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Abstract. Most phosphorus (P) in soils is unavailable for direct biological uptake as it is locked within primary or secondary 16 

mineral particles, adsorbed to mineral surfaces, or immobilized inside of organic material. Deciphering the composition of 17 

different P pools in soil is critical for understanding P bioavailability and its underlying dynamics. However, widely used 18 

global estimates of different soil P pools are based on a dataset containing few measurements in which many regions or soil 19 

types are unrepresented. This poses a major source of uncertainty in assessments that rely on these estimates to quantify soil P 20 

constraints on biological activity controlling global food production and terrestrial carbon balance. To address this issue, we 21 

consolidated a database of six major soil P pools containing 1857 entries from globally distributed (semi-)natural soils and 11 22 

related environmental variables. The P pools (labile inorganic P (Pi), labile organic P (Po), moderately labile Pi, moderately 23 

labile Po, primary mineral P, and occluded P) were measured using a sequential P fractionation method. Using the database, 24 

we trained random forest regression models for each of the P pools and captured observed variation with R2 higher than 60%. 25 

We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary 26 

mineral P concentration, which is primarily controlled by soil pH. When expressed in relative concentrations (i.e., as a 27 

proportion of total P), the model showed that soil pH is the most important predictor for proportions of all soil P pools, except 28 

for labile Pi proportion, which is primarily controlled by soil depth. Using the trained random forest models, we predicted soil 29 

P pools’ distributions in natural systems at a resolution of 0.5° × 0.5°. Our global maps of different P pools in soils as well as 30 

the pools’ underlying drivers can inform assessments of the role of natural P availability for ecosystem productivity, climate 31 

change mitigation, and the functioning of the Earth system. 32 

 33 

  34 
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1 Introduction  35 

Phosphorus (P) is a key nutrient limiting plant growth across a wide range of ecosystems (Augusto et al., 2017; Elser et 36 

al., 2007; Hou et al., 2020). Soil is typically the major P source for plants in natural terrestrial ecosystems (Weihrauch and 37 

Opp, 2018). P supplied by the soil plays a vital role in determining the structures, functions, and processes in terrestrial 38 

ecosystems (Peltzer et al., 2010; Wardle et al., 2004). For example, soil P availability imposes a major constraint on plant 39 

productivity in terrestrial ecosystems worldwide (Augusto et al., 2017; Ellsworth et al., 2022; Elser et al., 2007; Hou et al., 40 

2020; Hou et al., 2021) and affects modeled projections of terrestrial carbon cycle responses to climate change and increasing 41 

atmospheric carbon dioxide concentrations (Cunha et al., 2022; Fleischer et al., 2019; Goll et al., 2012). The size of soil P 42 

stocks is large compared to annual plant P requirements (Wang et al., 2018) and the amount of P stored in vegetation (Wang 43 

et al., 2018; Zhang et al., 2021). However, only a small proportion of soil P can be directly taken up by plants (Morel et al., 44 

2014), with most P tightly sorbed to soil minerals, organic compounds, or organo-mineral complexes with a turnover time of 45 

centuries to millennia or longer (Helfenstein et al., 2020; Vitousek et al., 2010). Consequently, vegetation growth is often 46 

limited by P availability in ecosystems across the globe (Vitousek et al., 2010; Wardle et al., 2004). For these reasons, the 47 

investigation of P dynamics and P bioavailability in the soil requires the identification and separation of different soil P pools 48 

(Crews et al., 1995; Walker and Syers, 1976). 49 

Our knowledge of the various pools of P occurring in the soil is based on a limited number of chronosequence studies 50 

that investigated how P is cycled during pedogenesis (Crews et al., 1995; Walker and Syers, 1976). These studies revealed that 51 

chemical weathering results in the release of P from primary minerals, after which it can be converted to organic P through 52 

biological uptake, sorbed to soil particles, or occluded within secondary minerals. The most commonly used procedures for 53 

the sequential fractionation of P in soils were developed by Hedley et al. (1982) and later modified by Tiessen and Moir (1993). 54 

In addition to forming the basis for modeling soil P dynamics, these procedures yield operationally defined pools that are used 55 

to assess soil fertility and soil development (Wang et al., 2010; Wang et al., 2022). Pools that are commonly considered are 56 

resin extractable P; 0.5 M NaCO3 extractable inorganic P (Pi) and organic P (Po); 0.1 M NaOH extractable Pi and Po; 1 M 57 

HCl-extractable P; and the occluded pool, which is composed of P remaining after extraction (see section 2.1). Several studies 58 

have called the validity of sequential extractions into question, pointing out that, while it is often assumed that pools from 59 

sequential extractions contain distinct forms of P, the reality is much more complex (Condron and Newman, 2011; Gu and 60 

Margenot, 2021; Klotzbücher et al., 2019). Nevertheless, radioisotope tracer experiments show that sequentially extracted 61 

pools have distinct P exchange behaviors that result in significantly different turnover times (Buendía et al., 2010; Bünemann 62 

et al., 2004; Helfenstein et al., 2021; Helfenstein et al., 2020; Vu et al., 2010). 63 

Numerous studies have used data from P fractionations to explore drivers of spatial differences in soil P pools from local 64 

to global scales (e.g., Brucker and Spohn, 2019; Hou et al., 2018a; Yang and Post, 2011; Chen et al., 2015). Yang and Post 65 

(2011) compiled Hedley P pools data from 178 soil samples to explore P dynamics along a soil development gradient (Yang 66 

and Post, 2011). Their results generally supported the conceptual model proposed by Walker and Syers (1976): the gradual 67 

decrease of primary mineral-bound P; the continual increase and eventual dominance of occluded P; and the overall decrease 68 

of total P as pedogenesis progresses. However, this model was challenged by Yang and Post (2011), who found that labile Pi 69 

and moderately labile Pi (non-occluded P in Walker and Syers’ model) formed a significant fraction of total P at every stage of 70 

pedogenic development. Augusto et al. (2017) aggregated 1684 measurements of P pools that were taken from across the globe 71 

using the Hedley fractionation method. This work found that total P content was a main factor determining the concentrations 72 

of labile Pi and organic P pools (Augusto et al., 2017). Almost concomitantly, Hou et al. (2018) used a global dataset compiled 73 

from analyses of 802 soil samples to examine climate effects on the soil P cycle and P availability and found that soil labile Pi 74 

concentration decreased with increasing mean annual temperature and precipitation (Hou et al., 2018a). Although those studies 75 

advanced our understanding of factors controlling the size of various soil P pools, their focus was largely contained to the 76 

effects of climatic factors or soil weathering stage on a few select P pools, mainly labile Pi, and organic P.  Thus, we still lack 77 
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a comprehensive understanding of the relationships between environmental drivers and the various soil P pools at a global 78 

scale. 79 

Despite significant efforts to synthesize global Hedley soil P pool data, to our knowledge, only one set of global estimates 80 

across natural terrestrial ecosystems exists, and this work was based on the upscaling of measurements taken from only 178 81 

samples (Yang et al., 2013). These global estimates and associated maps have been used to explore global patterns of soil P 82 

supply and to estimate P availability in natural and managed systems (e.g., Ringeval et al., 2017; Sun et al., 2017). They have 83 

also been used to calibrate or initialize a range of global P models (Wang et al., 2010; Yang et al., 2014). However, the poor 84 

global coverage of the underlying data introduces significant uncertainty, potentially resulting in misinformed model 85 

predictions and assessments. 86 

We recently developed a new global map of soil total P concentrations and explored the underlying drivers, taking 87 

advantage of improved data availability and the use of non-linear statistical modeling (He et al., 2021). Here, we constructed 88 

a database of soil P pools in 1857 globally distributed (semi-)natural soils collected from 274 published studies, one order of 89 

magnitude larger than the dataset used by Yang et al. (2013) (see comparison in Fig. S1). Using this database, we trained 90 

random forest models to capture observed variations in Hedley P pool concentrations at the site level with two aims: (1) to 91 

quantify the relative importance of different drivers of spatial variation in each soil P pool and (2) to develop global distribution 92 

maps of various P pools at a spatial resolution of 0.5°×0.5° using the calibrated random forest regression model. 93 

 94 

2 Material and Methods 95 

2.1 Soil P fractionation terminology and procedure 96 

The method developed by Hedley et al. (1982) and modified by Tiessen and Moir (1993) (Fig. S1) is the most commonly 97 

used procedure for the sequential chemical fractionation of P in soils. This method exploits differences in solubility to separate 98 

different ‘forms’ of P occurring in the soil. Though it cannot be used to identify specific discrete P compounds in the soil, this 99 

approach has proven indispensable for the study of soil P cycling and, as such, is widely used (Condron and Newman, 2011; 100 

Klotzbücher et al., 2019; Barrow et al., 2021). Here, we use the word ‘pool’ to indicate the concentrations quantified in each 101 

step during sequential fractionation. We use the word ‘proportion’ to represent the size of a pool relative to total P. 102 

There is disagreement about how to interpret the different pools yielded by sequential fractionation (Gu et al. 2019; 103 

Barrow et al., 2021; Klotzbücher et al., 2019; Condron and Newman, 2011; Helfenstein et al., 2020). Here, we adopt a widely 104 

used regime for understanding these pools: The resin Pi pool represents the soil soluble Pi pool, which is immediately 105 

accessibly to plants; The HCO
‒

3 Pi pool can be released by ligand exchange with bicarbonate ions; This pool is available to 106 

plants and persists for only short periods (e.g., a growing season); Due to their functional similarity, the resin and HCO
‒

3 Pi 107 

pools can be combined and used as an index of labile inorganic P (i.e., ‘available’ P); The HCO
‒

3 Po pool represents labile Po 108 

that can be utilized by plants after mineralization. The OH‒ P (Pi and Po) pools indicate moderately labile P that is bound to 109 

both amorphous and crystalline Al and Fe. This pool represents P that is moderately available to plants; The 1 M HCl Pi pool 110 

represents primary mineral P that is bound to calcium and that can be utilized by plants after it is released by weathering; And 111 

other P pools, such as residual P, are least available to plants due to their particularly low solubility. 112 

 To integrate data from studies that use different interpretations, we consider a set of six simplified P pools (Fig. S3): 113 

labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary mineral P, and occluded P. Labile Pi includes the resin 114 

Pi and HCO
‒

3 Pi pools; labile Po and moderately labile Po are organic pools extracted by carbonate and NaOH, respectively; 115 

moderately labile Pi is the NaOH Pi fraction; primary mineral P represents the 1 M HCl Pi pool; and occluded P includes any 116 

remaining P (Hou et al., 2018b).  117 

We collected, filtered, and processed soil P pool data (see section 2.2.) from the literature (Supplementary material). 118 
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First, we added all measured P pools together to calculate total soil P, unless any pools were missing. In this case, we instead 119 

used the measured value of total soil P presented in that paper. Second, if phosphate was extracted using deionized water before 120 

the resin P extraction step, the labile Pi pool includes both resin and aqueous P. If the extraction procedure began by using 121 

sodium bicarbonate solution instead of resin P, we classified HCO
‒

3 Pi as labile Pi. Third, the labile Po pool and the moderately 122 

labile Po pool represent the HCO
‒

3 Po and NaOH pools, respectively. The raw data contained other organic P pools (e.g., Po 123 

extracted by sonication and NaOH or by hot, concentrated HCl) which we included as part of occluded P.  Fourth, if occluded 124 

P was not reported, we calculated this pool’s concentration by subtracting the sum of the five other pools from total P.  125 

2.2 Data source and processing 126 

We collected soil P pool data by aggregating all the publications that cited either one of two main references dedicated 127 

to Hedley’s method (Hedley et al., 1982; Tiessen and Moir, 1993). We included all studies that reported data from (semi-) 128 

natural soils that supported primary vegetation or that had been reforested with a stand older than 10 years and no documented 129 

history of P fertilization. We excluded observations taken from pot experiments, mine zones, and intertidal zones, as P pools 130 

in these soils could be affected by factors different from those influencing (semi-) natural soils. Despite our best efforts, we 131 

cannot rule out that our database includes data collected from soils affected by undocumented anthropogenic activities in the 132 

past (e.g., P fertilization occurring before reforestation), particularly in western Europe and eastern USA (e.g., De Schrijver et 133 

al., 2012). All data were collected at the plot scale. For data that included replicates within a plot or soil layer, average values 134 

were calculated. 135 

To compile our database, we first combined the two existing global databases (Augusto et al., 2017; Hou et al., 2018b). 136 

Detailed information about the methods used to construct these datasets can be found in the original publications. We extracted 137 

observations from these two databases by selecting only unfertilized, uncultivated, and (semi-) natural soils. This yielded 1684 138 

observations from 182 studies from the dataset developed by Augusto et al. (2017) and 802 observations from 99 studies from 139 

the dataset developed by Hou et al. (2018). Next, we removed 375 duplicates, after which our dataset contained 2111 140 

observations from 245 studies (Figure S2). Because we use total soil P concentration as a predictor of soil P pools, we removed 141 

data that did not include total soil P (calculated as the sum of P pools or measured by a separate method) or that did not identify 142 

the concentration of at least one pool (e.g., labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary mineral P, 143 

or occluded P). In this step, 816 observations were removed, resulting in a dataset that included 1295 observations from 178 144 

studies.  145 

Next, we added additional observations by compiling data from literature published after 2016, the final year included 146 

in the database compiled by Hou et al. (2018). We used Google Scholar to search for studies published between 2016 and 147 

08/08/2021 that referenced either Hedley et al. (1982) or Tiessen & Moir (1993). This search returned 701 publications citing 148 

Hedley et al. (1982) and 245 citing Tiessen & Moir (1993). From this set, we selected studies that presented soil P data collected 149 

using the fractionation method for (semi-)natural soils. The resulting 562 observations from 96 studies were added to our final 150 

dataset, which includes a total of 1857 observations collected from 729 sites from 274 studies (Supplementary Text 1 and Fig. 151 

S1).  152 

In addition to soil P pool concentration and site coordinates, our dataset contains site characteristics including climate 153 

variables (i.e., mean annual temperature (MAT), mean annual precipitation (MAP), and potential biome), soil physiochemical 154 

properties (e.g., soil organic carbon concentration (SOC), soil clay and sand content, and soil pH), and elevation (Table 1). 155 

Potential biome was identified using a global map of potential natural biomes (i.e., the global distribution of biomes that would 156 

exist in the absence of human activity) (Hengl et al., 2018).  This categorization includes seven ecosystem types, including 157 

tropical forest, temperate forest, boreal forest, grassland, savanna, desert, and tundra. We did not include parent material type 158 

because it can be inferred from soil total P concentration and other soil properties (e.g., soil texture and pH) (Augusto et al., 159 

2017; He et al., 2021). Because soil age was rarely reported, we used USDA soil order identity as a proxy for 3 age classes: 160 
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slightly, intermediately, and strongly weathered (Smeck, 1985; Yang et al., 2013). Among the 12 USDA soil orders, Entisols, 161 

Inceptisols, Histosols, Andisols, and Gelisols are classified as slightly weathered soils. Alfisols, Mollisols, Aridisols, and 162 

Vertisols are classified as intermediately weathered soils. Oxisols, Ultisols, and Spodosols are classified as strongly weathered 163 

soils (Yang et al., 2013; Smeck, 1985). Given that atmospheric P inputs are small (0.3 kg P ha yr−1, on average) compared to 164 

soil P stocks (Mahowald et al., 2008; Wang et al., 2015) and are also highly uncertain over timescales relevant to soil 165 

development, we do not consider atmospheric inputs as a predictor of P pools. As such, we did not include this information in 166 

our dataset. We extracted data from each publication as available. In cases in which relevant information was not reported, we 167 

extracted the missing data from gridded datasets (Table S1) based on the geographic coordinates of the study sites. 168 

In random forest modelling, correlated predictors can be substituted for each other so that the importance of correlated 169 

predictors will be shared, making each predictor’s estimated importance smaller than its true value (Strobl et al., 2008). Thus, 170 

we did not include soil total nitrogen content as it is strongly correlated with SOC (r = +0.94), nor did we include aridity index 171 

as it is strongly correlated with MAP (r = +0.72). We also did not include rarely reported variables that were included in the 172 

referenced studies (e.g., soil extractable aluminum and iron concentrations). 173 

2.3 Statistical modelling 174 

All statistical analyses and plotting were performed in the R environment (v. 4.0.2) (R Core Team, 2018). 175 

The database includes some extreme values in each P pool (Table 2). These values were likely observed in exceptional 176 

geological contexts (Porder and Ramachandran, 2013) or in special soils (e.g., very young volcanic soils). We included these 177 

extreme values in the shared version of the dataset and in the database summary (Table 2). However, these values were 178 

excluded from data used in model training, as the extremely high values could have a large influence on modeled relationships 179 

between soil P pools and predictors. To this end, we only included values falling in the interval between 1% and 99%. 180 

We used random forest regression models (Breiman, 2001) to predict global patterns of distribution for individual soil P 181 

pools. All models included the same 11 predictors: MAT, MAP, potential biome, total P, soil depth, SOC, soil clay and sand 182 

content, soil pH, elevation, and soil weathering stage (Table S1). The random forest analysis accounts for interactions and 183 

nonlinear relationships between predictors and is appropriate for handling the multicollinearity problem in the multivariate 184 

regression (Delgado-Baquerizo et al., 2017). The fit for each tree was determined by randomly selecting test cases. In order to 185 

compare the relative importance of different variables for predicting the size of a pool, we performed random forest regression 186 

analysis using the R package caret by applying the embedded R package randomForest version 3.1 (Liaw and Wiener, 2002) 187 

with an automated mtry parameter. Five-fold cross-validation was performed using the R package caret (v. 6.0-86) (Kuhn, 188 

2020) to evaluate model performance. The mean decrease in accuracy (%IncMSE) was used to evaluate the relative importance 189 

of each variable as a predictor of a soil P pool. The mean decrease in accuracy plot shows how the accuracy of the fitted model 190 

declines with the exclusion of a predictor. The greater the decline in accuracy, the more important the variable is for prediction. 191 

In this study, the importance measure was calculated for each tree and averaged across the forest (500 trees). Our model found 192 

that all 11 variables are important for predicting pool concentrations; thus, all were used as predictors as we developed the 193 

global distribution map. Partial dependence plots showed the marginal effect of each continuous predictor on soil P pool 194 

concentration. We used the partial_dependence function in the R package edarf version 1.1.1 (Jones and Linder, 2016) to 195 

calculate the partial dependence of the response on an arbitrary dimensional set of continuous predictors from a fitted random 196 

forest model.  197 

Finally, we used the built forest regression models for each of the soil P pools for global prediction by using the predict 198 

function in the ranger package with globally gridded datasets for all 11 variables. The predict function in the ranger package 199 

(Wright and Ziegler, 2017) can compute the standard error of a predicted value. To estimate standard errors based on out-of-200 

bag predictions, we used the infinitesimal jacknife for bagging approach (Wager et al., 2014). Prior to use for global predictions, 201 
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driver variables were re-gridded to the same spatial resolution of 0.5° × 0.5° (the original resolution of each predictor can be 202 

found in Table S1). We did not mask croplands or other areas heavily influenced by human activity (e.g., urban areas), so pool 203 

concentrations predicted for these regions should be interpreted as the natural state prior to anthropogenic activity. 204 

Because we trained models to predict P pool concentrations and proportions using the same 11 variables, we had two 205 

options for developing global maps of P pool proportions: (1) dividing a pool’s concentration by total P (He et al., 2021), or 206 

(2) using our trained model. The resulting maps (Fig. S6) are highly correlated, with Pearson correlation coefficients from 0.61 207 

to 0.98. Model accuracy was higher for predicted concentrations than it was for predicted proportions. (Fig. 2 & 3). Therefore, 208 

we developed our map using the model to predict P pool concentration, after which these predictions were used with total soil 209 

P concentrations to calculate P pool proportions (He et al., 2021) rather than predicting them using random forest models. 210 

Soil depth was used as a predictor, allowing models to predict soil P pool concentration for any given depth (Hengl et al., 211 

2017). The partial dependence plot indicated that soil P pool concentration decreased approximately linearly with soil depth 212 

in the top 30 cm and that there was no apparent trend with depth in the subsoil (30-100 cm) (Fig. S2-7); As such, we calculated 213 

global soil P pool concentration at 0 cm, 10 cm, 20 cm, 30cm, and 100 cm. Averages for a depth interval (e.g., 0-30 cm or 0-214 

100 cm) can be derived by calculating the weighted average of the predictions within that interval (Hengl et al., 2017).  215 

3 Results 216 

3.1 Characters of P pools in natural soils across the world 217 

Our soil P pool database includes 1857 measurements from 729 geographically distinct sites and covers 6 continents, all 218 

major biomes, and all 12 USDA soil orders in terrestrial ecosystems (Fig. 1). The database includes pool concentrations 219 

measured in samples collected from the topsoil (0-30 cm) to a depth of 450 cm, with 83% of the measurements taken from the 220 

topsoil. In the database, both concentrations and proportions of all P pools were highly skewed to the right (Fig. S4 & S5).  221 

The largest pool among the six pools considered is occluded P, with a global mean concentration of 260.5 mg kg-1 and a 222 

mean proportion of 41.9% (Table 2). Primary mineral P has a global mean concentration of 106.8 mg kg-1 and a mean 223 

proportion of 19.0%. The labile and moderately labile Po pools have global mean concentrations of 31.1 mg kg-1and 120.3 mg 224 

kg-1, respectively, and mean proportions of 5.9% and 19.5%, respectively. Moderately labile Pi has a global mean concentration 225 

of 58.7 mg kg-1 and a mean proportion of 9.3%. Labile Pi represents the smallest proportion of total P with a global mean 226 

concentration of 37.1 mg kg-1 and a mean proportion of 5.9% (Table 2). 227 

3.2 Model performance of different P pools in soils 228 

The random forest regression models explained 62%, 64%, 60%, 83%, 76%, and 82% of the variance in the concentrations 229 

of labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary P, and occluded P, respectively (Fig. 2). Using the 230 

importance measure (%IncMSE), we identified the most important predictor for concentrations of soil labile Pi, labile Po, 231 

moderately labile Pi, moderately labile Po, and occluded P as total P concentration, while the most important predictor for soil 232 

primary P was the soil pH (Fig. 2). The random forest regression models explained 48%, 58%, 52%, 64%, 80%, and 58% of 233 

the variance in proportions of labile Pi, labile Po, moderately labile Pi, moderately labile Po, primary P, and occluded P, 234 

respectively (Fig. 3). Based on the importance measure, the most important predictor for proportions of soil labile Po, 235 

moderately labile Pi, moderately labile Po, primary P, and occluded P was soil pH, while the most important predictor for labile 236 

Pi proportion was soil depth (Fig. 3). 237 

3.3 Global patterns of P pools in natural soils 238 
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The maps we developed indicate that soil P pool concentrations showed substantial differences between biomes (Fig. 4). 239 

Lower P pools concentrations were found in warm and/or humid biomes (e.g., tropical forest and savanna), while higher P 240 

pool concentrations were found in northern cold biomes (e.g., tundra and boreal forest) (Fig. 4C). Estimated subsoil P pool 241 

concentrations showed similar patterns to those identified in the topsoil. The spatial patterns of pool proportions were different 242 

from those of pool concentrations across biomes (Fig. 7 & 8). For example, variation in the proportion of P held in the labile 243 

Pi pool was relatively small compared to variation observed in pool concentrations; moreover, the proportion of occluded P 244 

tended to increase in the transition from tundra and boreal forest to tropical forest and savanna (Fig. 4D). It should be noted 245 

that the mapped predictions of P pool concentrations across biomes are not consistent with the measured data (Fig. S4), which 246 

indicate that total soil P in tropical forests is higher than in any other biome. This result suggests a sampling bias due to 247 

overrepresentation of high total soil P sites in the tropical forest data. 248 

Our global predictions revealed that average values across all P pools were higher in slightly weathered soils compared 249 

to those in strongly weathered soils (Fig. 4A), reflecting the strong effect of soil development on soil P depletion. While 250 

occluded P proportion increased with soil development, the proportions of labile and moderately labile P (Pi and Po) were 251 

fairly independent of soil weathering stage (Fig. 4B). 252 

There are significant differences between our predictions and those made by Yang et al. (2013) in both the magnitude and 253 

the spatial patterns associated with most P pool concentrations. The two global estimates were only weakly to moderately 254 

correlated (Pearson correlation coefficients between 0.09 and 0.38) (Fig. S8). Yang et al.’s predictions are lower than ours for 255 

organic P, moderately labile Pi, primary mineral P, and occluded P concentrations (Table S5). Although average values for 256 

labile Pi concentrations estimated by Yang et al. were close to ours, they were only weakly correlated with each other (Pearson 257 

correlation coefficient of 0.09). 258 

Partial dependence plots (Fig. 5) and the results of Pearson correlation analysis (Table 3) revealed that total P 259 

concentration was significantly and positively correlated with concentrations for all six pools. SOC was significantly and 260 

negatively correlated with primary mineral P concentration, but positively correlated with the other five pool concentrations. 261 

MAT and MAP were significantly and negatively correlated with concentrations of all soil P pools. Soil pH was significantly 262 

and positively correlated with primary mineral P concentration, but significantly and negatively correlated with concentrations 263 

of the other five P pools. The results of Pearson correlation analysis also indicated that P pool concentrations were well 264 

correlated with each other, with the exception of primary mineral P; this pool was negatively correlated with labile Po and not 265 

correlated with moderately labile Po concentration.  266 

Partial dependence plots (Fig. 6) and Pearson correlation analysis (Table 3) revealed that soil pH was positively correlated 267 

with the primary mineral P proportion and negatively correlated with the other five P pool proportions. Soil labile Po, 268 

moderately labile Pi, and moderately labile Po proportions decreased substantially with an increase in MAT, while the occluded 269 

P proportion increased with MAT. Soil labile Po, moderately labile Pi, and moderately labile Po proportions increased 270 

substantially with increasing total P concentration, while the soil labile Pi and occluded P proportions decreased substantially 271 

with total P concentration.  272 

 273 

4 Discussion 274 

4.1 Improved mapping of different P pools in global natural soils 275 

We trained random forest regression models using 11 variables to predict six soil P pools at different depths in 276 

(semi-)natural terrestrial ecosystems, resulting in significant improvements over earlier estimates (Yang et al., 2013). First, we 277 

used a new global map of total P concentrations in natural soils (He et al., 2021) as a predictor. Because total P is an important 278 
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predictor and is highly correlated with all other P pools (Fig. 2 & 7), a higher quality map of total soil P provides much 279 

improvement to the global estimates of P pool concentrations in soils (He et al., 2021). Second, Yang et al. (2013) used a 280 

limited number (n=178) of measurements of Hedley P pools across soils. Our database represents a nearly ten-fold increase, 281 

which can better represent the heterogeneous conditions on Earth. Third, Yang et al. (2013) estimated P pool concentrations 282 

using total soil P concentrations, global soil order maps, and average proportions of various P pools for different soil orders. 283 

In our study, we found that soil orders were less informative than other environmental predictors. By including more predictors 284 

(e.g., SOC, climate, and soil pH) our model offers significant improvements for capturing the variation observed in soil P 285 

composition across the globe. 286 

Differences between our estimates of different P pools and those presented by Yang et al. (2013) have significant 287 

implications for soil P availability to vegetation. The averages and median values of Yang et al.’s predicted soil organic P, 288 

moderately labile Pi, and occluded P concentrations were substantially lower than our estimates. Evidence suggests that soil 289 

organic P and moderately labile Pi remain bioavailable on timescales of days to months (Helfenstein et al., 2020; Augusto et 290 

al., 2017; Maharjan et al., 2018), while occluded P is bioavailable on the order of years to millennia (Hou et al., 2016; Wang 291 

et al., 2007). Thus, soil P availability might be larger than previously assumed in assessments based on estimates by Yang et 292 

al. (2013) (e.g., Sun et al. 2017). 293 

4.2 Major drivers of different P pools in natural soils 294 

Our results indicate that global variation in soil P pools is jointly controlled by total P concentration, soil pH, soil 295 

development, climatic factors, and soil depth. Given that our models explain > 48% of the variance observed in P pools, our 296 

results (see Figures 2 and 3) suggest that edaphic properties and climatic factors play significant roles in the size and 297 

composition of different soil P pools globally. We discuss the effects of three major factors in more detail below. 298 

Effects of total soil P concentration on P pools 299 

We found that total soil P concentration was a prominent predictor of most soil P pools at the global scale and that total 300 

P was positively correlated with all P pool concentrations and Po pool proportions. This is consistent with findings at local 301 

(Turner and Blackwell, 2013) and global (Augusto et al., 2017; Hou et al., 2018; Harrison, 1987) scales. Total soil P is 302 

influenced by multiple soil forming factors (e.g., parent material P concentration, climate, soil organic carbon content, and soil 303 

texture) (He et al., 2021). Thus, total soil P provides an integrated measure of factors that regulate the size of the P pools. 304 

Moreover, this result is consistent with the emerging idea of substrate-based P cycling in natural ecosystems (Lang et al., 2017; 305 

Lang et al., 2016): Soils with high total P content are usually also associated with a large primary mineral P pool. At these P-306 

rich sites, plant and microbial communities tend to promote P release from primary minerals, with subsequent biological and 307 

abiotic transformations resulting in high concentrations in all other P pools (Lang et al., 2016; He et al., 2021) and higher 308 

proportions of organic P (Hou et al., 2018c). In contrast, at P-poor sites, plant and microbial communities are more reliant on 309 

P recycling systems that promote the mineralization of Po by soil microbes (Achat et al., 2009; Marklein and Houlton, 2012) 310 

and the mobilization of moderately labile Pi or even occluded P (Augusto et al., 2017) to sustain the P supply. Therefore, soil 311 

P pool concentrations are expected to co-vary with total soil P concentration. 312 

Interestingly, our predictions indicate that labile Pi concentrations are not primarily controlled by soil P supply (i.e., total 313 

soil P) on a global scale, but by biological processes such as plant uptake, microbial uptake, immobilization, and mineralization 314 

(Yang et al., 2013; Cross and Schlesinger, 1995; Weihrauch and Opp, 2018; Hou et al., 2016). Some work suggests that in 315 

strongly weathered soils (with limited P stocks), mineralization of Po could be a major source of labile Pi (Vitousek, 1984; 316 

Achat et al., 2009). In addition, fluctuating redox conditions in highly weathered soils can cause the release of labile Pi from 317 

the moderately labile P pool through the reduction of Fe3+ minerals (Chacon et al., 2006; Liptzin and Silver, 2009). This is 318 

consistent with other studies that found that the labile Pi pool is quite stable across weathering stages (Cross and Schlesinger, 319 
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1995; Yang and Post, 2011; Zhang et al., 2005).  320 

 321 

Effects of soil pH on P pools 322 

Consistent with previous studies (Hou et al., 2018c; Kruse et al., 2015; Oburger et al., 2011; Barrow et al., 2020), our 323 

results indicate that soil pH is an important predictor of P pool concentrations and proportions in natural soils globally. The 324 

relative importance of pH is unsurprising, since the sequential fractionation procedure is based on dissolving a soil sample in 325 

solutions of varying acidity/alkalinity. However, the observed pH effects also support the existing mechanistic understanding 326 

of the various pools. The strong positive correlation of primary P and soil pH is expected because 1) the primary P pool is 327 

composed mainly of calcium phosphate/apatite, which is highly soluble at low pH but becomes less soluble with increasing 328 

pH and 2) soil pH declines with soil weathering intensity (Delgado-Baquerizo et al., 2020) (e.g., the highest values of soil pH 329 

are usually found in dry regions where chemical weathering rates are limited by water availability (Slessarev et al., 2016)). 330 

Both factors affect the transformation of primary mineral P to other forms. 331 

Soil pH shows important but negative influences on the proportions of other soil P pools (i.e., proportions of labile Pi and 332 

Po, moderately labile Pi and Po, and occluded P). There are several possible explanations for these relationships. First, low 333 

soil pH (< 5.0) inhibits soil microbial activities and the extracellular activity of phosphatase enzymes (Aciego Pietri and 334 

Brookes, 2008; Eivazi and Tabatabai, 1977; Xu et al., 2017). Thus, in acidic soils, more organic P (i.e., labile Po) may 335 

accumulate than in neutral soils. Second, decreasing soil pH is associated with the accumulation of Fe and Al oxides, which 336 

leads to enhanced adsorption of P (i.e., labile Pi and labile Po). Third, pH tends to decrease as soil weathering advances and 337 

base cations are progressively washed out (Slessarev et al. 2016). As soils weather, occluded P accumulates, which explains 338 

why the occluded pool decreases with increasing pH. Fourth, increasing soil pH is associated with enhanced adsorption of 339 

dissolved Pi to Ca and Mg, reducing the amount of labile Pi available for plants and soil microorganisms (Fink et al., 2016; 340 

Gerke, 2015). This could explain the negative relationship between soil pH and the labile Pi proportion identified in this study. 341 

 342 

Effects of soil development on P pools 343 

The variation of P pools across weathering stages predicted by our model partially supports Walker and Syers’ (1976) 344 

theory based on soil chronosequences, and is consistent with more nuanced models of soil P evolution that consider variation 345 

in tectonic uplift and geological composition (Buendía et al., 2010). While our results are consistent with expectations from 346 

Walker and Syers’ theory about the increase in the proportion of occluded P that occurs at the expense of primary and organic 347 

P during soil development, they do not support Walker and Syers’ ideas regarding the evolution of the labile Pi and moderately 348 

labile Pi pools. The evolution of occluded P is commonly explained by the increase of Al and Fe oxide minerals and the 349 

decrease of soil pH; In addition to being fixed onto Fe and Al oxides, P that is released from primary minerals or mineralized 350 

from organic matter can be occluded by adsorbing to mineral surfaces (Crews et al., 1995; Selmants and Hart, 2010). This 351 

mechanistic understanding is in line with our findings about the dependence of soil P pools on soil pH. However, our results 352 

disagree with the prediction by Walker and Syers’ (1976) model in that labile Pi and moderately labile Pi (non-occluded P in 353 

Walker and Syers’ model) formed significant fractions of total P throughout all soil orders across weathering stages. This could 354 

be due to the coarse classification of weathering stages in our study, which may be insufficient to characterize the end members 355 

of the range. This explanation is supported by the small proportion of 1 M HCl P in the slightly weathered soil and the moderate 356 

amounts of P remaining in strongly weathered soils. The inconsistency may also be due to the fact that Walker and Syers’ 357 

model was based on a system with negligible tectonic uplift, as argued by Buendía et al. (2010). In Buendía et al.’s model, the 358 

primary P pool is replenished by the uplift effect, a prediction that is supported by our finding of considerable primary mineral 359 

P pools occurring across soil weathering stages. 360 

 361 

Effects of soil depth on P pools  362 
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We found that soil P pools varied significantly with soil depth. Total soil P in topsoil was higher than in subsoil due to 363 

biological uplift, which was reported by previous studies (Jobbágy and Jackson, 2001; Porder and Chadwick, 2009). The labile 364 

and moderately labile P pool concentrations (in both inorganic and organic pools) showed a similar trend. In contrast, the 365 

primary P and occluded P concentrations in topsoil were lower than in the subsoil. This can be explained by the fact that topsoil 366 

tends to be more weathered and developed than the subsoil (Achat et al., 2012; Chen et al., 2021). 367 

 368 

4.3 Limitations and prediction uncertainty 369 

In our database, some regions were underrepresented (e.g., northern Canada, middle and northern Asia, and inner Africa), 370 

which may result in low accuracy of the predicted values in those regions. In the tropics, high P soils were overrepresented 371 

and accuracy of predicted values in tropical regions may be quite low. Our database contains four times as many observations 372 

from surface mineral soils (0-30cm) than it does from soils deeper than 30 cm. As such, the predicted concentrations of different 373 

P pools for deep soils may suffer from larger uncertainties. Finally, large portions of variation remain unexplained, especially 374 

variation in soil labile Pi concentrations and proportions (40% and 52% unexplained, respectively), indicating that other factors 375 

that were not accounted for play a role. These factors may include microbial processes, Fe and Al oxide concentrations, plant 376 

community composition, atmospheric deposition, and soil erosion (Kruse et al., 2015; Achat et al., 2016). These limitations 377 

highlight the need for additional measurements, particularly from underrepresented regions and the subsoil as well as 378 

measurements of closely associated variables, especially those related to labile Pi.  379 

 380 

5 Conclusion 381 

Here, we compiled the largest database to date of different soil P pools. Using machine learning modelling, we quantified 382 

the relative importance of multiple predictors for estimating different soil P pools and estimated these pools at the global scale. 383 

Our results indicated that the global concentrations of soil labile Pi, labile Po, moderately labile Pi, moderately labile Po, and 384 

occluded P could be predicted mainly by the total soil P concentration, while primary P concentration was mainly predicted by 385 

soil pH and total soil P concentration. For predicting proportions of total P, soil pH was the most important predictor for all P 386 

pools at the global scale, with the exception of labile Pi proportions, for which soil depth was the main driver. In addition, our 387 

results also revealed significant effects of climate and other edaphic factors on spatial variation in P pools. We concluded that 388 

edaphic properties and climatic factors were significant predictors of soil P pools, including concentration and proportion of 389 

total P. These findings represent a significant step towards improving understanding of global variations in different soil P 390 

pools. Our global maps of predictions of different P pools will be important to efforts to improve global scale biogeochemical 391 

models of the P cycle.  392 

 393 
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Table 1. Summary of training data used to predict soil P pool concentrations. P10 and P90 indicate percentile rank of 10% 648 

and 90%, respectively. Proportions from literature (PFL) and proportions from gridded maps (PFGM) indicate proportions of 649 

measurements from the literature and extracted from global gridded maps, respectively. 650 

Group Variables Unit Min P10 Median P90 Max PFL* PFGM# 

Climate MAT ℃ -12 1.1 12.8 25.7 30.0 96% 4% 

 MAP mm yr-1 10 414 970 2750 5180 96% 4% 

Soil property Total P mg kg-1 4.8 114.0 455.5 1107.9 14973.6 100% 0% 

 SOC g kg-1 <0.1 4.8 24.4 130 545.2 87% 13% 

 Soil pH unitless 3.0 4.2 5.7 8.1 10.5 92% 8% 

 Soil clay  g kg-1 <0.1 70.0 195.5 410.7 945.5 52% 48% 

 Soil sand  g kg-1 <0.1 164.9 420.0 757.6 982.0 49% 51% 

 Depth cm 0.5 4.2 10.0 47.5 450.0 100% 0% 

 Soil order unitless 12 USDA soil orders 80% 20% 

Vegetation Biome unitless 8 major biomes 0% 100% 

Topography Elevation m -2 37 616 3015 4813 85% 15% 

MAT: Mean annual temperature; MAP: Mean annual precipitation; SOC: Soil organic carbon. 651 
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Table 2. Statistical summary of P pools in global (semi-)natural soils. Results based on our collected sites database. P10, 653 

P25, P75, and P90 indicate percentile rank of 10%, 25%, 75%, and 90%, respectively.  654 

  Count Min P10 P25 Median Mean P75 P90 Max 

Concentration (mg kg-1)         

Labile Pi 1722 <0.1 2.2 6.2 14.3 37.1 34.3 78.6 961.5 

Labile Po 1567 0.1 2.5 5.9 14.0 31.1 35.0 85.2 422.0 

Moderately labile Pi 1742 <0.1 4.0 10.0 25.0 58.4 57.7 122.4 4520.9 

Moderately labile Po 1588 0.2 8.3 22.1 60.8 120.3 155.1 333.4 1876.7 

Primary P 1629 <0.1 1.2 4.7 38.9 106.8 145.0 328.3 1560.0 

Occluded P 1453 0.8 34.5 86.2 178.0 260.5 309.6 532.9 2845.4 

Proportion of total P (%)         

Labile Pi 1448 <0.1 0.6 1.7 4.0 5.9 7.7 13.6 54.5 

Labile Po 1331 <0.1 0.8 1.7 4.1 5.9 7.8 13.1 63.4 

Moderately labile Pi 1448 <0.1 0.9 3.0 7.5 9.3 12.9 20.2 55.6 

Moderately labile Po 1384 0.1 3.1 8.0 18.0 19.5 27.1 38.5 74.1 

Primary P 1448 <0.1 0.5 1.6 7.9 19.0 29.4 60.9 95.1 

Occluded P 1448 0.8 15.4 26.8 42.4 41.9 56.4 67.9 92.3 
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Table 3. Coefficients of Pearson correlations among proportions and concentrations of soil P pools. Results based on the 656 

predicted maps for soils at depths of 0-30 cm. Coefficients with P < 0.001 are shown in black and bold. Labile Pi P. indicated 657 

the labile Pi proportion. The same meanings to the Labile Po P., Moderately labile Pi P., Moderately labile Po P., Primary P P., 658 

and Occluded P P..  659 
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Figure 1. Distribution of site-level training data. The database contains 1838 observations covering 12 USDA soil orders 662 

(B) and all major terrestrial biomes (C). 663 
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Figure 2. Relative importance of variables for predicting concentration of soil P pools quantified using random forest 666 

models.Mean decrease accuracy (%IncMSE) indicates the relative importance of each variable for predicting soil P pools. 667 

SWS: soil weathering stage. 668 

 669 
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Figure 3. Relative importance of variables for predicting proportions of soil P pools quantified using random forest 672 

models. Mean decrease accuracy (%IncMSE) indicates the relative importance of each variable for predicting soil P pools. 673 

SWS: soil weathering stage.  674 
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Figure 4. Average concentrations of P pools and their proportions of total soil P concentration across soil weathering 677 

stages and biomes. Labile and moderately labile Po form the organic pool. Results based on global estimates for 0-30 cm 678 

depth. Dry vegetation combines grassland and savanna biomes to simplify the figure. 679 
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Figure 5. Partial dependence plots showing dependence of centralized soil P pool concentrations on predictors. To 683 

simplify comparison, partial dependent analysis results are centralized in this plot. 684 
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Figure 6. Partial dependence plots showing the dependence of soil P pool proportions on predictors. The sum of all six 688 

P pool proportions was standardized to 1, though the sum from partial dependent analysis is usually not equal to 1 due to 689 

uncertainty. 690 
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Figure 7. Global maps of P pool concentrations at depths of 0-30 cm. Note that croplands and other heavily influenced 693 

areas were not masked from the maps, so soils in these areas can be used to represent soils without extensive anthropogenic 694 

activity. 695 
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Figure 8. Global maps of P pool proportions at depths of 0-30 cm. Note that croplands and other heavily influenced areas 699 

were not masked from the maps. 700 
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