.1 deg C 
can have on dissolved oxygen (DO) saturation for usual DO 
concentrations and temperatures in the river Elbe. Saturations 
were calculated using the Weiss Formula (Weiss, 1970) 
assuming a constant air pressure of 1020 hPa.
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Figure S6. a) Transfer function to predict the time between dissolved oxygen (DO) 
minimum and maximum ( /2) based on the hours between sunrise and sunset. b) 𝜏
Transfer function to predict the hour of maximum DO concentrations (ɸ) as a 
function of the day of the year. Circles show raw data from ~2000 days.
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Figure S7. a) Scatter plot between predicted and observed 30 minute dissolved 
oxygen (DO) concentrations (aggreated to one hour) with the goodness of fit metrics
root mean square error (RMSE), mean absolute error (MAE), and correlation 
coefficient R2. b) and c) show exemplary model fits during times with high (summer) 
and low (winter) daily variability in observed DO.
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Figure S8: Time series of the modeled gas exchange rate (k600, see Eq. IV) for the investigated 
river segment. Colored points are actual fits and the red line represents a 30-day running mean. 
The color of the points represents the dissolved oxygen saturation of the river.
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Figure S9: Simulated vs observed area-weighted dissolved inorganic nitrogen 
retention values (U)
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Figure S10: Goodness of fit metrics (correlation coefficient R2, root 
mean square error RMSE) for the observed and simulated changes in 
dissolved oxygen concentration based on the Bayesian model. A) and 
c) shows the distribution over the season and b) over the entire time 
series.

16



6. Tables

Table 1. The goodness of fit metrics for different approaches of travel time corrections of the

water quality time series. For the first three approaches, the outlet time series was shifted by

n  days  as  indicated.  For  the  last  approach,  the  travel  time  estimations  were  used  to

determine which shift (1 or 2 days) had to be applied. The root mean square error (RMSE),

mean  absolute  error  (MAE),  and  correlation  coefficient  R2 were  then  computed  by

comparing the discharge in- and outflows.

RMSE [m3/s] MAE [m3/s] R2

0-day shift 73 44 0.99

1-day shift 53 33 0.99

2-day shift 66 38 0.99

𝜏-based shift 108 63 0.97
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