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Abstract. Most phosphorus (P) in soils is unavailable for direct biological uptake as it is locked within primary or secondary 18 

mineral particles, adsorbed to mineral surfaces, or immobilized inside of organic material. Deciphering the composition of 19 

different P forms in soil is critical for understanding P bioavailability and its underlying dynamics. However, widely used 20 

global estimates of different soil P forms are based on a dataset containing few measurements in which many regions or soil 21 

types are unrepresented. This poses a major source of uncertainty in assessments that rely on these estimates to quantify soil P 22 

constraints on biological activity controlling global food production and terrestrial carbon balance. To address this issue, we 23 

consolidated a database of six major soil P ‘forms’ containing 1857 entries from globally distributed (semi-)natural soils and 24 

11 related environmental variables. These six different ‘forms’ of P (labile inorganic P (Pi), labile organic P (Po), moderately 25 

labile Pi, moderately labile Po, primary mineral P, and occluded P) were measured using a sequential P fractionation method. 26 

As they do not represent precise forms of specific discrete P compounds in the soil but rather resemble operational pools, we 27 

will now refer to them as P pools. In order to quantify the relative importance of 11 soil-forming variables in predicting soil P 28 

pools concentrations and then make further predictions at the global scale, we trained random forest regression models for 29 

each of the P pools and captured observed variation with R2 higher than 60%. We identified total soil P concentration as the 30 

most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily 31 

controlled by soil pH and only secondarily by total soil P concentration. When expressed in relative values (proportion of total 32 

P), the model showed that soil pH is generally the most important predictor for proportions of all soil P pools, with also 33 

prominent influences of soil organic carbon, total P concentration, soil depth and biome. These results suggest that, while 34 

concentration values of P pools logically strongly depend on soil total P concentration, the relative values of the different pools 35 

are modulated by other soil properties and the environmental context. Using the trained random forest models, we predicted 36 

soil P pools’ distributions in natural systems at a resolution of 0.5° × 0.5°. Our global maps of different P pools in soils as well 37 

as the pools’ underlying drivers can inform assessments of the role of natural P availability for ecosystem productivity, climate 38 

change mitigation, and the functioning of the Earth system.  39 
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1 Introduction 40 

Phosphorus (P) is a key nutrient limiting plant growth across a wide range of ecosystems (Augusto et al., 2017; Elser et 41 

al., 2007; Hou et al., 2020). Soil is typically the major P source for plants in natural terrestrial ecosystems (Weihrauch and 42 

Opp, 2018). P supplied by the soil plays a vital role in determining the structures, functions, and processes in terrestrial 43 

ecosystems (Peltzer et al., 2010; Wardle et al., 2004). For example, soil P availability imposes a major constraint on plant 44 

productivity in terrestrial ecosystems worldwide (Augusto et al., 2017; Ellsworth et al., 2022; Elser et al., 2007; Hou et al., 45 

2020; Hou et al., 2021) and affects modeled projections of terrestrial carbon cycle responses to climate change and increasing 46 

atmospheric carbon dioxide concentrations (Cunha et al., 2022; Fleischer et al., 2019; Goll et al., 2012). The size of soil P 47 

stocks is large compared to annual plant P requirements (Wang et al., 2018) and the amount of P stored in vegetation (Wang 48 

et al., 2018; Zhang et al., 2021). However, only a small proportion of soil P can be directly taken up by plants (Morel et al., 49 

2014), with most P tightly sorbed to soil minerals, organic compounds, or organo-mineral complexes with a turnover time of 50 

centuries to millennia or longer (Helfenstein et al., 2020; Vitousek et al., 2010). Consequently, vegetation growth is often 51 

limited by P availability in ecosystems across the globe (Vitousek et al., 2010; Wardle et al., 2004). For these reasons, the 52 

investigation of P dynamics and P bioavailability in the soil requires the identification and separation of different soil P pools 53 

(Crews et al., 1995; Walker and Syers, 1976). 54 

Our knowledge of the various pools of P existing in soils is largely based on soil chronosequence and climosequences 55 

that investigated how P is cycled during pedogenesis (Crews et al., 1995; Walker and Syers, 1976). These studies revealed that 56 

chemical weathering results in the release of P from primary minerals, after which it can be converted to organic P through 57 

biological uptake, sorbed to soil particles, or occluded within secondary minerals. The most commonly used procedures for 58 

the sequential fractionation of P in soils were developed by Hedley et al. (1982) and later modified by Tiessen and Moir (1993). 59 

This method exploits differences in solubility to separate different ‘forms’ of P occurring in the soil. Though it cannot be used 60 

to identify specific discrete P compounds in the soil, this approach has proven indispensable for the study of soil P cycling and, 61 

as such, is widely used (Condron and Newman, 2011; Klotzbücher et al., 2019; Barrow et al., 2021). In addition to forming 62 

the basis for modeling soil P dynamics, these procedures yield operationally defined pools that are used to assess soil fertility 63 

and soil development (Wang et al., 2010; Wang et al., 2022). Several studies have called the validity of sequential extractions 64 

into question, pointing out that, while it is often assumed that pools from sequential extractions contain distinct forms of P, the 65 

reality is much more complex (Condron and Newman, 2011; Gu and Margenot, 2021; Klotzbücher et al., 2019). Nevertheless, 66 

radioisotope tracer experiments show that sequentially extracted pools have distinct P exchange behaviors that result in 67 

significantly different turnover times (Bünemann et al., 2004; Helfenstein et al., 2021; Helfenstein et al., 2018; Vu et al., 2010). 68 

Numerous studies have used data from P fractionations to explore drivers of spatial differences in soil P pools from local 69 

to global scales (e.g., Brucker and Spohn, 2019; Hou et al., 2018a; Yang and Post, 2011; Chen et al., 2015). Yang and Post 70 

(2011) compiled Hedley P pools data from 178 soil samples to explore P dynamics along a soil development gradient. Their 71 

results generally supported the conceptual model proposed by Walker and Syers (1976): the gradual decrease of primary 72 

mineral-bound P; the continual increase and eventual dominance of occluded P; and the overall decrease of total P as 73 

pedogenesis progresses. However, the conceptual model of Walker and Syers (1976) disagreed with the results of Yang and 74 

Post (2011), who found that labile Pi and moderately labile Pi (non-occluded P in Walker and Syers’ model) formed a 75 

significant fraction of total P at every stage of pedogenic development. Augusto et al. (2017) compiled 1684 measurements of 76 

P pools that were taken worldwide using the Hedley fractionation method. This work found that total P content was a main 77 

factor determining the concentrations of labile Pi and organic P pools. Almost concomitantly, Hou et al. (2018a) used a global 78 

dataset compiled from analyses of 802 soil samples to examine climate effects on the soil P cycle and P availability and found 79 

that soil labile Pi concentration decreased with increasing mean annual temperature, which was mainly due to decreasing soil 80 

organic P and primary mineral P with increasing temperature. Although those studies advanced our understanding of factors 81 

controlling the size of various soil P pools, their focus was largely contained to the effects of climatic factors or soil weathering 82 
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stage on a few select P pools, mainly labile Pi, and organic P. Thus, we still lack a comprehensive understanding of the 83 

relationships between environmental drivers and the various soil P pools at a global scale. 84 

Despite significant efforts to synthesize global Hedley soil P pool data, to our knowledge, only a single mapping of soil 85 

P fractions across natural terrestrial ecosystems exists, and this work was based on the upscaling of measurements taken from 86 

only 178 samples (Yang et al., 2013). These global estimates and associated maps of soil P pools have been used to explore 87 

global patterns of soil P supply and to estimate P availability in natural and managed systems (e.g., Ringeval et al., 2017; Sun 88 

et al., 2017). They have also been used to calibrate or initialize a range of global P models (Wang et al., 2010; Yang et al., 89 

2014). However, the poor global coverage of the underlying data introduces significant uncertainty, potentially resulting in 90 

misinformed model predictions and assessments. 91 

We recently developed a new global map of soil total P concentrations and explored the underlying drivers, taking 92 

advantage of improved data availability and the use of non-linear statistical modeling (He et al., 2021). Here, we constructed 93 

a database of soil P pools in 1857 globally distributed (semi-)natural soils collected from 274 published studies, one order of 94 

magnitude larger than the dataset used by Yang et al. (2013) (see comparison in Fig. S1). Using this database, we trained 95 

random forest models to capture observed variations in Hedley P pool concentrations at the site level with two aims: (1) to 96 

quantify the relative importance of different drivers of spatial variation in each soil P pool and (2) to develop global distribution 97 

maps of various P pools at a spatial resolution of 0.5°×0.5° using the calibrated random forest regression model. 98 

2 Material and Methods 99 

2.1 Soil P fractionation terminology and procedure 100 

In the present study, we use the word ‘pool’ to indicate the concentrations quantified in each step during sequential 101 

fractionation and the word ‘proportion’ to represent the size of a pool relative to total P. We try to avoid using ‘fraction’ to 102 

describe different P forms anymore, because it is easy to confuse with ‘proportion’. There is disagreement about how to 103 

interpret the different pools yielded by sequential fractionation (Gu et al. 2019; Barrow et al., 2021; Klotzbücher et al., 2019; 104 

Condron and Newman, 2011; Helfenstein et al., 2020). Here, we adopt a widely used regime for understanding these pools, 105 

which correspond to different forms of soil P: The resin Pi pool represents the soil soluble Pi pool, which is immediately 106 

accessibly to plants. The HCO
‒

3 Pi pool can be released by ligand exchange with bicarbonate ions; This pool is available to 107 

plants and persists for only short periods (e.g., a growing season). Due to their functional similarity, the resin and HCO
‒

3 Pi 108 

pools can be combined and used as an index of labile inorganic P (i.e., ‘available’ P). The HCO
‒

3 Po pool represents labile Po 109 

that can be utilized by plants after mineralization. The OH‒ P (Pi and Po) pools mainly indicate moderately labile P that is 110 

bound to both amorphous and crystalline Al and Fe; These pools represent P that is moderately available to plants. The 1 M 111 

HCl Pi pool represents primary mineral P that is bound to calcium and that can be utilized by plants after it is released by 112 

weathering. And other P pools, such as residual P, are least available to plants due to their particularly low solubility. 113 

 To integrate data from studies that use different interpretations, we consider a set of six simplified P pools (Fig. 1): labile 114 

Pi, labile Po, moderately labile Pi, moderately labile Po, primary mineral P, and occluded P. Labile Pi includes the resin Pi and 115 

HCO
‒

3 Pi pools; labile Po and moderately labile Po are organic pools extracted by carbonate and NaOH, respectively; 116 

moderately labile Pi is the NaOH Pi fraction; primary mineral P represents the 1 M HCl Pi pool; and occluded P includes any 117 

remaining P (Hou et al., 2018b). 118 

We collected, filtered, and processed soil P pool data (see section 2.2.) from the literature (Supplementary Text 1 Data 119 

source references). First, we added all measured P pools together to calculate total soil P, unless at least one pool had a missing 120 

value. In this case, we instead used the measured value of total soil P presented in that paper. Second, if phosphate was extracted 121 

using deionized water before the resin P extraction step, the labile Pi pool includes both resin and aqueous P. If the extraction 122 

procedure began by using sodium bicarbonate solution instead of resin P, we classified HCO
‒

3 Pi as labile Pi. Third, the labile 123 
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Po pool and the moderately labile Po pool represent the HCO
‒

3-extracted Po and NaOH-extracted pools, respectively. The raw 124 

data contained other organic P pools (e.g., Po extracted by sonication and NaOH or by hot, concentrated HCl) which we 125 

included as part of occluded P. Fourth, if occluded P was not reported, we calculated this pool’s concentration by subtracting 126 

the sum of the five other pools from total P.  127 

2.2 Data source and processing 128 

We collected soil P pool data by aggregating all the publications that cited either one of two main references dedicated 129 

to Hedley’s method (Hedley et al., 1982; Tiessen and Moir, 1993). We included all studies that reported data from (semi-) 130 

natural soils that supported primary vegetation or that had been reforested with a stand older than 10 years and no documented 131 

history of P fertilization. We excluded observations taken from pot experiments, mine zones, and intertidal zones, as P pools 132 

in these soils could be affected by factors different from those influencing (semi-) natural soils. Despite our best efforts, we 133 

cannot rule out that our database includes data collected from soils affected by undocumented anthropogenic activities in the 134 

past (e.g., P fertilization occurring before reforestation), particularly in western Europe and eastern USA (e.g., De Schrijver et 135 

al., 2012). All data were collected at the plot scale. For data that included replicates within a plot or soil layer, average values 136 

were calculated. 137 

To compile our database, we first combined the two existing global databases (Augusto et al., 2017; Hou et al., 2018b). 138 

Detailed information about the methods used to construct these datasets can be found in the original publications. We extracted 139 

observations from these two databases by selecting only unfertilized, uncultivated, and (semi-) natural soils. This yielded 1684 140 

observations from 182 studies from the dataset developed by Augusto et al. (2017) and 802 observations from 99 studies from 141 

the dataset developed by Hou et al. (2018). Next, we removed 375 duplicates, after which our dataset contained 2111 142 

observations from 245 studies (Figure S2). Because we use total soil P concentration as a predictor of soil P pools, we removed 143 

data that did not include total soil P (calculated as the sum of P pools or measured by a separate method) or that did not identify 144 

the concentration of at least one pool (e.g., labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary mineral P, 145 

or occluded P). In this step, 816 observations were removed, resulting in a dataset that included 1295 observations from 178 146 

studies. 147 

Next, we added additional observations by compiling data from literature published after 2016, the final year included 148 

in the database compiled by Hou et al. (2018b). We used Google Scholar to search for studies published between 2016 and 149 

08/08/2021 that referenced either Hedley et al. (1982) or Tiessen & Moir (1993). This search returned 701 publications citing 150 

Hedley et al. (1982) and 245 citing Tiessen & Moir (1993). From this set, we selected studies that presented soil P data collected 151 

using the fractionation method for (semi-)natural soils. The resulting 562 observations from 96 studies were added to our final 152 

dataset, which includes a total of 1857 observations collected from 729 sites from 274 studies (Supplementary Text 1).  153 

In addition to soil P pool concentration and site coordinates, our dataset contains site characteristics including climate 154 

variables (i.e., mean annual temperature (MAT), mean annual precipitation (MAP), and potential biome), soil physicochemical 155 

properties (e.g., soil organic carbon concentration (SOC), soil clay and sand content, and soil pH), and elevation (Table 1). 156 

Potential biome was identified using a global map of potential natural biomes (i.e., the global distribution of biomes that would 157 

exist in the absence of human activity) (Hengl et al., 2018). This categorization includes seven ecosystem types, including 158 

tropical forest, temperate forest, boreal forest, grassland, savanna, desert, and tundra. We did not include parent material type 159 

because it can be inferred from soil total P concentration and other soil properties (e.g., soil texture and pH) (Augusto et al., 160 

2017; He et al., 2021). Because soil age was rarely reported, we used USDA soil order identity as a proxy for 3 age classes: 161 

slightly, intermediately, and strongly weathered (Smeck, 1985; Yang et al., 2013). Among the 12 USDA soil orders, Entisols, 162 

Inceptisols, Histosols, Andisols, and Gelisols are classified as slightly weathered soils. Alfisols, Mollisols, Aridisols, and 163 

Vertisols are classified as intermediately weathered soils. Oxisols, Ultisols, and Spodosols are classified as strongly weathered 164 

soils (Yang et al., 2013; Smeck, 1985). Given that atmospheric P inputs are small (0.3 kg P ha yr−1, on average) compared to 165 
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soil P stocks (Mahowald et al., 2008; Wang et al., 2015) and are also highly uncertain over timescales relevant to soil 166 

development, we do not consider atmospheric inputs as a predictor of P pools. As such, we did not include this information in 167 

our dataset. We extracted data from each publication as available. In cases in which relevant information was not reported, we 168 

extracted the missing data from gridded datasets (Table S1) based on the geographic coordinates of the study sites. 169 

In random forest modelling, correlated predictors can be substituted for each other so that the importance of correlated 170 

predictors will be shared, making each predictor’s estimated importance smaller than its true value (Strobl et al., 2008). Thus, 171 

we did not include soil total nitrogen content as it is strongly correlated with SOC (r = +0.94), nor did we include aridity index 172 

as it is strongly correlated with MAP (r = +0.72). We also did not include rarely reported variables that were included in the 173 

referenced studies (e.g., soil extractable aluminum and iron concentrations). 174 

2.3 Statistical modelling 175 

All statistical analyses and plotting were performed in the R environment (v. 4.0.2) (R Core Team, 2018). 176 

The database includes some extreme values in each P pool. These values were likely observed in exceptional geological 177 

contexts (Porder and Ramachandran, 2013) or in special soils (e.g., very young volcanic soils). We included these extreme 178 

values in the shared version of the dataset. However, these values were excluded from data used in model training, as the 179 

extremely high values could have a large influence on modeled relationships between soil P pools and predictors. To this end, 180 

we only included values falling in the interval between 1% and 99% (Table 2). As we only generate predictions in top 100 cm 181 

depth, the training of the model was done using observations in 0-100 cm. 182 

We used random forest regression models (Breiman, 2001) to predict global patterns of distribution for individual soil P 183 

pools. It is a type of ensemble learning algorithm that combines multiple decision trees to make predictions. It reduces the risk 184 

of overfitting and improves the generalization performance by using random subsets of input variables and training data. The 185 

output is the average prediction of all the trees (James et al., 2013). All models included the same 11 predictors: MAT, MAP, 186 

potential biome, total P, soil depth, SOC, soil clay and sand content, soil pH, elevation, and soil weathering stage. The random 187 

forest analysis accounts for interactions and nonlinear relationships between predictors and is appropriate for handling the 188 

multicollinearity problem in the multivariate regression (Delgado-Baquerizo et al., 2017). We performed random forest 189 

regression analysis using the R package caret by applying the embedded R package randomForest version 3.1 (Liaw and 190 

Wiener, 2002) with an automated mtry parameter. Five-fold cross-validation was performed using the R package caret (v. 6.0-191 

86) (Kuhn, 2020) to evaluate model performance. The mean decrease in accuracy (%IncMSE) was used to evaluate the relative 192 

importance of each variable as a predictor of a soil P pool. The mean decrease in accuracy plot shows how the accuracy of the 193 

fitted model declines with the exclusion of a predictor. The greater the decline in accuracy, the more important the variable is 194 

for prediction. In this study, the importance measure was calculated for each tree and averaged across the forest (500 trees). 195 

Our model found that all 11 variables are important for predicting pool concentrations; thus, all were used as predictors as we 196 

developed the global distribution map. Partial dependence plots are a graphical technique used in machine learning to show 197 

how the value of a particular input variable affects the predictions of a model, while holding all other input variables constant 198 

at their average values in the training data (James et al., 2013). We used the partial_dependence function in the R package 199 

edarf version 1.1.1 (Jones and Linder, 2016) to calculate the partial dependence of the response on an arbitrary dimensional 200 

set of continuous predictors from a fitted random forest model. 201 

Finally, we applied the above trained models for each of the soil P pools to global databases of the 11 predictors to generate 202 

global predictions of each soil P pools. The gridded predictors variables used for the global prediction were all re-gridded to a 203 

spatial resolution of 0.5◦ × 0.5◦ (the original resolution can be found in Table S1). The predict function in the ranger package 204 

(Wright and Ziegler, 2017) can compute the standard error of a predicted value. To estimate standard errors based on out-of-205 

bag predictions, we used the infinitesimal jacknife for bagging approach (Wager et al., 2014). We did not mask croplands or 206 
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other areas heavily influenced by human activity (e.g., urban areas), so pool concentrations predicted for these regions should 207 

be interpreted as the natural state prior to anthropogenic activity. 208 

Because we trained models to predict P pool concentrations and proportions using the same 11 variables, we had two 209 

options for developing global maps of P pool proportions: (1) dividing a pool’s concentration by total P (He et al., 2021), or 210 

(2) using our trained model. The resulting maps (Fig. S6) are highly correlated, with Pearson correlation coefficients from 0.61 211 

to 0.98. Model accuracy was higher for predicted concentrations than it was for predicted proportions. (Fig. 2 & 3). Therefore, 212 

we developed our map using the model to predict P pool concentration, after which these predictions were used with total soil 213 

P concentrations to calculate P pool proportions (He et al., 2021) rather than predicting them using random forest models. 214 

Soil depth was used as a predictor, allowing models to predict soil P pool concentration for any given depth (Hengl et al., 215 

2017). The partial dependence plot indicated that soil P pool concentration changed with soil depth in the top 50 cm but not in 216 

deeper layers (>50 cm) (Fig. S3E). As such, we generated predictions at six standard depths for all soil P pool concentration: 217 

0 cm, 10 cm, 20 cm, 30 cm, 50 cm, and 100 cm. Averages for a depth interval (e.g., 0-30 cm or 0-100 cm) can be derived by 218 

calculating the weighted average of the predictions within that interval (Hengl et al., 2017). 219 

3 Results 220 

3.1 Characters of P pools in natural soils across the world 221 

Our soil P pool database includes 1857 measurements from 729 geographically distinct sites and covers 6 continents, all 222 

major biomes, and all 12 USDA soil orders in terrestrial ecosystems (Fig. 2). The database includes pool concentrations 223 

measured in samples collected from the 0.5 cm to a depth of 450 cm, with 83% of the measurements taken from the topsoil 224 

(0-30 cm). 225 

From the global median values (Table 2), the largest pool among the six pools considered is the occluded P, accounting 226 

for more than 40% of the soil total P; followed by the moderately labile pools (Pi and Po mainly bound to Al and Fe), accounting 227 

for about a quarter of total P; primary mineral P (bound to calcium) accounted a minor proportion (7.9%) of soil total P; labile 228 

P pools (Pi and Po) represents the smallest proportions of total P (around 4%, respectively). 229 

3.2 Model performance of different P pools in soils 230 

The random forest regression models explained 62%, 64%, 60%, 83%, 76%, and 82% of the variance in the concentrations 231 

of labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary P, and occluded P, respectively (Fig. 3). Using the 232 

importance measure (%IncMSE), we identified total P concentration as the most important predictor for concentrations of soil 233 

labile Pi, labile Po, moderately labile Pi, moderately labile Po, and occluded P, and soil pH as the most important predictor for 234 

soil primary P (Fig. 3). The random forest regression models explained 48%, 58%, 52%, 64%, 80%, and 58% of the variance 235 

in proportions of labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary P, and occluded P, respectively (Fig. 236 

S4). Based on the importance measure, soil pH is generally the most important predictor for proportions of all soil P pools, 237 

with also prominent influences of total P concentration, soil organic carbon, soil depth and biome (Fig. S4). These results 238 

suggest that, while concentration values of P pools logically strongly depend on soil total P concentration, the relative values 239 

of the different pools are modulated by other soil properties and the environmental context. 240 

3.3 Global patterns and drivers of P pools in natural soils 241 

Our global predictions (Fig. 4) revealed that average values across all P pools were higher in slightly weathered soils 242 

compared to those in more weathered soils (Fig. 5A), reflecting the strong effect of the initial stages of soil development on 243 
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soil P depletion. While occluded P proportion increased with soil development, the proportions of labile and moderately labile 244 

P (Pi and Po) were fairly independent of soil weathering stage (Fig. 5B). 245 

Our global predictions also indicated that soil P pool concentrations varied substantially among different biomes. Lower 246 

P pools concentrations were found in warm and/or humid biomes (e.g., tropical forest and savanna), while higher P pool 247 

concentrations were found in northern cold biomes (e.g., tundra and boreal forest) (Fig. 5C). The spatial patterns of pool 248 

proportions were different from those of pool concentrations across biomes (Fig. 5D). For example, variation in the proportion 249 

of labile Pi was relatively small compared to the variation observed in labile Pi concentrations; moreover, the proportion of 250 

occluded P tended to increase in the transition from tundra and boreal forest to tropical forest and savanna (Fig. 5D). It should 251 

be noted that the mapped predictions of P pool concentrations across biomes (see Fig 5C) are not consistent with the measured 252 

data (Fig. S5), which indicate that total soil P in tropical forests is higher than in any other biome. This result suggests a 253 

sampling bias due to overrepresentation of high total soil P sites in the tropical forest data. 254 

Partial dependence plots (Fig. S3) and the results of Pearson correlation analysis (Table 3) were generally consistent. 255 

Both analyses revealed that concentrations for all six pools were significantly and positively correlated with total P 256 

concentration. SOC was significantly and negatively correlated with primary mineral P concentration, but positively correlated 257 

with the other five pool concentrations. MAT and MAP were significantly and negatively correlated with concentrations of all 258 

soil P pools. Soil pH was significantly and positively correlated with primary mineral P concentration, but significantly and 259 

negatively correlated with concentrations of the other five P pools. The results of Pearson correlation analysis also indicated 260 

that P pool concentrations were well correlated with each other, except for primary mineral P; this pool was negatively 261 

correlated with labile Po and not correlated with moderately labile Po concentration. Partial dependence plot indicated the 262 

variation of P pools concentrations with increasing soil depth (Fig. S3E). We found a drastic decrease of P pools with soil depth 263 

in top 50 cm soil, then became relatively stable at 50-100 cm soil depth. Labile and moderately labile P (both Pi and Po) 264 

concentrations also decreased with an increase in soil depth in top 50 cm, while primary mineral P and occluded P 265 

concentrations generally increased with soil depth.  266 

As for the P pools’ proportions, Pearson correlation analysis (Table 3) revealed that soil pH was positively correlated with 267 

the primary mineral P proportion and negatively correlated with the other five P pool proportions. Soil labile Po, moderately 268 

labile Pi, and moderately labile Po proportions decreased substantially with an increase in MAT, while the occluded P 269 

proportion increased with MAT. Soil labile Po, moderately labile Pi, and moderately labile Po proportions increased 270 

substantially with increasing total P concentration, while the soil labile Pi and occluded P proportions decreased substantially 271 

with total P concentration.  272 

There are significant differences between our predictions and those made by Yang et al. (2013) (Fig. S6) in both the 273 

magnitude and the spatial patterns associated with most P pool concentrations. The two global estimates were only weakly to 274 

moderately correlated (Pearson correlation coefficients between 0.09 and 0.38) (Fig. 6). Yang et al.’s predictions are lower 275 

than ours for organic P, moderately labile Pi, primary mineral P, and occluded P concentrations (Table S2). Although average 276 

values for labile Pi concentrations estimated by Yang et al. were close to ours, they were only weakly correlated with each 277 

other (Pearson correlation coefficient of 0.09) (Fig. 6). 278 

4 Discussion 279 

4.1 Improved mapping of different P pools in global natural soils 280 

We trained random forest regression models using 11 variables to predict six soil P pools at different depths in 281 

(semi-)natural terrestrial ecosystems, resulting in significant improvements over earlier estimates (Yang et al., 2013). First, we 282 

used a new global map of total P concentrations in natural soils (He et al., 2021) as a predictor. Because total P is an important 283 
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predictor and is highly correlated with all other P pools, a higher quality map of total soil P will also lead to improved 284 

predictions of other P pools. Further improvements in global P data availability will thus also be useful to improve maps of 285 

other P pools. Second, Yang et al. (2013) used a limited number (n=178) of measurements of Hedley P pools across soils. Our 286 

database represents a nearly ten-fold increase, which can better represent the heterogeneous conditions on Earth. Third, Yang 287 

et al. (2013) estimated P pools concentrations using total soil P concentrations, global soil order maps, and average proportions 288 

of various P pools for different soil orders. However, there still are considerable variabilities in P concentrations within any 289 

given soil order, though it could be a good predictor of P pools variation (Cross and Schlesinger 1995, Yang and Post 2011). 290 

Indeed, we found that soil orders were less informative than other environmental predictors. By including more predictors 291 

(e.g., SOC, climate, and soil pH) our model offers significant improvements for capturing the variation observed in soil P 292 

composition across the globe.  293 

The above-named technical improvements have made it possible to produce more accurate maps. For example, while 294 

Yang et al.’s global predictions indicated that the highest organic P concentrations were found in the temperate zone, our maps 295 

suggest they are in boreal forest and tundra. This is more consistent with general understanding of global soil organic matter 296 

distribution (Hengl et al., 2017). Differences between our estimates of different P pools and those presented by Yang et al. 297 

(2013) have significant implications for soil P availability to vegetation. The averages and median values of Yang et al.’s 298 

predicted soil organic P, moderately labile Pi, and occluded P concentrations were substantially lower than our estimates. 299 

Evidence suggests that soil organic P and moderately labile Pi remain bioavailable on timescales of days to months (Helfenstein 300 

et al., 2020; Augusto et al., 2017; Maharjan et al., 2018), while occluded P is bioavailable on the order of years to millennia 301 

(Hou et al., 2016; Wang et al., 2007). Thus, soil P availability might be larger than previously assumed in assessments based 302 

on estimates by Yang et al. (2013) (e.g., Sun et al. 2017). 303 

4.2 Major drivers of different P pools in natural soils 304 

Our results indicate that global variation in soil P pools is jointly controlled by total P concentration, soil pH, soil 305 

development, climatic factors, and soil depth. Given that our models explain > 48% of the variance observed in P pools 306 

(concentration and proportion), our results suggest that edaphic properties and climatic factors play significant roles in the size 307 

and composition of different soil P pools globally. 308 

Effects of total soil P concentration on P pools 309 

We found that total soil P concentration was a prominent predictor of most soil P pools at the global scale and that total 310 

P was positively correlated with all P pool concentrations and Po pool proportions. This is consistent with findings at local 311 

(Turner and Blackwell, 2013) and global (Augusto et al., 2017; Hou et al., 2018; Harrison, 1987) scales. Total soil P is 312 

influenced by multiple soil forming factors (e.g., parent material P concentration, climate, soil organic carbon content, and soil 313 

texture) (He et al., 2021). Thus, total soil P provides an integrated measure of factors that regulate the size of the P pools. 314 

Moreover, this result is consistent with the emerging idea of substrate-based P cycling in natural ecosystems (Lang et al., 2017; 315 

Lang et al., 2016): Soils with high total P content are usually also associated with a large primary mineral P pool. At these P-316 

rich sites, plant and microbial communities tend to promote P release from primary minerals, with subsequent biological and 317 

abiotic transformations resulting in high concentrations in all other P pools (Lang et al., 2016; He et al., 2021) and higher 318 

proportions of organic P (Hou et al., 2018c). In contrast, at P-poor sites, plant and microbial communities are more reliant on 319 

P recycling systems that promote the mineralization of Po by soil microbes (Achat et al., 2009; Marklein and Houlton, 2012) 320 

and the mobilization of moderately labile Pi or even occluded P (Augusto et al., 2017) to sustain the P supply. Therefore, soil 321 

P pool concentrations are expected to strongly co-vary with total soil P concentration. 322 

Effects of soil pH on P pools 323 

Consistent with previous studies (Hou et al., 2018c; Kruse et al., 2015; Oburger et al., 2011; Barrow et al., 2020), our 324 
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results indicate that soil pH is an important predictor of P pool concentrations and proportions in natural soils globally. The 325 

relative importance of pH is unsurprising, since the sequential fractionation procedure is based on dissolving a soil sample in 326 

solutions of varying acidity/alkalinity. However, the observed pH effects also support the existing mechanistic understanding 327 

of the various P forms. The strong positive correlation of primary P and soil pH is expected because 1) the primary P pool is 328 

composed mainly of calcium phosphate/apatite, which is highly soluble at low pH but becomes less soluble with increasing 329 

pH and 2) soil pH declines with soil weathering intensity (Delgado-Baquerizo et al., 2020) (e.g., the highest values of soil pH 330 

are usually found in dry regions where chemical weathering rates are limited by water availability (Slessarev et al., 2016)). 331 

Both factors affect the transformation of primary mineral P to other forms. 332 

Soil pH shows important but negative influences on the proportions of other soil P pools (i.e., proportions of labile Po, 333 

moderately labile Pi and Po, occluded P, and labile Pi). There are several possible explanations for these relationships. First, 334 

low soil pH values (< 5.0) inhibits soil microbial activities and the extracellular activity of phosphatase enzymes (Aciego Pietri 335 

and Brookes, 2008; Eivazi and Tabatabai, 1977; Xu et al., 2017). Thus, in acidic soils, more organic P (i.e., labile, and 336 

moderately labile Po) may accumulate than in neutral soils. Second, decreasing soil pH is associated with the accumulation of 337 

Fe and Al oxides, which leads to enhanced adsorption of P (i.e., moderately labile Pi and Po). Third, pH tends to decrease as 338 

soil weathering advances and base cations are progressively washed out (Slessarev et al. 2016). As soils weather, occluded P 339 

accumulates. Therefore, the occluded pool proportion decreases with increasing pH. Fourth, increasing soil pH is associated 340 

with enhanced adsorption of dissolved Pi to Ca and Mg, reducing the amount of labile Pi available for plants and soil 341 

microorganisms (Fink et al., 2016; Gerke, 2015). This could explain the negative relationship between soil pH and the labile 342 

Pi proportion as identified in this study. But increasing soil pH in acidic soils favors soil microbial growth and phosphatase 343 

enzymes activity, which could increase P availability. These conflicting mechanisms may be responsible to the relative low 344 

importance in predicting the spatial variation of labile Pi proportion. 345 

Effects of climate on P pools 346 

Our global predictions indicated negative effects of climatic factors (i.e., MAT and MAP) on the soil P concentrations, 347 

which means a decrease in soil P concentrations as MAT increases from northern cold biomes (e.g., tundra and boreal forest) 348 

to warm tropical biome (e.g., tropical forest) or MAP increases from arid to humid regions. These results fit well with our 349 

understanding of broad P concentration variation with increasing weathering (Walker and Syers, 1976). Also, these results are 350 

expected as the main factor determining soil P pools concentrations, soil total P, shows a similar pattern (He et al., 2021). 351 

Interestingly, we found contrasting responses of labile Pi pool’s proportions along the MAT and MAP gradients. The positive 352 

correlations between labile Pi proportion and both MAT and MAP indicated labile Pi concentration decreased slower than the 353 

soil total P as temperature and precipitation increasing. This result supported the idea that biological systems evolved to retain 354 

soil labile Pi levels despite overall decrease in total soil P as long as climate factors are favorable for biological activity. In 355 

strongly weathered soil with limited soil P stocks but otherwise optimal growing conditions like in warm and humid tropical 356 

forests, the mineralization of Po and mobilization of moderately labile Pi or occluded P could contribute to maintain high levels 357 

of labile Pi due to the high soil temperature for soil enzyme kinetics and abundant carbohydrate supply from photosynthesis 358 

to fueling biological activity (Vitousek, 1984; Achat et al., 2009; Chacon et al., 2006; Liptzin and Silver, 2009). 359 

Effects of soil development on P pools 360 

The variations of P concentrations and proportions across weathering stages predicted by our model partially support 361 

Walker and Syers’ (1976) theory based on soil chronosequences. While our results are consistent with expectations from Walker 362 

and Syers’ theory about the increase in the proportion of occluded P that occurs at the expense of primary and organic P during 363 

soil development, our results disagree with Walker and Syers’ ideas regarding the evolution of the labile Pi and moderately 364 

labile Pi pools during soil development. The evolution of occluded P is commonly explained by the increase of Al and Fe oxide 365 

minerals and the decrease of soil pH; In addition to being fixed onto Fe and Al oxides, P that is released from primary minerals 366 

or mineralized from organic matter can be occluded by being adsorbed onto mineral surfaces or precipitating in poorly-soluble 367 
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secondary soil minerals (Crews et al., 1995; Quesada et al., 2010; Selmants and Hart, 2010).  368 

In the Walker and Syers’ model, non-occluded inorganic P increases initially to a peak value and then declines to very 369 

low levels during pedogenesis. However, our results showed that labile Pi and moderately labile Pi (non-occluded P in Walker 370 

and Syers’ model) formed significant proportions of total P throughout all soil orders across weathering stages. This could be 371 

due to the coarse classification of weathering stages in our study, which may be insufficient to characterize the end members 372 

of the range. This explanation is supported by the small proportion of primary mineral P in the slightly weathered soil and the 373 

moderate amounts of primary P remaining in strongly weathered soils. In addition, the theory of P distributions along soil 374 

development stages stems largely from relatively isolated island locations on New Zealand (Walker and Syers, 1976) and 375 

Hawaii (Crews et al. 1995). However, in most other places in the world there is higher dust deposition from surrounding land 376 

masses, which is a source of primary P even to highly weathered soils (Vogel et al., 2021). Nevertheless, the contribution of 377 

dust deposition to primary P and other forms of P in soil remain unquantified in most of land areas. 378 

Effects of soil depth on P pools  379 

We found that soil P pools concentrations varied significantly with soil depth. Total soil P concentration is often higher 380 

in topsoil than in subsoil due to biological uplift, which was reported by previous studies (Jobbágy and Jackson, 2001; Porder 381 

and Chadwick, 2009). The labile and moderately labile P (in both inorganic and organic pools) concentrations were higher in 382 

topsoil, which can also be explained by biological uplift and highly available P inputs from plants and dust to the topsoil. In 383 

contrast, the primary P and occluded P concentrations in topsoil were lower than in the subsoil. This can be explained by the 384 

fact that topsoil tends to be more weathered and developed than the subsoil (Achat et al., 2012; Chen et al., 2021). 385 

4.3 Limitations and prediction uncertainty 386 

In our database, some regions were underrepresented (e.g., northern Canada, middle and northern Asia, and inner Africa), 387 

which may result in low accuracy of the predicted values in those regions. In the tropics, high P soils were overrepresented 388 

and accuracy of predicted values in tropical regions may be quite low. Our database contains four times as many observations 389 

from surface mineral soils (0-30cm) than it does from soils deeper than 30 cm. As such, the predicted concentrations of different 390 

P pools for deep soils may suffer from larger uncertainties. Finally, large portions of variation remain unexplained by our 391 

models, especially variation in soil labile Pi concentrations and proportions (40% and 52% unexplained, respectively), 392 

indicating that other significant factors were not accounted for in our modeling. These factors may include microbial processes, 393 

Fe and Al oxide concentrations, plant community composition, atmospheric deposition, and soil erosion (Kruse et al., 2015; 394 

Achat et al., 2016). These limitations highlight the need for additional measurements, particularly from underrepresented 395 

regions and the subsoil as well as measurements of closely associated variables, especially those related to labile Pi.  396 

5 Conclusion 397 

Here, we compiled the largest database to date of different soil P pools. Using machine learning modelling, we quantified 398 

the relative importance of multiple predictors for estimating different soil P pools and estimated these pools at the global scale. 399 

Our results indicated that the global concentrations of soil labile Pi, labile Po, moderately labile Pi, moderately labile Po, and 400 

occluded P could be generally predicted mainly by the total soil P concentration, while primary P concentration was mainly 401 

predicted by soil pH and total soil P concentration. For predicting proportions of different P pools, soil pH and to a lesser extent 402 

soil depth, SOC and total P were the most important predictors for all P pools proportions at the global scale. In addition, our 403 

results also revealed significant effects of climate and other edaphic factors on spatial variation in P pools. We concluded that 404 

edaphic properties and climatic factors were significant predictors of soil P pools, including concentration and proportion of 405 

total P. These findings represent a significant step towards improving understanding of global variations in different soil P 406 

pools. Our global maps of predictions of different P pools will be important to improving global models of terrestrial P cycle. 407 
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Table 1. Summary of training data used to predict soil P pool concentrations. P10 and P90 indicate percentile rank of 10% 675 

and 90%, respectively. Proportions from literature (PFL) and proportions from gridded maps (PFGM) indicate proportions of 676 

measurements from the literature and extracted from global gridded maps, respectively. 677 

Group Variables Unit Min P10 Median P90 Max PFL* PFGM# 

Climate MAT ℃ -12 1.1 12.8 25.7 30.0 96% 4% 

 MAP mm yr-1 10 414 970 2750 5180 96% 4% 

Soil property Total P mg kg-1 4.8 114.0 455.5 1107.9 14973.6 100% 0% 

 SOC g kg-1 <0.1 4.8 24.4 130 545.2 87% 13% 

 Soil pH unitless 3.0 4.2 5.7 8.1 10.5 92% 8% 

 Soil clay  g kg-1 <0.1 70.0 195.5 410.7 945.5 52% 48% 

 Soil sand  g kg-1 <0.1 164.9 420.0 757.6 982.0 49% 51% 

 Depth cm 0.5 4.2 10.0 47.5 450.0 100% 0% 

 Soil order unitless 12 USDA soil orders 80% 20% 

Vegetation Biome unitless 8 major biomes 0% 100% 

Topography Elevation m -2 37 616 3015 4813 85% 15% 

MAT: Mean annual temperature; MAP: Mean annual precipitation; SOC: Soil organic carbon. * PFL: Proportion from 678 
literature; # PFGM: Proportion from gridded map. PFL and PFGM indicate proportions of measurements from literature and 679 
extracted from global gridded maps, respectively.  680 
 681 

 682 

  683 
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Table 2. Statistical summary of P pools in global (semi-)natural soils. Results based on our collected sites database. P1, 684 

P10, P25, P75, P90, and P99 indicate percentile rank of 1%, 10%, 25%, 75%, 90%, and 99%, respectively.  685 

  Count P1 P10 P25 Median Mean P75 P90 P99 

Concentration (mg kg-1)         

Labile Pi 1722 0.1 2.2 6.2 14.3 37.1 34.3 78.6 444.6 

Labile Po 1567 0.6 2.5 5.9 14.0 31.1 35.0 85.2 225.4 

Moderately labile Pi 1742 0.1 4.0 10.0 25.0 58.4 57.7 122.4 378.6 

Moderately labile Po 1588 1.2 8.3 22.1 60.8 120.3 155.1 333.4 631.1 

Primary P 1629 <0.1 1.2 4.7 38.9 106.8 145.0 328.3 635.2 

Occluded P 1453 5.5 34.5 86.2 178.0 260.5 309.6 532.9 2172.9 

Proportion of total P (%)         

Labile Pi 1448 <0.1 0.6 1.7 4.0 5.9 7.7 13.6 29.6 

Labile Po 1331 0.1 0.8 1.7 4.1 5.9 7.8 13.1 29.3 

Moderately labile Pi 1448 0.1 0.9 3.0 7.5 9.3 12.9 20.2 39.3 

Moderately labile Po 1384 0.4 3.1 8.0 18.0 19.5 27.1 38.5 59.8 

Primary P 1448 <0.1 0.5 1.6 7.9 19.0 29.4 60.9 83.2 

Occluded P 1448 4.2 15.4 26.8 42.4 41.9 56.4 67.9 83.0 

  686 
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Table 3. Coefficients of Pearson correlations among proportions and concentrations of soil P pools. Results based on the 687 

average global predictions in top 30 cm soils. Coefficients with P < 0.001 are shown in black and bold. Labile Pi P. indicated 688 

the labile Pi proportion. The same meanings to the Labile Po P., Moderately labile Pi P., Moderately labile Po P., Primary P P., 689 

and Occluded P P.. Elevation is not included this plot as it is not well correlated with P pools variation in our results. 690 

 691 
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Figure 1. Flow chart of soil P fractionation. The flow chart follows the procedures outlined by Hedley et al. (1982) and 693 

Tiessen and Moir (1993).  Redrawn according to Hou et al. (2018).  694 
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Figure 2. Distribution of site-level training data. The database contains 1838 observations covering 12 USDA soil orders 697 

(B) and all major terrestrial biomes (C). 698 
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Figure 3. Relative importance of variables for predicting concentration of soil P pools quantified using random forest 701 

models. Mean decrease accuracy (%IncMSE) indicates the relative importance of each variable for predicting soil P pools. 702 

SWS: soil weathering stage. 703 
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Figure 4. Global maps of P pool concentrations at depths of 0-30 cm. Note that croplands and other heavily influenced 707 

areas were not masked from the maps, so soils in these areas can be used to represent soils without extensive anthropogenic 708 

activity. 709 
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Figure 5. Average concentrations of P pools and their proportions of total soil P concentration across soil weathering 712 

stages and biomes. Labile and moderately labile Po form the organic pool. Results based on global estimates for 0-30 cm 713 

depth. Dry vegetation combines grassland and savanna biomes to simplify the figure. 714 
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Figure 6. Relationship between our predicted P fraction concentrations and Yang et al.’s predictions. Panels A, B, C, D, 718 

E, and F depict correlations between both sets of predictions for soil labile Pi, organic P, primary mineral P, moderately labile 719 

Pi, and occluded P, respectively. Dashed lines indicate the 1:1 line; blue lines indicate the regression line. 720 
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