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Abstract. The substantial climate change mitigation potential of restoring peatlands, through rewetting and extensifying 

agriculture to reduce greenhouse gas (GHG) emissions is largely recognized. The green deal in Denmark aims at restoring 

100,000 ha peatlands by 2030. This area corresponds to more than half of the Danish peatland, with an expected reduction of 

GHG emissions of almost half of the entire land use, land use change and forestry (LULUFC) emissions. Recent advances 

established the functional relationship between hydrological regimes, i.e. water table depth (WTD), and CO2 and CH4 15 

emissions. This builds the basis for science-based tools to evaluate and prioritize peatland restoration projects. With this article, 

we lay the foundation of such a development by developing a high-resolution WTD map for Danish peatlands. Further we 

define WTD repose functions (CO2 and CH4) fitted to Danish flux data to derive a national GHG emission estimate for peat 

soils. We estimate the annual GHG emissions to be 2.6 Mt CO2-eq, which is around 15% lower than previous estimates. Lastly, 

we investigate alternative restoration scenarios and identify substantial differences in the GHG reduction potential depending 20 

on the prioritization of fields in the rewetting strategy. If wet fields are prioritized, which is not unlikely in a context of a 

voluntary bottom-up approach, the GHG reduction potential is just 30% for the first 10,000 ha with respect to a scenario that 

prioritizes drained fields. This underpins the importance of the proposed framework linking WTD and GHG emissions to guide 

a spatially differentiated peatland restoration. 

1 Introduction 25 

The natural environmental conditions of peatlands represent a waterlogged, anoxic and often acidic soil ecosystem that favours 

the accumulation of organic carbon (C) due to impeded microbial mineralization of plant biomass. During the last centuries, 

anthropogenic induced changes of the environmental conditions have deteriorated the natural functioning of many peatlands 
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across the globe and have transformed them from an atmospheric carbon sink to a carbon source (Huang et al., 2021; Tiemeyer 

et al., 2016; Wilson et al., 2015). Thus, in order to expand arable land, water tables were lowered, soils were limed and 30 

inundation was prevented through establishment of artificial drainage and stream management. This has enhanced microbial 

mineralization and CO2 emissions. In consequence, drained peatlands are accountable for approx. 1 Gt CO2 equivalents (CO2-

eq) per year at global scale, which corresponds to 10% of the total greenhouse gas (GHG) emissions from the land use, land 

use change and forestry (LULUFC) sectors (Smith et al., 2014). It is widely acknowledged that targeted management of 

peatlands is needed to mitigate their contribution to climate change (Hambäck et al., 2023; Wilson et al., 2016).  35 

The emissions of CO2 and methane (CH4) are linked to hydrologic regimes where a deeper water table favours CO2 emissions 

and a very shallow water table permits CH4 emissions (Evans et al., 2021; Tiemeyer et al., 2020). The functional relationship 

between nitrous oxide (N2O) and water table depth is less certain (Tiemeyer et al., 2020), however full saturation is typically 

linked to zero or negligible N2O emissions from organic soils, such as <1 kg N2O ha-1 year-1 (Minkkinen et al., 2020; Wilson 

et al., 2016). It is widely recognised that restoring cultivated peatlands by rewetting is a robust climate mitigation strategy, 40 

although the ecosystems may not reach their natural environmental conditions on short term (Audet et al., 2013; Kandel et al., 

2018). In practice, such restoration implies at a minimum to cease tillage and to reduce artificial drainage, e.g., by deregulating 

streams, blocking of drain pipes and ditches. 

To mitigate agricultural GHG emissions, and to improve nature quality and biodiversity, Danish ministerial agreements were 

launched in 2021 to restore 100,000 ha peatland by 2030. It has been estimated that the total of Danish peatlands (173,000 ha) 45 

emit approx. 5.4 Mt CO2-eq yr-1, which is by far the largest source in the LULUCF sector (Nielsen et al., 2022). Further, it has 

been suggested that the emissions could be potentially reduced by 4.1 Mt CO2-eq through restoration (Klimarådet, 2020). Yet, 

mitigation effects of large-scale peatland restoration remain uncertain, since precise knowledge of the baseline emissions is 

missing, and tools are critically needed to guide the restoration by prioritising areas with the largest GHG reduction potential. 

Oxygen status in the peat soil, as controlled by water saturation, is among the strongest proximal drivers of microbial 50 

mineralization and losses of GHG (Karki et al., 2014). Therefore, large-scale models of water table depth (WTD) in peat soils 

could potentially be a useful proxy for the intensity of GHG emissions, thereby contributing to guide national rewetting 

initiatives (Tiemeyer et al., 2020).  

There exists a suite of tools to model WTD in peat soils, namely process-based and conceptual models as well as data-driven 

machine learning (ML) models. Modelling peatland WTD dynamics using process-based models requires site specific 55 

knowledge on lateral flows of surface- and groundwater as well as correct representation of small-scale variability in 

topography and soil properties (Bechtold et al., 2019; Gong et al., 2012). This poses challenges for large-scale modelling 

applications. However, ML provides a suitable alternative, which can fully exploit available high-resolution geo-environmental 

data sources and thereby bypassing the rigid parameterization and computational requirements of conventional hydrological 

models. There exists a large body of literature addressing the applicability of ML to model site-specific temporal WTD 60 

dynamics. However, to our knowledge, the potential of applying ML to model the spatial WTD variability at high-resolution 

for large domains has only been investigated by few studies. Bechtold et al. (2014) applied boosted regression trees to model 
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a mean annual WTD for peatlands in Germany at a resolution of 25 m. Koch et al. (2019) modeled WTD for extreme winter 

conditions for a 15,000 km2 domain in Denmark by using random forests. This work was later extended to national scale at 10 

m resolution using gradient boosting decision trees for average summer and winter WTD (Koch et al., 2021). At smaller 65 

domains, Lendzioch et al. (Lendzioch et al., 2021) applied a random forest model to simulated WTD for two peat sites in the 

Czech Republic at sub-meter resolution using multi-spectral and thermal UAV data as input.  

The present study is motivated by recent scientific advances in defining WTD response functions of CO2 and CH4 emissions 

and high-resolution ML based WTD modelling. The key objectives of the study are to (1) build a high-resolution ML based 

WTD model for Danish peatlands, (2) define WTD response functions for CO2 and CH4 for Danish conditions, and (3) combine 70 

(1) and (2) to derive national scale GHG emission estimates and to showcase how the new knowledge can be used to support 

peatland restoration.   

2 Data and methods 

2.1 Study area 

The study area covers the entire land area of Denmark, which corresponds to approx. 43,000 km2. In order to restrict the 75 

domain for the data analysis and modelling to an area where WTD driven GHG upscaling may be of relevance, we calculated 

the union of two map layers that include a river valley bottom delineation (Sechu et al., 2021) and a map of wetlands (Greve 

et al., 2014). The two map layers correspond to approx. 775,000 ha and approx. 904,000 ha, respectively, and their union, 

which marks our model domain, amounts to approx. 1,162,000 ha, roughly one fourth of the total land area of Denmark (Figure 

1). For the final analysis, the domain was further constrained to the carbon rich lowland soils. The total area of peat soils with 80 

organic content (OC) greater than 12% constitutes approx. 129,000 ha, of which approx. 74,000 are cultivated, either 

extensively as permanent grassland (65%) or intensively for a variety of crop types (35%) (Greve et al., 2019; Levin, 2019). 

Peat extraction is still taking place sporadically in Denmark. The Danish climate is characterised as temperate with evenly 

distributed precipitation over the year. The Danish Meteorological Institute states the mean annual temperature as 8.7ºC and 

the mean annual precipitation as 759 mm. 85 

2.2 Water table depth 

A total of 24,492 WTD observations were assorted from various sources in order to compile a comprehensive training dataset 

that reflects long-term average summer conditions. WTD observations recorded between the months of May and September 

in the period of 2000 to 2021 were used as training data. Figure 1 depicts the locations of the WTD observations and Table 1 

provides an overview of the different sources and WTD statistics. Data from the Danish well database JUPITER (Hansen and 90 

Pjetursson, 2011) were processed by first constraining the well location to a 200 m buffer around the lowland soils. Second, 

only wells with a maximum filter depth of 5 m below ground were selected. The median WTD was used in case a well had 

multiple observations within the specified period. This resulted in 5,716 WTD observations. The wells are primarily located 
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in the fringe areas and only 132 wells coincide with the OC > 12% class. Moreover, 4,796 WTD observations were obtained 

from two soil auger campaigns (2010 and 2021) that specifically targeted lowland soils with high organic content (Greve et 95 

al., 2014). 653 out of the 4,796 locations sampled in summer 2010 were revisited in summer 2021 and for the double sampled 

locations, the mean WTD was used in the final training dataset. The mean and not the median WTD was calculated for the 

resampled auger sites, because only two measurements were available. The soil augering equipment was limited to a maximum 

depth of 1.21 m and in case the water table was not detected by the auger, information could only be derived for the minimum 

WTD at the given location. In general, the auger and well observations are in fair agreement with each other and show an 100 

average deviation of  0.1 m for sampling locations with a difference of less than 100 m.  Further, 9,980 groundwater dependent 

lakes with a surface area greater than 100 m2 and located within a 200 m buffer around the peatland soils were used as proxy 

WTD observations. Since lake water level observations were missing, values were drawn from a normal distribution with an 

assumed mean of -0.25 m, i.e., above terrain, and a standard deviation of 0.05 m. Additional dummy points for saturated 

conditions were placed along the coastline and the river network. Here, 1,000 points for each category were placed randomly 105 

and assigned a WTD of 0 m. Lastly, dummy points for drained conditions were generated along drain ditches and within 

drained forest. Here, 1000 points for each category were placed randomly and sampled from a normal distribution with a mean 

WTD of 1.21 m and standard deviation of 0.2 m. Under Danish conditions, ditches drain the agricultural land year- round in 

most cases.  Figure 2 depicts the WTD variability of the training dataset differentiated for the data sources. The WTD data 

derived from the national well database was the only source that contained deep WTD observations. The data originating from 110 

the soil coring campaigns provided mostly shallow data; however, 3,110 samples had a WTD of 1.21 m and thereby indicated 

solely a minimum WTD. The WTD of lakes is entirely above terrain, i.e., negative WTD values, whereas coast and rivers were 

assigned a WTD of 0 m. We created a training dataset for summer conditions, because the WTD observations from the soil 

auger campaigns are primarily from summer months and the WTD data from this source represent the primary information on 

the shallow WTD, i.e., top meter below terrain. Based on the WTD observations from the national well database, the median 115 

WTD for summer is 2.0 m whereas the median WTD for winter is 1.75 m, based on the same processing as applied for the 

summer data, just for the months from October to March. The difference of 0.25 m can be understood as an overall annual 

amplitude.  

Based on a data synthesis by Tiemeyer et al. (2020), the WTD driven GHG response functions of CO2 and CH4 emissions 

from organic soils exhibit a non-linear relationship with the most distinct sensitivity in the depth interval of 0 to 0.5 m. In 120 

consequence, we aim at modelling WTD with the highest possible accuracy for this GHG sensitive WTD interval. With the 

same motivation, Bechtold et al. (2014) presented a WTD transformation function that resulted in a pseudo linearity between 

WTD and GHG. For our purpose, the transformation function presented by Bechtold et al. (2014) was adopted to: 

𝑊𝑇𝐷𝑡 =  {
−1 ∗ (𝑒3∗𝑊𝑇𝐷 − 1)

−1 ∗ (1 − 𝑒−3∗𝑊𝑇𝐷)
     

𝑊𝑇𝐷 ≥ 0
𝑊𝑇𝐷 < 0

},     (Eq. 1) 
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where 𝑊𝑇𝐷𝑡  is the transformed WTD. As shown in Figure 2, 𝑊𝑇𝐷𝑡 varies between -1 and 1, and reaches its upper asymptote 125 

at a WTD of approximately 1 m. The applied WTD transformation also allows us to incorporate the 1.21 m WTD data, that 

represent a minimum observation, since the 𝑊𝑇𝐷𝑡  variability above 1 m is minimal.    

2.3 Covariates 

A set of 27 covariates was curated to gather national scale map layers that are deemed relevant to explain the WTD variability 

in the training dataset (Table 2). The individual maps were resampled from their native resolutions to the defined output 130 

resolution of 10 m. The covariates encompassed high-resolution data on topography, water body proximity, lithology, land use 

and hydrology. The water body proximity was expressed as both the vertical and horizontal distance to the nearest water body, 

which contained rivers, lakes, and the coastline. Additionally, the vertical and horizontal distance to the nearest ditch was 

calculated to capture the effect of drainage on WTD in lowland soils. Using the historical crop type records, a six class ranked 

map indicating wetness of agricultural fields was created. The wetness rank represents a qualitative analysis based on 135 

agricultural expert judgement based on the Danish agricultural Land Parcel Information System for approx. 600,000 fields for 

the years 2016 to 2020. Moreover, high-resolution data relevant to discriminate saturation conditions of the soil were obtained 

from Landsat and Sentinel-1 satellite systems, such as land surface temperature (LST), which serves as a valuable proxy for 

water-saturated soil conditions.  

2.4 Machine learning model 140 

We applied the CatBoost implementation of the well-established gradient boosting decision tree (GBDT) algorithm (Dorogush 

et al., 2018; Prokhorenkova et al., 2018). In an additive training process, GBDT builds a prediction model based on an ensemble 

of weak learners, i.e., decision trees. For a pre-defined number of iterations, GBDT attempts to correct itself by adding a 

decision tree trained against the residuals of the ensemble sum of its predecessors. CatBoost is favorable over similar ML 

algorithms, such as Random Forests, Support Vector Machines, or other GBDT implementations (e.g., XGboost or 145 

LightGBM), with respect to computational time and memory usage, while achieving a competitive accuracy (Hancock & 

Khoshgoftaar, 2020; Huang et al., 2019). The model is set up to predict WTD at a resolution of 10 m. Given the areal extent 

of the domain, over 116 million grid cells are simulated by the GBDT model. The cost function used in training the model was 

set to the root mean squared error (RMSE) and key hyper parameters were tuned via a randomized search. The following 

CatBoost hyper parameters were included in a simple randomized search with 2000 iterations: learning_rate, depth, subsample, 150 

rsm, l2_leaf_reg, min_data_in_leaf. The selected hyper parameters affect the overall architecture of individual trees as well as 

limit the effect of overfitting. The best performing model, with respect to a 25% holdout validation was selected for subsequent 

final training. The final GBDT model was trained over 1000 iterations where 10% of the data were used as validation data to 

initiate early stopping once the validation cost function did not improve over 10 iterations. CatBoost allows assigning weights 

to the individual training data, which are used to calculate the cost function. In order to emphasize the GHG sensitive depth 155 

interval 0 to 0.5 m in the model training, a weight of 2 was assigned to shallow WTD observations. 
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The Shapley Additive exPlanations (SHAP) approach (Lundberg and Lee, 2017) was implemented to investigate the covariate 

importance of the trained GBDT model. SHAP builds upon game theory principles to explain the output of any ML model by 

quantifying marginal contributions of the applied covariates. SHAP values represent the contribution of each covariate to the 

final prediction and thereby provide valuable insights into trained ML models. The magnitude and sign of the SHAP values 160 

indicate the importance of a covariate and the direction of impact on the prediction, respectively. We calculated SHAP values 

(i) for the training dataset to get insights into the trained GBDT model and (ii) for the prediction dataset to generate maps 

showing the relationships between covariates and WTD. 

2.5 Synthesis and upscaling of Danish GHG flux data 

The first measurements of CO2 fluxes from cultivated peat soils in Denmark were performed in the 1970s using an in situ 165 

alkaline CO2 trap method (Petersen et al., 1976), but it was not until 2008-2009 that a national monitoring campaign was 

accomplished, where net fluxes of CO2, CH4 and N2O were measured at eight sites using closed chamber techniques (Elsgaard 

et al., 2012; Petersen et al., 2012). Data on net ecosystem carbon balance from this campaign (Elsgaard et al., 2012) is used as 

the current Tier 2 emission factors (EFs) for organic soils with >12% OC in Denmark’s National GHG Inventory report 

submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol (Nielsen at al., 2021). 170 

National campaigns have not been repeated, but a number of research projects have generated additional data on annual 

emissions of GHGs from Danish organic soils. A synthesis of these studies was performed in the present study (Supplementary 

Tables S1 and S2) and the data was used to derive response functions for GHG emissions in relation to WTD at mean annual 

conditions.  

For analyzing CO2 emissions, we employed a non-linear Gompertz function according to Tiemeyer et al. (2020): 175 

𝐶𝑂2‐ 𝐶(𝑊𝑇𝐷) = 𝐶𝑂2‐ 𝐶𝑚𝑖𝑛 + 𝐶𝑂2‐ 𝐶𝑑𝑖𝑓𝑓 ∗ 𝑒−𝑎∗𝑒𝑏∗𝑊𝑇𝐷
  (Eq. 2) 

where 𝐶𝑂2‐ 𝐶𝑚𝑖𝑛  is the lower asymptote, 𝐶𝑂2‐ 𝐶𝑑𝑖𝑓𝑓  is the difference between upper and lower asymptote, a controls the 

displacement along the WTD axis and b defines the gradient. Indirect CO2 emissions from leaching of dissolved organic carbon 

(𝐶𝑂2‐ 𝐶𝐷𝑂𝐶) were added to Eq. 2, based on standard EFs of 0.31 Mg C ha-1 for drained soils and 0.24 Mg C ha-1 for rewetted 

soils (IPCC, 2014).   180 

For analyzing CH4, emissions, we fitted an exponential WTD response function according to Tiemeyer et al. (2020) and Evans 

et al. (2021): 

𝐶𝐻4(𝑊𝑇𝐷) = 𝐶𝐻4 𝑚𝑖𝑛 + 𝑐 ∗ 𝑒−𝑑∗𝑊𝑇𝐷    (Eq. 3) 

where 𝐶𝐻4 𝑚𝑖𝑛 is the lower asymptote while c and d control the shape of the exponential function (Tiemeyer et al., 2020). The 

Danish sites, for which CH4 emission data were available, represented drained and restored cropland and grassland, where the 185 

water level at least under experimental conditions was close to surface. Methane emission from ditches (CH4 ditch) were 

estimated, by considering a fraction of the land, i.e., 10%, where drainage ditches are located. Opposed to Tiemeyer et al. 

(2020), who applied a ditch fraction parameter for all grids, we only included grids that are actually containing a ditch. The 



7 

 

location of the ditches was derived based on publicly available datasets. Given the applied grid size of 10 m, this corresponds 

to an averaged drainage ditch dimension of 1 m, which can be considered very suitable for Danish conditions. The applied EFs 190 

for CH4 ditch were 1,165 kg CH4 ha-1 yr-1 for cropland and 948 kg CH4 ha-1 yr-1 for grassland (IPCC, 2014).  

Data for N2O emissions showed no systematic WTD dependence and in consequence, land use specific EFs were applied. We 

applied the EFs from Wilson et al. (2016) as updated from the IPCC (2014) wetlands supplement: 13.0 kg N2O-N ha-1 yr-1 for 

cropland, 4.7 kg N2O-N ha-1 yr-1 as average for grassland (deep/shallow drained, nutrient rich/poor) and 0.1 kg N2O-N ha-1 yr-

1 for rewetted organic soils.  195 

All GHGs were converted to CO2-eq using their global warming potential (GWP) over a 100 year period according to the 6th 

IPCC assessment report (Forster et al., 2021) where 1 kg CH4 = 27 kg CO2 and 1 kg N2O = 273 kg CO2. For applying the land 

use specific EFs and WTD response functions, we used a 2020 land use classification for Denmark (Levin & Gyldenkærne, 

2022). Based on the available WTD observations, the WTD map captures a long-term average summertime condition. Since 

the applied GHG upscaling method is based on annual mean WTD, a scaling parameter is subtracted from the summertime 200 

WTD map to obtain an annual average. As described in section 2.2 the annual variability is estimated to be 0.25 m. In order to 

correct for seasonality, 0.125 m was subtracted from the summer WTD map. Negative values were set to zero.   

3 Results 

3.1 Water table depth model 

The hyperparameter tuning of the GBDT model resulted in the following results: depth = 10, learning_rate = 0.05, subsample 205 

= 0.8, rsm = 0.8, min_data_in_leaf = 1 and l2_leaf_reg = 5. The GBDT model was trained against WTD t, but throughout the 

manuscript results and analysis are based on the back transformed variable WTD. Figure 3 depicts the final simulated WTD 

map that represents a long-time average summertime condition for the period of 2000 to 2021 for Åmosen, which is one of the 

largest peatlands in Denmark. For the visual assessment, a colour scheme that emphasizes the depth interval of 0 to 1 m has 

been selected. Even though WTD is simulated for a larger domain (lowland soils and river valleys), only grid cells with OC > 210 

12% are shown, since the applied GHG upscaling method is only valid for such conditions. The WTD map discloses a distinct 

spatial heterogeneity with fully saturated conditions laying in very close vicinity to well drained conditions.  

We applied SHAP to investigate feature importance of the trained GBDT model for the well and auger WTD observations, 

i.e., excluding the dummy points (Figure 4). The six most important covariates were, ordered in high to low importance: 

horizontal distance to water bodies, horizontal distance to ditches, vertical distance to water bodies, wetness rank based on 215 

cropping history, clay content of the deepest soil horizon and land surface temperature (LST). Negative SHAP values are 

associated to negative impact, i.e., more shallow WTD and positive SHAP values are linked to a deeper water table. Locations 

close to water bodies exclusively possess negative SHAP values whereas locations with a large horizontal distance to the 

closest water body have both negative and positive SHAP values. The SHAP values for the horizontal distance to drain ditches 

are separated with positive values (producing a deeper WTD) for low distances, which clearly reveals the functioning of the 220 
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added dummy points representing well drained conditions along the drain ditches. The interpretation of the SHAP values for 

the vertical distance to water bodies is that WTD does not follow small scale topographical variation and instead the water 

table has a smoother variation than topography, which results in a deeper WTD (positive SHAP value) for areas with a high 

vertical distance to the nearest water body. The wetness classes based on the cropping classes show a clear WTD sensitivity, 

where the low ranks, which are linked to crops that favor well-drained conditions possess positive SHAP values and the wet 225 

classes relate to a negative impact on the simulated WTD. A high clay percentage produces a positive impact on the prediction, 

i.e., deeper WTD. LST also shows a clear link to WTD, with higher values yielding a deeper WTD and lower LST resulting 

in more water saturated conditions.  

Figure 3 exemplifies three of the seven listed covariates (i.e., LST, wetness rank and vertical distance to nearest water body) 

to elucidate key connections between model input and output. For LST (Figure 3b), there is a direct relationship, with lower 230 

LST in areas of high saturation caused by either evaporative cooling of the land surface due to high water availability or 

enhanced heat conductance towards deeper layers for wet soils, whereas deeper water tables, i.e., drier conditions, are 

collocated with higher LST. Further, we observe a good agreement between WTD and the wetness rank, derived from the 

cropping history from 2016 to 2020 (Figure 3c). Fields with crops associated with a wet rank, i.e., permanent poor grassland 

with low nitrogen application rates, are associated with a low WTD, while crops that require drainage, e.g., winter wheat, 235 

potatoes or sugar beet, are found at fields with a deeper WTD. The agronomic requirements reflected by the ranked wetness 

map, are characterized by plausible mean WTD, which show consistent differences between each other. For the entire domain, 

the mean WTD values for the three wettest categories are below 0.4 m, whereas the three dry categories have a WTD of 0.65 

m and deeper. LST and wetness rank are to some degree connected to each other, with a lower LST for crops with a higher 

wetness rank. However, exceptions are found for drained forests that are associated with a low LST and a low wetness rank. 240 

Topographical variability is generally low in peatlands. Nevertheless, the vertical distance to the closest waterbody reveals 

small-scale topographical features that effect the simulated WTD (Figure 3d).  

Figure 5 depicts the spatial distribution of SHAP values for the same three covariates substantiates previous findings (Figure 

4). High LST has a positive impact on the prediction resulting in deep WTD and low LST has a negative impact on the 

prediction. In the case of drained forest, which has a low LST, the negative impact of LST is overruled by the positive impact 245 

of the crop based wetness rank. The latter shows a very clear separation of negative impact for the wet ranks and positive 

impact for the dry ranks. The negative impact of the vertical distance to the nearest waterbody is predominately limited to 

locations that are actually river or lake grids. A distinct positive impact is found for locations with a high vertical distance.  

In order to assess the overall accuracy of the WTD map, we conducted a five-fold cross validation experiment. For this, five 

GBDT models were trained using 80% of the data for training and 20% of the data was held back for validation. The five 250 

validation datasets were sampled so each WTD observation served exactly once as validation data. Figure 6 presents the scatter 

density plot of observed and simulated WTD both, a) including and b) excluding the dummy points, for the five validation 

datasets. The effect of the WTD transformation and the weighting scheme of WTD data in the depth interval of 0 to 0.5 m 

becomes apparent. The model shows the best accuracy for the shallow water table interval, whereas the performance 
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deteriorates below a WTD of 1 m. The poor performance of WTD below 1 m can be explained by the transfer function which 255 

hinders the GBDT model to discriminate WTD variability below a WTD of 1 m. In the case of WTD driven GHG upscaling, 

this is acceptable since the WTD response functions are not sensitive to changes in WTD deeper than approx. 0.5 m. The 

scatter plot reveals that the dummy points with zero and negative WTD, i.e., above terrain, are generally represented quite well 

by the GBDT model. Taking only the well and auger WTD observations into consideration, a slight bias for the shallow WTD 

observations becomes evident.  260 

Table 3 quantifies the performance of the GBDT model for the five-fold cross validation test both including and excluding the 

dummy points. The performance for the well and auger observations for the top 0.5 interval shows a bias of -0.2 m. Also taking 

dummy points into consideration, the bias of the top 0.5 m interval and the 0.5 to 1 m interval was -0.05 m and 0.08 m, 

respectively. We consider the validation excluding the dummy points as the more relevant performance quantification for the 

given application. For the deeper intervals the metric scores are comparable for the entire trainingsdataset and the subset based 265 

on exclusively well and auger data. WTD deeper than 1 m perform worst on all stated metrics, which underpins the visual 

assessment of Figure 6. 

For the entire model domain, the GBDT model predicts a WTD interval sensitive to GHG variability, i.e., below 0.5 m, for 

36% of the area. For the delineated peat soils, with OC >12%, this area amounts to 54%. After correcting from summer to 

annual conditions, i.e., subtracting 0.125 m (half the mean annual amplitude), these area estimates increase to 45% and 64%, 270 

respectively. For agricultural areas with OC >12% the mean WTD is 0.49 m with a standard deviation of 0.35 m which 

underpins the distinct WTD variability in peatlands, also within the range of WTD associated with high sensitivity of the 

resulting emissions of CO2, CH4 and N2O. 

3.2 Danish greenhouse gas response functions 

The parametrisation of the fitted WTD driven response functions for CO2 and CH4 emissions (Figure 7) showed a systematic 275 

relationship where CO2 emissions increased with increasing WTD between 0 and 0.4–0.5 m before reaching an asymptotic 

level of 10 Mg CO2-C ha-1 yr-1. The fitted parameters are as follows: 𝐶𝑂2‐ 𝐶𝑚𝑖𝑛 = 1.132, 𝐶𝑂2‐ 𝐶𝑑𝑖𝑓𝑓  = 10.903, a = 6.415 and b 

= 14.183. CH4 emissions were consistently negligible at WTD depths below 0.2–0.3 m, but increased at higher WTD to 

emissions of up to 0.8 Mg C ha-1 yr-1. However, it is clear that a shallow WTD does not necessarily cause high CH4 emissions, 

but rather provides a window of opportunity for methane fluxes to the atmosphere. The fitted parameters are as follows: 280 

𝐶𝐻4 𝑚𝑖𝑛 = -21.48, c = 258.83 and d = -5.16. N2O emissions were not modelled, but average values for observations at WTD 

>0.3 m (n = 19) and <0.3 m (n = 6) were 13.3 and 3.8 kg N ha-1 yr-1, respectively, thus representing a magnitude similar to 

IPCC EFs, although somewhat higher as compared to the rewetted category (Wilson et al., 2016).  

3.3 Upscaled greenhouse gas emissions 

GHG emissions can be estimated based on the following, (1) the GHG upscaling method presented in section 2.5, (2) the long-285 

term annual average WTD map, (3) a land use map and (4) a map delineating the drainage ditches. With a spatial resolution 
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of 10 m, the WTD maps open the possibility to estimate GHG at equally high resolution. However, given the apparent 

uncertainties in the WTD map as well as in the WTD response functions, GHG are aggregated to national scale. 

For the approximately 74,000 ha with OC >12%, the total emission of the three gasses CO2, N2O and CH4 amounts to 2.6 Mt 

CO2-eq. Figure 8 depicts the relationship between WTD and the estimated GHG emissions, expressed as emission factor 290 

converted to CO2-eq. Emissions of CO2 dominate the GHG budget at WTD deeper than approx. 0.1 m, whereas methane 

emissions become dominating at WTD closer to the soil surface. The contribution from CH4 emissions is apparent, starting 

from a WTD of approx. 0.3 m, whereas low CH4 emissions for deeper WTD are related to the minor CH4 ditch component which 

is not WTD dependent and takes place throughout the lowland soils. N2O emissions have no WTD response function and thus, 

emissions are rather constant across the WTD variability. Spatial heterogeneity of N2O emissions is based on the applied land 295 

use specific emissions factors which may indirectly be linked to WTD variability, which results in a slight decrease of N2O 

emissions with decreasing WTD. Based on the minimum of total GHG emissions shown in Figure 8, a WTD of approx. 0.04 

m can be identified as the optimal WTD for minimal GHG emissions, i.e., 5.6 CO2-eq Mg ha-1 yr-1. Yet, the exact numbers 

should be viewed as indicative, since for example the possibility of negative CO2 emissions at low WTD depends on the 

presence of wetland vegetation. Nevertheless, even in the absence of negative CO2 emissions, the data indicates that an optimal 300 

rewetting strategy should aim at a WTD at a range between 0 and 0.1 m WTD to balance the trade-off between CO2 and CH4 

emissions.  

Table 4 states the emission factors for the three considered land use classes. The emission factors for N2O are in direct 

agreement with the ones stated in section 2.5 whereas the emission factors for CO2 and CH4 are affected by the modelled WTD 

variability. In total, based on area, but also emission factor, cropland dominates the GHG emissions of peatlands in Denmark. 305 

As expected, emission factors from rewetted peat soils are lowest.      

3.4 Rewetting scenarios 

The combination of a high-resolution WTD map and WTD response functions of GHG emissions allows to evaluate the effects 

of alternative rewetting scenarios. For this, it is assumed that the WTD of an agricultural field can be changed to the optimal 

WTD, allowing a reduction of total GHG emissions to 5.6 CO2-eq Mg ha-1 yr-1 (Figure 8). Figure 9 shows the results of three 310 

rewetting scenarios and a theoretical baseline as functions of the peatland area that is rewetted with a maximum of 74,000 ha. 

The baseline expresses the theoretical maximum emission reduction with the assumption that all agricultural fields are 

originally well drained and thus having a uniform reduction of 36.8 CO2-eq Mg ha-1 yr-1, which expresses the reduction from 

the maximum asymptote to the minimum of the total GHG curve in Figure 8. In the three rewetting scenarios the reference 

emissions are derived from the WTD response functions and thus, many agricultural fields have a lower reference emission 315 

than the baseline, which will result in a decreased emission reduction with respect to the baseline. The first scenario prioritises 

wet fields in the restoration, i.e., the agricultural fields with the lowest mean WTD are prioritised in the rewetting strategy. 

This scenario can be regarded pessimistic with respect to the expected GHG emission reduction. The second scenario prioritises 

the dry fields with the lowest mean WTD, which in turn can be considered an optimistic scenario. The third scenario selects 
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fields in random order and lies in between the optimistic and the pessimistic scenarios. The prioritization order is based on 320 

over 79,000 digitized fields (Figure 3) and the WTD of an entire field is set to 0.04 m for calculating the reduction in GHG 

emissions. In case the entire peatland area is rewetted the reduction in GHG emissions is estimated to be 2.0 CO2-eq Mt yr-1 

by all three scenarios . However, we observe large discrepancies between the restoration scenarios if only a fraction of the total 

peat area is rewetted. Prioritising dryer fields provides a high reduction already starting with the first rewetted fields whereas 

prioritising wet fields shows little reduction. In fact, the reduction potential in the wet scenarios is just 30% of the dry scenario 325 

for the first 10,000 ha. A deviation of 50% between wet and dry scenario is first exceeded for a rewetting area of above 20,000 

ha. The random scenario lies in between the optimistic and pessimistic scenarios with a linear emission reduction of 26.1 Mg 

CO2-eq ha-1 yr-1
. The reduction factor of the random scenario is 10.7 Mg CO2-eq ha-1 yr-1 lower than the baseline scenario. This 

relates to the WTD map that introduces spatial variability in the random scenario opposed to the fully drained conditions 

assumed in the baseline scenario.  330 

4 Discussion and conclusion 

Machine learning can utilize the broad spectrum of geo-environmental big data to model WTD at national scale of Denmark 

with a reasonable accuracy, taking the quality of available WTD observations into consideration. The five-fold cross validation 

experiment revealed an acceptable residual variance for the most shallow WTD interval (MAE of 0.08 m). Despite all efforts 

to finetune the GBDT model to perform well for the shallow WTD interval, a considerable residual variance (MAE of 0.27 m) 335 

was evident when only taking the well and auger WTD observations into consideration. As a consequence of the applied WTD 

transformation, performance decreased substantially for the deeper WTD. Similar findings were documented by Bechtold et 

al. (2014), which are mainly related to the applied WTD transformation. However, several sources of uncertainties remain to 

be addressed, such as the difficulties to model a long-term average WTD based on a heterogenous training dataset containing 

observation from summer months from different years. The training dataset has been curated to represent a steady-state model, 340 

despite evident WTD fluctuations in peatlands that quickly response to precipitation events. Future work should aim at 

reducing uncertainties homogenizing WTD observations, e.g. by normalizing to climate variability, to derive a more 

representative training dataset. Moreover, WTD observations from several sources are joint for curating the training dataset. 

We find a fair agreement between the auger and well WTD observations with a deviation of 0.1 m for sampling points in close 

vicinity to each other.    Despite the above-mentioned challenges and uncertainties, we believe that the comprehensive training 345 

dataset provides meaningful information to the GBDT model to predict an average summertime condition. 

The SHAP analysis revealed that topography, water body proximity and land use were the most important covariates in the 

trained GBDT model. Similar findings were reported by other WTD ML-based modelling studies (Bechtold et al., 2014; Koch 

et al., 2019). The sign and magnitude of the SHAP values provided detailed knowledge on how covariates are linked to WTD. 

Similar findings have been obtained by Bechtold et al. (2014) applying partial dependence plots. In contrast to Koch et al. 350 

(2019, 2020), who modelled WTD over the entire land phase of Denmark, we found geology related covariates less informative 
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for modelling exclusively peat soils. It remains unresolved if this relates to poorer quality of lithological and geological 

information in peatlands or if peatland hydrology processes are predominately controlled by topography and waterbody 

proximity.               

The Gompertz parametrization of the WTD response function for CO2 for Danish organic soils (Figure 6) was strikingly similar 355 

to the parametrization based on a larger German dataset (Tiemeyer et al., 2020). Hence, applying the parameters from Tiemeyer 

et al. (2020) in our upscaling study resulted in CO2 emissions that deviated by just 1% on average with respect to the CO2 

emissions based on the Danish Gompertz parametrization. This underlines the strong and consistent effect of WTD as a driver 

of CO2 emissions from organic soils across climatic and agroecological conditions. Similar conclusions were reached when 

comparing our parametrization of the CH4 response function with the German parametrization (Tiemeyer et al., 2020).      360 

Although, supported by the present study and Tiemeyer et al. (2020), the asymptotic WTD response curve for CO2 emissions 

may not be universally applicable. Evans et al. (2021) analysed CO2 emissions, based on published eddy covariance studies 

on boreal and temperate peatlands, and suggested a linearly increasing emission with increasing WTD. The Danish CO2 data 

presented here are predominately in the linear range of the Gompertz function (0 – 0.5 m). In Figure 7 we present a linear 

model fitted to the Danish CO2 data and contrast it to the applied Gompertz function. The fitted model possesses a slope of 365 

11.29 Mg CO2-eq ha-1 yr-1 m-1 and an intercept of 2.75 Mg CO2-eq ha-1 yr-1. The positive intercept is disputable and is not in 

line with Evans et al. (2021) and the general assumption that organic carbon accumulates under fully saturated conditions. 

When assessing the fit between modelled and observed CO2 we find a favourable correlation coefficient when evaluating the 

Gompertz model over the linear model. Future research should target measuring GHG emissions at sites with a shallow 

unsaturated zone in order to be able to make a more profound evaluation of the potential of developing a linear model for the 370 

WTD response function of CO2.  Additionally, GHG emissions at thick unsaturated peat soils are required to investigate how 

a linear response function can be extrapolated to deeper WTD. Nevertheless, if taking the actual peat depth into consideration, 

which can be considered a lower boundary of the response functions, applying a linear model may provide comparable results 

in the present analysis. However, a high-quality peat depth map is required to substantiate this statement. Both studies, Evans 

et al. (2021) and Tiemeyer et al. (2020), provide similar findings for the shape of the CH4 response function, which can be 375 

further substantiated by the Danish flux data. 

 

A sensitivity analysis of the WTD bias as well as the choice of WTD response model has been conducted to underpin the 

discussion points presented above. As an additional sensitivity analysis, we also addressed the short-term effects of rewetting 

strategies by applying a 20-year GWP complementary to the 100-year GWP presented in the main results. The results of the 380 

three scenarios are presented in Table 5 and compared to the already presented results. In the GWP20 scenario, we changed 

the GWP for CH4 from 27 kg CO2 to 81 kg CO2 (Forster et al., 2021). The overall annual GHG emission increased to 2.8 Mt 

CO2-eq yr-1 and since the CH4 contribution is highest for shallow WTD the reduction potential is lower in this scenario.  

We found a ME of -0.2 m for the uppermost WTD interval, indicating that the GBDT model simulated the water table too 

deep. In the WTD bias scenario, the WTD map is bias corrected across the entire domain. The resulting WTD map is closer to 385 
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the surface and results in a lower overall emission estimate of 2.0 Mt CO2-eq yr-1. The differences between wet and dry 

rewetting scenarios are large, because many areas will have a WTD very close to 0 after bias correction and thereby a reduction 

potential close to 0. This sensitivity analysis represents a simple bias correction of the WTD map whereas a true improvement 

of the WTD map would likely require an enhanced WTD trainingsdataset with lower uncertainties.  

Applying the linear CO2 WTD response function, the overall GHG emission estimate increases slightly to 2.8 Mt CO2-eq yr-390 

1. The very shallow and deep WTD intervals possess an increased CO2 emission compared to the Gompertz model, whereas 

the intermediated WTD interval (0.2 – 0.6 m) has a decreased CO2 emission, but these changes outweigh each other. The 

reduction potential is much lower, which has to be interpreted with caution, because of the positive intercept of the linear 

model. The differences between wet and dry rewetting scenarios are large, due to high CO2 emissions when simply 

extrapolating the linear WTD relationship to WTD > 1m. 395 

N2O emissions factors were not updated by our study, and instead IPCC emission factors were used (Wilson et al., 2016). 

However, the synthesized Danish N2O data presented herein suggested average emissions for observations at WTD >0.3 m (n 

= 19) and <0.3 m (n = 6) to be 13.3 and 3.8 kg N ha-1 yr-1, respectively. These figures are very comparable to the ones presented 

by Wilson et al. (2016).  

The official Danish national inventory has reported an emission of 3.00 Mt CO2-eq from soils with OC >12% (Nielsen et al. 400 

2022), which is 15 % higher than our estimate. The green deal in Denmark was guided by the Danish council on climate change 

who conducted estimations of the potential reduction in GHG emissions as a consequence of large-scale peatland restoration 

(Klimarådet, 2020). For peatland soils with OC > 12%, a reduction potential of 2.71 mil. Mt CO2-eq yr-1 was assessed. Our 

findings (2.0 Mt CO2-eq ha-1 yr-1) are considerably lower, and the difference can be attributed to the fact that our results are 

based on a lower baseline which considers the WTD map instead of assuming fully drained conditions. The distinct difference 405 

of 31% between the fully drained baseline and the WTD driven reduction potential is also clearly visible in Figure 9. Reflecting 

on the assessed restoration scenarios, it may be assumed that the “prioritized wet” scenario is most realistic, since this scenario 

prioritises marginal wet fields of low economic value in the restoration order. This sheds a pessimistic outlook on the mitigation 

potential when only restoring a fraction of entire peatland. At the same time it emphasizes the value our framework which can 

guide peatland restoration to be most effective.  410 

Many of the agricultural organic soils in Denmark have been drained for years. As stated in Greve et al. (2014), a substantial 

loss in the area qualifying as OC > 12% is recorded. The organic soil map by Greve et al. (2014) was created based on measured 

data in 2010 with a definition of a minimum depth of 0.3 m organic layer, which resulted in the delineation of the 74,000 ha 

with OC > 12% used in this study. A further reduction in the area with organic soils with this minimum definition is likely to 

have occurred. As a consequence, it is disputable that the Gompertz function can be applied to all the currently reported 74,000 415 

hectares. Thus, the WTD function should only be used for those cases where the WTD is in the organic layer. If the WTD is 

deeper (e.g., in a sand layer) then the depth of the peat should be the lower boundary to derive an effective WTD to be used in 

the model. Along these lines, it can be expected that adding data on peat depth, the estimated GHG emissions will likely be 
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lower. Therefore, combining the present data analysis with a map of peat depth at national scale would provide a further step 

towards a consolidated estimate of GHG emissions from Danish organic soils.   420 

The applied WTD response functions for CO2 and CH4 yield emissions at a scale corresponding to the applied WTD map. In 

our case, the 10 m resolution of the WTD map provides high-resolution GHG estimates that could allegedly support sub-field 

restoration projects. Taking all uncertainties into consideration, we do not support such a spatially differentiated application. 

However, due to the non-linearity of the response functions and the distinct spatial heterogeneity of WTD, an initial high-

resolution assessment is required before aggregating the results. Future work should address the relationship between scale 425 

and uncertainty of the proposed GHG upscaling framework to identify the representative scale at which the upscaling model 

has a potential for obtaining a predictive accuracy corresponding to a given acceptable accuracy (Refsgaard et al., 2016).    

Our restoration scenarios (Figure 9) only comprise a rewetting of the domain and, in fact, peatland restoration is a much wider 

management term that covers various ecosystem services, such as biodiversity and nutrient retention (Andersen et al., 2017; 

Hambäck et al., 2023). Thus, peatland restoration is not exclusively targeting climate change mitigation with a broad suite of 430 

measures.     

We draw the following main conclusion from out work. 

• The WTD model reveals that 64% of the Danish peatland with OC > 12% has a WTD in the depth interval sensitive 

to GHG emission (0 – 0.5 m). 

• The fitted WTD response functions and emission factors for Danish conditions are in good agreement with the 435 

international literature.   

• The 74,000 ha farmed peatland with OC > 12% emit 2.6 Mt CO2-eq, which is 15% lower than the officially reported 

national emission in 2020. A total rewetting would decrease the GHG emissions by 77%.  

• The order in which peatland is rewetted has substantial implications for the expected GHG reduction and well drained 

fields should be prioritized to achieve the highest effect.  440 
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List of figures 

 

Figure 1: a) map of Denmark, b) including the island Bornholm, indicating the entire domain of the WTD model (lowland & river 560 
valley) and the focus area with organic content (OC) > 12%. c) zoom into Åmosen with different sources of WTD data. The WTD 

data sources are not differentiated in a) and simply shown as black dots. Location of c) shown in a). d) overview figure indicating 

the location of Denmark in Northern Europe.   



20 

 

 

Figure 2: Variability and frequency of the analysed WTD data with respect to their sources. Dashed line indicates the transfer 565 
function yielding transformed WTD (WTDt) on the secondary y-axis.    
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Figure 3: a) The modelled WTD map at 10 m resolution for Åmosen, same zoom as Figure 1 c). Three key covariates: b) land surface 

temperature (LST), c) wetness rank derived from the 2016 to 2020 cropping history and d) vertical distance to nearest water body 

(river, lake or coast). Polygon showing the delineation of agricultural fields is added to all panels.    570 
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Figure 4: SHAP values for the six most important covariates based on an analysis using all well and auger WTD observations. The 

SHAP value interprets the covariate’s impact on the prediction. The violine plots are colour coded based on the stacked values of 

the covariates and the height indicates the density of the data.  
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Figure 5: SHAP values for the prediction dataset shown for three selected covariates: a) LST, b) cropping history- ranked wetness 

and c) vertical distance to nearest waterbody. Results are shown for Åmosen, same zoom as Figure 1 c) and Figure 3.  
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Figure 6: Density scatter plots, with 0.2 m bins, for the applied five-fold cross validation test. Dashed line represents the 1:1 line 580 
between observed (obs) and simulated (sim) WTD. The colourbar indicates the data count for each bin. In a) all WTD data are 

plotted and in b) only a subset containing the well and auger observation are shown for the WTD interval of 0 m to 1 m.   

 

Figure 7: Annual net ecosystem carbon balance of CO2 (left panel) and emissions of CH4 (right panel) in Danish organic soils plotted 

against mean water table depth (WTD). For CO2, a Gompertz model (solid line) and a linear model (dotted line) have been fitted. 585 
For CH4 an exponential model has been fitted. Sources of data are shown in Supplementary Table S1.  
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Figure 8: The relationship between greenhouse gas emissions (CO2, CH4 and N2O) and WTD. The emissions are stated in CO2 

equivalents applying 100 year global warming potentials: 1 kg CH4 = 27 kg CO2 and 1 kg N2O = 273 kg CO2. 

  590 
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Figure 9: The estimated reduction of GHG emissions in CO2 equivalents as a function of rewetted peatland. Four scenarios are tested 

to investigate the potential mitigation effect of alternative rewetting strategies. The red arrows visualize the differences between the 

wet and dry prioritization scenarios..   

  595 
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List of tables 

Table 1: WTD observations used as training data with information on number of data (n), WTD mean and standard deviation (std). 

Source marked with asterisk represent dummy points.  

Source n mean [m] std [m] 

Coast* 1000 0 0 

Ditch* 1000 1.21 0.2 

Forest* 1000 1.21 0.2 

Lake 9980 -0.25 0.05 

River* 1000 0 0 

Cores 4796 0.96 0.39 

Well 5716 2.12 1.09 

 

Table 2: Covariates used in the WTD model. Covariates marked with asterisk are categorical.   600 

Category Covariate Source 

Topography & water 

body proximity 

Elevation 

Digital Elevation Model (2018) 

provided by the Danish Agency for 

Data Supply and Infrastructure 

(SDFI)  

Vertical distance to river/lake/coast 

Horizontal distance to river/lake/coast 

Vertical distance to drain ditches 

Horizontal distance to drain ditches 

Terrain slope 

Lithology 

Clay percentage in 4 soil horizons Adhikari et al. (2013) 

Clay thickness Stisen et al. (2019) 

Soil map* Pedersen et al. (2011) 

Landscape types* Madsen et al. (1992) 

Organic content Greve et al. (2019) 

Landsat 

Land surface temperature 

Potapov et al. (2020)  

Normalized difference vegetation index 

Normalized difference water index 

Modified normalized difference water index 1 

Modified normalized difference water index 2 

Sentinel 1 

Global backscatter model - vv 
Bauer-Marschallinger et al. (2021) 

Global backscatter model - vh 

Water & wetness Copernicus 

Land Use 

Land use map* Parente et al. (2021) 

Cropping history - ranked wetness Aarhus University - DCE 

Degree of urbanization SDFE 

Forest - wet/dry Levin (2019) 

Hydrological model mean summer WTD at 100 m Henriksen et al. (2020) 
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Table 3: Performance of the five-fold cross validation test for three depth intervals assessed by three metrics: Mean error (ME), 

mean absolute error (MAE) and root mean squared error (RMSE). Only well and auger WTD observations were considered for the 

evaluation.  The metric scores for all data, including the dummy points, are stated in brackets.   

Interval [m] ME [m] MAE [m] RMSE [m] 

0 – 0.5 -0.20 (-0.05) 0.27 (0.08) 0.38 (0.16) 

0.5- 1 0.07 (0.08) 0.31 (0.31) 0.39 (0.39) 

> 1 0.85 (0.79) 0.91 (0.85) 1.23 (1.15) 

 

Table 4: The implied emission factors for CO2-Corganic, CH4 organic, N2O-Norganic and total greenhouse gas (GHG) emissions applying 605 
100 year global warming potentials: 1 kg CH4 = 27 kg CO2 and 1 kg N2O = 273 kg CO2. The applied land use map is derived from 

Levin and Gyldenkærne (2022). 

Land use 
Area  

[ha] 

CO2-Corganic  

[Mg C ha-1 yr-1] 

CH4 organic 

[kg CH4 ha-1 yr-1] 

N2O-Norganic 

[kg N ha-1 yr-1] 

GHG 

[CO2-eq ha-1 yr-1] 

Cropland 56249 9.4 19.5 13.0 40.3 

Grassland 11238 7.4 59.2 4.7 30.6 

Rewetted 4904 -0.3 193.7 0.1 4.1 

 

Table 5: Overview of the estimated GHG emissions and reduction potentials for the wet and dry prioritization scenarios. The 

sensitivity of the presented results with respect to the applied global warming potential (GWP), WTD bias and the applied 610 

WTD response function for CO2 is assessed.   

Mt CO2-eq yr-1 
Presented 

Results 

Scenario: 

GWP20 

Scenario: WTD 

bias 

Scenario: linear CO2 

model 

GHG emission 2.6 2.8 2.0 2.8 

Reduction potential 2.0 1.4 1.4 1.1 

Prioritized wet (dry) 

reduction: 10,000 ha 
0.1 (0.3) 0.1 (0.2) 0.0 (0.3) 0.0 (0.4) 

Prioritized wet (dry) 

reduction: 20,000 ha 
0.3 (0.7) 0.2 (0.5) 0.0 (0.7) 0.1 (0.6) 

Prioritized wet (dry) 

reduction: 50,000 ha 
1.2 (1.6) 0.9 (1.1) 0.6 (1.3) 0.4 (1.0) 

 

 


