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Abstract. The partitioning of CO2 between atmosphere and ocean depends to a large degree not only on the amount 

of dissolved inorganic carbon (DIC) but also onf alkalinity in the surface ocean. That is also why, in the context of 10 

negative emission approaches technologies ocean alkalinity enhancement (OAE) is discussed as one potential 

approach. Although alkalinity is thus an important variable of the marine carbonate system, little knowledge exists on 

how its representation in models compares with measurements. We evaluated the large-scale alkalinity distribution in 

14 CMIP6 Earth system models (ESMs) against the observational data set GLODAPv2 and showed that most models 

as well as the multi-model-mean underestimate alkalinity at the surface and in the upper ocean, while and overestimate 15 

iting alkalinity in the deeper ocean. The decomposition of the global mean alkalinity biases into contributions from i) 

physical processes (preformed alkalinity) which includes the physical redistribution of biased alkalinity originating 

from the soft tissue und carbonates pumps, ii) remineralization, and iii) carbonate formation and dissolution showed 

that the bias stemming from the physical redistribution of alkalinity is dominant. However, below the upper few 

hundred meters the bias from carbonate dissolution can become similarly important as physical biases, while the 20 

contribution from remineralization processes is negligible. This highlights the critical need for better understanding 

and quantification of processes driving calcium carbonate dissolution in microenvironments above the saturation 

horizons, and implementation of these processes into biogeochemical models. 

For the application of the models to assess the potential of ocean alkalinity enhancement to increase ocean carbon 

uptake, a back-of-the-envelope calculation was conducted with each model’s global mean surface alkalinity, DIC and 25 

pCO2 as input parameters. We evaluate two metrics: 1) the initial pCO2 reduction at the surface ocean after alkalinity 

addition and 2) the uptake efficiency, ηCO2, after air-sea equilibration is reached. The relative biases of alkalinity 

versus DIC at the surface affect the Revelle factor and therefore the initial pCO2 reduction after alkalinity addition. 

The global mean surface alkalinity bias relative to GLODAPv2 in the different models ranges from -85 mmol m-3 (-

3.6%) to +50 mmol m-3 (+2.1%) (mean: -25 mmol m-3 or -1.1%). For DIC the relative bias ranges from -55 mmol m-30 

3 (-2.6%) to 53 mmol m-3 (+2.5%) (mean: -13 mmol m-3 or -0.6%). All but two of the CMIP6 models evaluated here 

overestimate the Revelle factor at the surface by up to 3.4% and thus overestimate the initial pCO 2 reduction after 

alkalinity addition by up to 13%. The uptake efficiency, ηCO2, then takes into account that a higher Revelle factor 

and a higher initial pCO2 reduction after alkalinity addition and equilibration mostly compensate, so that resulting 

DIC differences in the models are small (-0.1% to 1.1%). The overestimation of the initial pCO2 reduction has to be 35 
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taken into account when reporting on efficiencies of ocean alkalinity enhancement experiments using CMIP6 models 

especially as long as the CO2 equilibrium is not reached. 

 

Plain text summary 

This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate 40 

alkalinity at the surface and overestimate in the deeper ocean. It highlights the need for better understanding and 

quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of 

accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.   

1 Introduction 

Since preindustrial times the ocean has taken up about a quarter of the anthropogenic CO2 emitted into the atmosphere 45 

(Friedlingstein et al., 2022). The exact amount of ocean CO2 uptake is determined by the surface ocean carbonate 

system, which can be largely described by the amount of dissolved inorganic carbon (DIC) and total alkalinity (TA) 

in the surface ocean (Zeebe and Wolf-Gladrow, 2001). Total Alkalinity is a measure of the excess of bases (proton 

acceptors) over acids (proton donors) and plays a central role in determining the partitioning of the DIC pool into its 

three chemical components, aqueous CO2, bicarbonate (HCO3
-) and carbonate (CO3

2-) ions. Aqueous CO2 is the only 50 

of the three marine carbonate species that can exchange with the atmosphere. Once in the ocean, most of the additional 

CO2 taken up is converted into the two other carbonate species. By changing the chemical equilibria between the 

carbonate species, the ocean carbon uptake leads to in ocean acidification with a decrease in pH. This change in the 

chemical equilibria also reduces the seawater buffer capacity, i.e., the ability of seawater to resist a change in its 

carbonate chemistry. The Revelle factor, as a measure of this buffer capacity, is the sensitivity of relative pCO2 change 55 

to relative changes in DIC and depends both on DIC and TA. A low Revelle factor indicates a high buffering capacity 

and vice versa (Revelle and Suess, 1957; Middelburg et al., 2020). The lower the Revelle factor, the more DIC occurs 

as CO3
2- and pCO2 levels in the ocean are lower. This allows the ocean to take up more CO2 which in turn also lowers 

atmospheric pCO2 (Egleston et al., 2010). Overall, the buffer capacity implies that the resulting change in pH and CO2 

from the same process, e.g., carbonate dissolution, differs depending on the background conditions in TA and DIC 60 

(Middleburg et al., 2020). Any changes in pH and CO2 would be smaller in low-sensitivity or well-buffered seawater 

with a high TA:DIC ratio (low Revelle factor). That is why when Earth System Models are used to quantify the 

potential CO2 uptake of the ocean, it is important that they simulate reasonable initial states of TA and DIC.  

In 2015, the ‘Paris Agreement’ was adopted by 196 governments at the Conference-of-Parties 21 (COP21). Its goal is 

to restrict human-induced global warming to well below 2°C, preferably to 1.5°C, compared to preindustrial levels. 65 

To accomplish this goal, the signing countries aim to reach peak emissions as quickly as possible and to achieve 

carbon neutrality by the mid-21st century. This goal is likely not achievable through carbon emission reductions alone 

according to socio-economic scenario simulations with Integrated Assessment Models (Rogelj et al., 2018). The IPCC 

Special Report on Global Warming of 1.5°C states that all (most) projected pathways that limit warming to 1.5°C 
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(2°C) also require use of carbon dioxide removal (CDR) or negative emission technologies (NETs), on the order of 70 

100–1000 Gt CO2 over the 21st century (Rogelj et al., 2018). Existing and potential CDR measures are afforestation 

and reforestation, land restoration and soil carbon sequestration, bioenergy with carbon capture and storage (BECCS), 

direct air carbon capture and storage (DACCS), enhanced weathering and ocean alkalinization  (Gattuso et al., 2018; 

de Coninck et al., 2018; Board and National Academies of Sciences, 2019; National Academies of Sciences, 2021). 

So far, much research has been focused on land-based CDR measures and it has become clear that it would be 75 

extremely difficult to limit global warming to the agreed level with land-based NETs alone (Fuss et al., 2018; 

Lawrence et al., 2018; Smith et al., 2016).  

Less is known about ocean-based NETs, although some of them appear promising, especially with respect to the 

potential scale of application (Gattuso et al., 2018; Boettcher et al., 2019). One promising pathway could be ocean 

alkalinity enhancement (OAE) (; Köhler et al., 2013,; Renforth and Henderson, 2017). This method is an accelerated 80 

version of a natural process: silicate weathering, where alkaline minerals can be mined and crushed (e.g., olivine) or 

created (e.g., lime) and added to the surface ocean. Alternatively, alkaline solutions from electrochemical weathering 

can be added. In both scenarios, the alkalinity of the upper ocean is increased and with it the carbon storage capacity 

of seawater, which leads to an increased uptake of CO2 from the atmosphere. Aside from lab experiments (Hartmann 

et al., 2022)  and first results from microcosm experiments (Ferderer et al., 2022), these OAE applications are untested 85 

at larger scales, so that simulations with state-of-the-art Earth System Models (ESMs)ESMs are essential for assessing 

the efficiency and biogeochemical implications of ocean alkalinization. Previous model experiments have provided 

first estimates of the efficiency for idealized experiment set-ups , (e.g., Ilyina et al.,  (2013);, Köhler et al. (, 2013), ; 

Keller et al. (, 2014;), Hauck et al.,  (2016), ; González and Ilyina , (2016;), Lenton et al., (2018;), or Burt et al., (2021). 

Although these modeling studies have suggested that OAE may be a viable method to help reduce atmospheric CO2, 90 

the results are difficult to compare due to different experimental designs. Another caveat is that previous estimates of 

OAE efficiency and side effects were based on single model experiments and did not include a thorough assessment 

of simulated alkalinity and model-dependence of the results. Now, more and more projects are underway or in planning 

that seek to apply more realistic scenarios for OAE e.g., in regional OAE applications (Butenschön et al., (2021); 

Wang et al., 2023) or coastal applications (Feng et al., 2017; He and Tyka, 2023), which is why a model evaluation is 95 

even more important. Furthermore, the development of standards for monitoring, reporting and verification (MRV) 

methods for real-world OAE applications is currently underway and it becomes clear, that because of the complexity 

of the carbonate system and the insufficient maturity of observational sensors, numerical simulations are required to 

fulfill these MRV requirements (Ho et al., 2023; Bach et al, 2023). Therefore, the continuous development of suitable,  

carefully validated models is a critical part of this effort (Ho et al., 2023). 100 

There have been a number of studies that evaluate the simulation of ocean biogeochemical parameters in state-of-the-

art Earth System Models (ESMs) that contributed to CMIP6, the 6th phase of the Coupled Model Intercomparison 

Project (Eyring et al., 2016), but did not include the evaluation of alkalinity (Séférian et al. (, 2020);, Tagliabue et al.,  

(2021;), Kwiatkowski et al., (2020)) or if so then only with one global score number (Terhaar et al., 2022; Fu et al., 

2022). The recent study by Planchat et al. (2022) assessed simulated alkalinity and parameters related to the carbonate 105 
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pump in CMIP6 models and their predecessor CMIP5 versions. They report an significant improvement in the 

representation of alkalinity and the carbonate pump in CMIP6 versus CMIP5. While some models did increase in 

complexity, they find that potential effects of future ocean changes (e.g., ocean acidification) are not well constrained 

in many models.  

Here we present further analyses of biases in alkalinity and DIC in CMIP6 models. We show how those biases can be 110 

attributed to the ocean’s physical, soft-tissue, or carbonate counter pump following Koeve et al. (2014). Furthermore, 

we provide an estimate of each model’s carbonate system sensitivity to OAE depending on their alkalinity and DIC 

bias in historical simulations.  

2. Methods 

2.1. CMIP6 models and observational data products 115 

Our evaluation includes 14 ESMs with ocean biogeochemistry modules from ten modelling centers that contributed 

to CMIP6 and that provided the variables dissic (DIC [mol m-3]), no3 (nitrate concentration [mol m-3]), o2 (dissolved 

oxygen concentration [mol m-3]), ph (seawater pH on total scale), po4 (phosphate concentration [mol m-3]), so (salinity 

(S) [g kg-1]), talk (TA [mol m-3]), and thetao (potential temperature [°C]), Table 1).  

Table 1: Overview of CMIP6 models considered in this study showing the climate model name and description paper, the model 120 
ocean component, the model biogeochemistry component, horizontal grid resolution, number of vertical levels, and data reference 

CMIP6 ESM Ocean Model Ocean 

Biochem. 

Model 

Ocean Horizontal 

Resolution (lon x lat) 

Ocean 

vertical 

levels 

Member /  

Dataset Reference 

ACCESS-ESM-1.5 

(Ziehn et al., 2020) 

MOM5 WOMBAT  360 x 300  (tripolar, 

~1°) 

50 r11i1p1f1 

(Ziehn et al., 2019) 

CanESM5 

(Swart et al., 2019b) 

NEMO3.43.4.1 

(ORCA1)  

CMOC 361 x 290  (tripolar, 

~1°) 

45 r11i1p1f1  

(Swart et al., 2019a) 

CESM2 

(Danabasoglu et al., 2020) 

POP2  MARBL 320 x 384  (~1°) 60 r11i1p1f1 

(Danabasoglu, 2019a) 

CESM2-WACCM 

(Danabasoglu et al., 2020) 

POP2 MARBL 320 x 384  (~1°) 60 r11i1p1f1 

(Danabasoglu, 2019b) 

CNRM-ESM-2-1 

(Séférian et al., 2019) 

NEMO3.6 3.6 

(eORCA1) 

PISCES 2.s 
PISCESv2-

gas 

362 x 294  (tripolar, 

~1°) 

75 r11i1p1f2 

(Seferian, 2018) 

GFDL-CM4 

(Held et al., 2019; Dunne et 

al., 2020a) 

MOM6 GFDL-

BLINGv2 

1440 x 1080 (tripolar, 

~ 0.25°) 

75 r11i1p1f1  

(Guo et al., 2018) 

GFDL-ESM4 

(Dunne et al., 2020b) 

MOM6 GFDL-

COBALTv2 

720 x 576 (tripolar, 

~0.5°) 

75 r11i1p1f1  

(Krasting et al., 2018) 

IPSL-CM6A-LR 

(Boucher et al., 2020) 

NEMO-OPA 

(eORCA1.3) 

NEMO-

PISCES 
PISCESv2 

362 x 332 (tripolar, 

~1°) 

75 r11i1p1f1  

(Boucher et al., 2018) 

MPI-ESM1-2-HR 

(Müller et al., 2018; 

Mauritsen et al., 2019) 

MPIOM1.63  HAMOCC6 802 x 404 (~0.4°) 40 r11i1p1f1  

(Jungclaus et al., 2019) 

MPI-ESM1-2-LR 

(Mauritsen et al., 2019) 

MPIOM1.63  HAMOCC6 256 x 220 (~1.5°) 40 r11i1p1f1  

(Wieners et al., 2019) 
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MRI-ESM2-0 

(Yukimoto et al., 2019a) 

MRI.COM4.4 MRI.COM4.4 360 x 364 (tripolar, 

~1°) 

61 r1i2p1f1  

(Yukimoto et al., 

2019b) 

NorESM2-LM 

(Tjiputra et al., 2020) 

MICOM  iHAMOCC 360 x 384 (~1°) 70 r2i1p1f1  

(Seland et al., 2019) 

NorESM2-MM 

(Tjiputra et al., 2020) 

MICOM iHAMOCC 360 x 384 (~1°) 70 r2i1p1f1  

(Bentsen et al., 2019) 

UKESM1-0-LL 

(Sellar et al., 2019) 

NEMO-

HadGEM3-GO6.0 

(eORCA1)  

MEDUSA2 360 x 330 

(tripolar,~1°) 

75 r1i1p1f2  

(Tang et al., 2019) 

 

For the 14 CMIP6 modelsESMs, monthly data from the first availableone ensemble member (see Table 1) of the 

historical simulation was downloaded from the CMIP6 archive (https://esgf-data.dkrz.de), post-processed and 

regridded with bilinear remapping onto a common 1°x1° grid using Climate Data Operators (cdo, Schulzweida, 125 

(2022)). Thus, TA is often normalized (TAn) with salinity to exclude the freshwater effect in the alkalinity assessment 

(Millero et al., 1998; Fry et al., 2015). Salinity normalization of alkalinity was achieved by using a reference salinity 

of 35 g kg-1. Grid points with a salinity smaller than 10 were masked to avoid very high TAn values, e.g. from the 

Baltic Sea: 

𝑇𝐴𝑛 =
𝑇𝐴

𝑆
 ×  35, (1) 130 

with S being the grid point salinity. The present-day (1995-2014) model climatologies from the historical simulations 

are evaluated against gridded observational products:, e.g.,  (i) TA, DIC and pH from the GLODAPv2.2016b Mapped 

Climatology (in the following GLODAP, Lauvset et al.,  (2016)); (ii), oxygen and nutrients from the World Ocean 

Atlas 2018 dataset (WOA, Garcia H.E.,  (2019)) and GLODAP; , and s(iii) salinity and temperature from the Polar 

science center Hydrographic Climatology (PHC3.0, Steele et al., (2001)) and WOA. For the evaluation of global mean 135 

vertical profiles, the model data is are interpolated onto the same 33 vertical levels used in the GLODAP climatology. 

For the purpose of model assessment the GLODAP TA and DIC data are converted from units of µmol kg-1 to mmol 

m-3 using the potential density computed from GLODAP salinity and temperature data.  

2.2. Analysis of the vertical distribution of total alkalinity -– the TA* mMethod 

In order to better understand the vertical distribution of modeled alkalinity compared to the observed one, we follow 140 

the ‘TA* mMethod’ as described by Koeve et al. (2014). This method aims to separate the effects of biogeochemical 

processes and ocean circulation on the distribution of TA. To achieve this, TA is separated into three components: 

preformed TA (TA0), TA decrease from remineralization of organic matter (TAr), and TA increase due to calcium 

carbonate (CaCO3) formation and dissolution (TA*): 

𝑇𝐴 =  𝑇𝐴0 + 𝑇𝐴∗ −  𝑇𝐴𝑟   [mmol m−3] (2) 145 

Preformed TA represents the TA of a water parcel had when it was last in contact with the atmosphere. This preformed 

TA is derived by applying multi-linear regression of upper ocean (here top 100 m) salinity, potential temperature, and 

PO (a conservative water-mass tracer analog to NO in Broecker (1974)) for each model, where  
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𝑃𝑂 = 𝑂2 + 𝑟−𝑂2:𝑃𝑂4 ∙ 𝑃𝑂4 , (3) 

with 𝑟−𝑂2:𝑃𝑂4 = 170, onto upper ocean TA values (Koeve et al., 2014). The obtained regression coefficients are then 150 

applied to salinity, potential temperature, and PO everywhere in the interior ocean to compute the model’s TA0 at any 

location. This preformed alkalinity also includes the physical redistribution of alkalinity biases stemming originally 

from soft tissue and carbonate pumps and the upwelling of water masses with biased alkalinity.  

The TAr term describes the reduction of TA stemming from the remineralization of organic matter. This term can be 

described as a function of the simulated Apparent Oxygen Utilization (AOU, Garcia and Levitus, 2006):  155 

𝑇𝐴𝑟 =  𝑟𝐴𝑙𝑘:𝑁𝑂3  ∙  𝑟𝑁𝑂3:−𝑂2  ∙ 𝐴𝑂𝑈, (4) 

with rAlk:NO3 = 1.26, rNO3:-O2 = 1/10.625 (Koeve et al., 2014), and AOU as difference between oxygen saturation 

computed following Weiss (1970) and oxygen concentration O2.  

Lastly, the contribution from carbonate formation and dissolution, TA*, is computed as residual after rearranging Eq. 

(2).  160 

We applied the TA* mMethod to 10 of 14 CMIP6 models ESMs (CNRM-ESM2-1, GFDL-CM4, GFDL-ESM4, IPSL-

CM6A-LR, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM and, UKESM1-0-

LL), which had the necessary output fields (talk, so, thetao, o2, and po4).  

2.3. Theoretical Model Sensitivity to Alkalinity Enhancement 

Systematic biases in TA and DIC have implications for a model’s theoretical carbonate system sensitivity to added 165 

alkalinity during OAE. and tThus differences in ocean carbon uptake and pH increase may result.occur. In order to 

evaluate the range of this carbonate system sensitivity we conducted back-of-the-envelope-calculations for all ESMs 

and the GLODAP dataset using the Matlab toolbox CO2SYS (Lewis et al., 1998; Van Heuven et al., 2011). This 

toolbox, from any combination of two of the six carbonate system variables (DIC, TA, pH, CO2, HCO3
-, CO3

2-), 

computes  the values of the missing four variables and derived quantities. Here, we use the time and area-weighted 170 

mean surface TA and DIC (Figure 1), converted from mmol m-3 to µmol kg-1 with a density of 1,026 kg m-3, see Table 

S1 for input values.,  see Figure 1 for individual values. Additionally, we use the following values for the computation 

of the carbonate systems: salinity = 34.0, potential temperature = 15 °C, silicic acid = 2 µmol kg-1, and phosphate = 1 

µmol kg-1. Gas exchange with the atmosphere is not considered in any of our theoretical calculations.  

We First, we evaluate the CO2SYS output fields Revelle Factor, pH, and pCO2 (partial pressure of CO2 in seawater) 175 

for the CMIP6 ESMs against the values for the GLODAP data. In a second step, we assess the initial changes in 

surface pCO2 and pH after an addition of 100 µmol kg-1 TA (corresponds to 102.6 mmol m-3 TA) while keeping DIC 

constant. In a third step, we evaluate the CO2 uptake efficiency (ηCO2) (Renforth and Henderson, 2017, Tyka et al., 

2022) and the pH difference at constant pCO2 which simulates completed air-sea CO2 equilibration. Note that this 

calculation has an ocean-centric perspective as it assumes constant atmospheric CO2, which contradicts the motivation 180 

for ocean alkalinity enhancement to reduce atmospheric CO2, and thus will only be valid for small-scale applications. 
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The uptake efficiency metric has been previously applied in ocean model simulations with constant and non-interactive 

atmospheric CO2 (Tyka et al., 2022; He and Tyka, 2023). We here follow this approach in our idealized calculations 

while acknowledging that atmospheric CO2 would drop in emission-driven simulations (magnitude dependent on 

amount of alkalinity added; Ferrer Gonzalez et al., 2018; Lenton et al., 2018; Köhler, 2020) , as in the real world, 185 

through feedbacks with the atmosphere and the land biosphere (Oschlies, 2008). The assumption of constant 

atmospheric CO2 (and thus constant surface ocean pCO2) was shown to overestimate oceanic CO2 uptake by 2% on 

annual timescale, but by 25% on decadal timescale and further increasing on longer timescales (Oschlies, 2008).  

The uptake efficiency, ηCO2, is the ratio of moles of CO2 absorbed to moles of added alkalinity and can also be 

expressed as the ratio of the partial pressure sensitivities of pCO2 with respect to TA and to DIC (Tyka et al., 2022; 190 

Tyka et al., 2022):  

𝜂𝐶𝑂2 =  
∆𝐷𝐼𝐶

∆𝑇𝐴
  (5) 

For the uptake efficiency at constant pCO2, the ∆DIC was also computed using CO2SYS, here with TA + 100 µmol 

kg-1 and the initial pCO2 as input parameters.  

 195 

 

Figure 1: Global mean surface DIC [mmol m-3] versus TA [mmol m-3] of the 14 CMIP6 ESMs, the multi-model-mean (MMM), and 

GLODAP including its error estimate.  
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3. Results 

3.1. Analysis of CMIP6 alkalinity and DIC 200 

The comparison of the models’ simulated TA at the ocean surface to the GLODAP climatology shows that – on a 

global scale - most models underestimate surface TA and DIC, except for four models, CanESM5, GFDL-CM4, 

GFDL-ESM4 and MRI-ESM2-0, which simulate too much TA and DIC at the surface (Figures 1, 2). The multi-model-

mean (MMM) is only slightly negatively biased (Figures 1, 2). Global mean surface TA and DIC biases are strongly 

correlated (Figure 1). Near-surface TA is strongly correlated to salinity, and upper ocean salinity is governed by 205 

freshwater fluxes, e.g., precipitation and evaporation (Millero et al., 1998), and river flows (Cai et al., 2010). Thus, 

TA is often normalized with salinity to exclude the freshwater effect in the alkalinity assessment (Millero et al., 1998; 

Fry et al., 2015). Overall, the comparison of salinity-normalized TA to GLODAP data shows bias patterns very similar 

to those of TA for all models. Most notably, some regional peculiarities that stem from salinity biases rather than 

biogeochemical processes are smoothed out (e.g., North Atlantic bias in NorESM) (Figure S1). 210 



 

 

9 

 

 



 

 

10 

 

 



 

 

11 

 

Figure 2: Surface distribution of TA in GLODAP (top left), its error estimate (top center) and the CMIP6 multi-model-mean (MMM) 

bias (top right), as well as the respective biases of the ESMs.Surface distribution of total alkalinity [TA, mmol m-3] in GLODAP 

(top left) as well as its error estimate (top center), and the CMIP6 multi-model-mean (MMM) bias (top right) as well as the 215 
individual model’s biases. 

The vertical profiles of globally averaged TA and normalized TA (Figure 3) show the aforementioned distribution of 

the CMIP6 models’ surface bias as well, with most of the models showing less surface TA than GLODAP. The models 

mostly reproduce the features of the observed TA depth profile: the surface minimum, the subsurface maximum of 

TA, another minimum at around 500 m depth and the increase of TA with deeper depth below that (Figure 3a). Two 220 

models of the same family (MPI-ESM1-2-LR and MPI-ESM1-2-HR) have less TA than the GLODAP product over 

the whole water column and two models (GFDL-CM4 and GFDL-ESM4) have higher TA overall. This indicating 

indicates that their global inventory of TA is too low (too high) compared to GLODAP. The explanation for the 

systematic low bias in the MPI model seems to be that too much TA was lost to the sediments during the model spin 

up (Koeve et al., 2014; Planchat et al., 2022). The high TA bias in the GFDL model ESMs was apparently introduced 225 

in the post-processing step during the unit conversion from gravimetric (µmol kg-1) to volumetric (mmol m-3, common 

SI unit). The unit conversion is usually based on a chosen density value which is not prescribed in modeling protocols. 

While most models chose a value between 1,024 kg m-3 and 1,028 kg m-3, the modeling group at GFDL apparently 

converted the units using a value of 1,035 kg m-3 (Planchat et al., 2022). The profiles of the other models show either 

too little TA at the surface and too much at depth, or vice versa, indicating that their TA inventory is closer to the 230 

observed one but that the TA distribution in the water column differs from the observations. Salinity-normalization 

generally does not change the bias patterns (Figure 3b). The salinity-normalization does affect the shape of the profiles 

in the upper ocean., where tThe surface minima and the subsurface maxima seen in TA disappear. Those features are 

essentially related to the upper ocean salinity distribution.  

 235 
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Figure 3: Vertical profiles of global mean TA (a) and salinity-normalized TAn (b) of the CMIP6 modelsESMs, the multi-model-

mean (MMM) in grey) and GLODAP (black) with error estimate (black dashed linesgrey shading) 

The near-surface TA maximum seen in the global profile is also evident in the Atlantic, Pacific and Indian Oceans 240 

(Figure 4). The high TA is related to the salinity maxima of subtropical underwater in the respective basins (Talley, 

2002) and all models replicate this pattern. In the Atlantic Ocean, a TA minimum can be observed in the GLODAP 

data at around 800 m depth which represents Antarctic Intermediate Water in the South Atlantic (low salinity) 

(Takahashi et al., 1981). This minimum is not well reproduced by the ESMs, referring to circulation biases. The 

relatively low TA in the deep Atlantic Ocean (compared to the Pacific and Indian Ocean), between 1,500 m and 3,500 245 

m depth, and the small gradient with depth is linked to North Atlantic Deep Water (NADW). Most models reproduce 

this pattern, while the CNRM, IPSL and UK ESMs simulate a strong increase of TA below about 2,000 m depth 

(Figure 4b). Those three ESMs have a NEMO ocean model in common.. The profile shapes in the Southern Ocean 
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and Arctic Ocean are generally reproduced in terms of the TA gradients with depths, albeit the biases in absolute 

amount of TA present are visible here as well.  250 
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Figure 4: Global mean TA profiles for the major ocean basins. Color assignment is the same as in Figure 3.  

The surface DIC patterns compared to GLODAP show very similar patterns to those for TA, both in general direction 

aund local distribution (Figure 5). The global mean surface biases in TA compared to GLODAP range from -85 mmol 255 

m-3 (-3.6 %) to +50 mmol m-3 (+2.1 %), where the MMM bias is -25 mmol m-3 (-1.1 %) and for the global mean 

surface DIC the biases range from -55 mmol m-3 (-2.6 %) to 53 mmol m-3 (+2.5 %), with the MMM bias being -13 

mmol m-3 (-0.6 %). TA biases likely lead DIC biases, as DIC can adjust through gas-exchange of CO2 to maintain a 

surface chemical equilibrium with the atmospheric CO2 concentration. Models with higher TA have higher DIC values 

and vice versa. We next investigate the origin of the models’ alkalinity biases.  260 
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Figure 5: Surface distribution of DIC in GLODAP (top left), its error estimate (top center) and the CMIP6 multi-model-mean 

(MMM) bias (top right), as well as the respective biases of the ESMs.Surface distribution of DIC in GLODAP as well as its error 

estimate, and the CMIP6 multi-model-mean (MMM, top right) bias as well as the individual models’ biases. 265 

3.2. Analysis of the vertical alkalinity distributionDecomposition of the vertical alkalinity biases 

The goal of the ‘TA* mMethod’ (Koeve et al., 2014) is to separate the TA bias into contributions from 1) an inadequate 

representation of ocean physics or forcings (e.g., circulation, freshwater flow, evaporation, and precipitation), 2) the 

parametrization of calcium carbonate (CaCO3) formation and dissolution and 3) the parametrization of organic matter 

remineralization processes. The first part, preformed alkalinity, includes the advection and upwelling of already biased 270 

water masses.  

The decomposition of the TA biases (Figure 6a) shows that in the upper 1 km most of the models’ alkalinity biases 

are due to their preformed TA (Figure 6b). Per definition, models with a negative surface TA bias have a negative bias 

in preformed TA. Below about 1,000 m depth TA0 stays constant with depth. TA biases from the representation of 

organic matter remineralization processes are in the order of 5 to 10 mmol m-3 and play only a negligible role in 275 

absolute terms (Figure 6c). The bias in TA from calcium carbonate dissolution in the interior ocean (Figure 6d) can 

be in absolute terms comparable to or even larger than the bias in preformed TA. The MRI model and the GFDL 

models have a small negative bias in TA* in the order of ~10-20 mml m-3, relatively constant with depth. The MPI 

and NorESM models have a slight positive TA* bias in about the same order of magnitude, also relatively constant 

with depth, while the UKESM, the CNRM-ESM and the IPSL ESM exhibit TA* biases that increase with depth. The 280 

CNRM model has the largest TA* bias with about 100 mmol m-3 at 4,000 m depth. CNRM-ESM2-1 and IPSL-CM6A-

LR, have in common that they contain the same ocean model (NEMO) and the same biogeochemical model 

(PISCESv2). Dissolution in PISCESv2 is treated explicitly and is dependent on the calcite saturation state and the 

sinking speed for PIC is depth-dependent, while for other models the sinking speed is constant. In two of the models 

(of Figure 6d), MRI-ESM2-0 and UKESM1-0-LL, CaCO3 is dissolved without a sediment, while the other models do 285 

have explicit sediment treatments where CaCO3 is buried or dissolved, either depend on the calcite saturation state or 

a set rate (Planchat et al. 2023). A direct link of the treatment of CaCO3 at the bottom to the bias at depths is not 

obvious in this case.The vertical distribution of the TA bias with respect to GLODAP and its components according 

to the TA* method are shown in Figure 6. The MPI models have too little TA at all water depths. The IPSL-CM6A-

LR, CNRM-ESM2-1, the NorESM2 models and the UKESM1 model underestimate upper ocean TA and overestimate 290 

TA at depth. The MRI-ESM2-0 overestimates TA in the upper ocean and underestimates it at depths below ~ 1,000 

m. Both GFDL models contain too much TA at all depths for the above explained reason of a too high seawater density 

during units conversion. In the upper 1 km most of the models’ alkalinity biases are due to their preformed TA (Figure 

6b). This also implies that the subsurface maxima and minima in the observed TA profile are due to preformed TA 

and not related to biogeochemical modifications of TA. Biases in the representation of organic matter remineralization 295 

processes play a negligible role (Figure 6c), while for some models the bias in TA from calcium carbonate dissolution 

in the interior ocean (Figure 6d) is in absolute terms comparable to or even larger than the bias in preformed TA. they 

contain the same ()same ()on the calcite saturation state the sinking speedthe calcite saturation state  
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Figure 6: Globally averaged depth profiles of biases in (a) TA, (b) preformed TA (TA0), (c) TA from remineralization (TAr) and (d) 

from calcium carbonate formation and dissolution (TA*) in 10 CMIP6 models compared to the GLODAP climatology. 

 

3.3. Impact of biases on OAE efficiency of ocean alkalinity enhancement 305 

Biases in simulated surface TA and surface DIC have implications for the individual models’ efficiency of OAE. By 

causing biases in the Revelle factor, they also result in biases in initial surface ocean pCO2 reduction after alkalinity 

addition and final pCO2 after equilibration with the atmosphere might differ. In order to evaluate the range of this 

sensitivity, a back-of-the-envelope-calculation was conducted, using the ESMs surface TA and DIC, to calculate the 

full carbonate system (see methods).  from two input parameters (global mean surface TA and DIC in µmol kg-1) (see 310 

Methods, see Figure 1 for input values). The Rresults from this calculation (Figures 7b,d,e,g,h) together with the 
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models’ initial TA and TA-to-DIC-ratios (Figures 7a,c) are shown in Figure 7assessed for the ESMs and the MMM 

against the respective values for GLODAP.  

The global mean Revelle Factor from the CO2SYS computation for the GLODAP dataset is with 10.19 the third 

lowest in our compilation and thus almost all ESMs have a higher Revelle Factor than the GLODAP data, ranging 315 

from 10.18 to 10.54 (Figure 7b). The Revelle factor is anti-correlated to the average TA-DIC-ratio (R=-0.99, Figure 

7c). Also, the order of surface pH (R=-0.96, Figure 7g) and pCO2 (R=0.97, Figure 7d) values corresponds largely to 

each model’s rank in Revelle Factor (and thus also with TA-DIC-ratio). Models with a higher Revelle factor than 

GLODAP have a lower buffer capacity, which leads to already higher pCO2 values (290 to 314 µatm) and lower pH 

(8.12 to 8.17) than in GLODAP (pCO2: 292 µatm, pH: 8.16). Those models also show a greater initial reduction in 320 

surface ocean pCO2 for the hypothetical addition of 100 µmol kg-1 of TA (R=-0.99, Figure 7e) than GLODAP (-92 

µatm), ranging from a 91 µatm to a 104 µatm decrease in pCO2. Models with a higher Revelle factor also have a 

higher uptake efficiency, ηCO2, (R=0.98, Figure 7f). The initial change in pH after alkalinity addition (Figure 7h) is 

about an order of magnitude larger than the change in pH after complete air-sea equilibration at constant atmospheric 

CO2 (Figure 7i). The respective changes in pH (unequilibrated / equilibrated at constant atm CO2) have a higher 325 

correlation to TA (R=-0.92, R=-0.99) than to the Revelle factor (R=0.83, R=0.63).  
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Figure 7: Carbonate system parameters were computed for all CMIP6 ESMs, the MMM (grey line) and the GLODAP data (black 330 
line) with the CO2SYS toolbox. The results are sorted by Revelle Factor in ascending order for all panels. Shown are the TA (a), 

the Revelle factor (b), the TA-DIC ratio (c), initial pCO2 (d), the difference in pCO2 after a 100 μmol kg-1
 addition of TA (e), the 

uptake efficiency ηCO2 (f), the initial pH (g), the difference in pH for constant DIC (h), and the difference in pH for constant pCO2 

(i). Light blue colors indicate the unperturbed mean state in the ESMs and GLODAP, dark blue colors the initial state after OAE 

and green colors the state after OAE and subsequent air-sea equilibration.  335 

In relative terms, we find that the ESMs’ TA biases range from -3.6% to +2.1% with a mean of -1.1% and their DIC 

biases ranges from -2.6% to +2.5% with a mean value of -0.6% (Figure 1). Furthermore, the ESMs estimates of the 

initial pCO2 decrease after a hypothetical TA enhancement by 100 µmol kg-1 t ranges from -1.0% up to 13.0% (mean 

5.1%) relative to GLODAP (Figure 8Table S2). The controlling factor for this bias in initial pCO2 reductionbias is in 

most cases the Revelle factor rather than the TA bias alone, because the TA bias is always accompanied by a (partly) 340 

compensating DIC bias.  
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Figure 8: Relative difference of the Revelle factor (blue) and TA-DIC-Ratio (green) to GLODAP, as well as pCO2 difference after 

a 100 µmol kg-1-increase in TA (orange) in CMIP6 models and the MMM. The models are sorted by Revelle Factor difference to 

GLODAP. 345 

This simplified OAE example shows that in for 12 out of 14 ESMs an increase of 100 µmol kg-1 in TA would lead to 

a higher initial decrease in pCO2 than observational data from GLODAP suggest. A higher sensitivity to TA changes 

due to a higher Revelle factor has also been shown in Hauck et al. (2016) during a decadal scale OAE simulation. We 

additionally calculated the effect of the additions of 200, 500 and 1,000 µmol kg-1 of TA. The degree of pCO2 

difference overestimation decreases with the amount of TA added, but for a theoretical addition of 1,000 µmol kg-1 of 350 

TA the maximum initial pCO2 reduction overestimate with respect to GLODAP is still 8% (Table S2). We conclude 

that almost all ESMs might overestimate the initial additional pCO2 difference uptake in simulated OAE experiments. 

On the other hand, the CO2 uptake efficiency computed with constant pCO2 (equilibrated DIC) only differs by -0.1% 

to 1.1% (mean: 4.4%) from the GLODAP value, and the ESMs may thus represent equilibrium CO2 uptake rather 

robustly.  355 

 

The initial increase in pH after alkalinity addition is relatively large (Figure 7h, >0.1 pH units, i.e., on the same order 

of magnitude as the pH reduction since industrialization). However, after equilibration with the atmosphere (at 

presumed constant atmospheric CO2), the lasting pH change is small (about 0.016, Figure 7i). These pH changes are 

in line with previous quantifications (e.g., Köhler et al., 2013, Hartmann et al., 2013, Hauck et al., 2016, rather 360 

independent of amount alkalinity added) and their small magnitude is the direct result of the additional carbon uptake 

from the atmosphere. In emission-driven simulations, where atmospheric CO2 is substantially reduced through large 

applications of alkalinization, pH increases more substantially (e.g., by < 0.1 for an atm CO2 reduction of < 100 ppm, 

Lenton et al., 2018; by >0.3 for an atm CO2 reduction of >1000 ppm in a multimillennial simulation, Köhler, 2020). 

These findings call into question the common made statement that ocean alkalinization is unique as it ‘simultaneously 365 

mitigates atmospheric concentrations of CO2 and ocean acidification’ (Burt et al., 2021; Ilyina et al., 2013; National 
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Academy of Science, 2022). While ocean alkalinity enhancement allows for additional CO 2 uptake at a pH level that 

does not drop any further, a restoration/rise in pH is only possible if (a) the water mass is not in contact with the 

atmosphere (maybe for deep ocean applications) or (b) ocean alkalinization is efficient in reducing atmospheric CO 2, 

which is the driver of ocean acidification. The latter case, however, applies to all land- and ocean-based CDR methods 370 

that are efficient in reducing atmospheric CO2, and thus ocean alkalinity enhancement is not unique in this regard. 

4. Discussion and conclusions 

We evaluated CMIP6 models regarding their large-scale biases in TA and DIC compared to the gridded data set 

GLODAP. Ten out of 14 ESMs underestimate surface TA (MMM: -25 mmol m-3 or; i.e. -1.1%) and DIC (MMM: -13 

mmol m-3 or; i.e. -0.6%) with respect to observations. The range of the bias in TA is -85 mmol m-3 (-3.6 %) to 50 375 

mmol m-3 (+2.1 %) and in DIC is -55 mmol m-3 (-2.6 %) to 53 mmol m-3 (+2.5 %). This is a reversal from the TA and 

DIC representation in CMIP5, where most models and the MMM overestimated these variables, and the absolute and 

relative errors were at least twice as large as in CMIP6 (Planchat et al., 2022). The direction of the bias and the relative 

biases of TA and DIC have a direct impact on the Revelle factor and the initial pCO2 reduction of the surface ocean 

after alkalinity addition (and thus affect CO2 uptake) and should be known when assessing model experiments 380 

simulating OAE or other NETs that directly affect the ocean’s carbonate chemistry . Terhaar et al. (2022) also found 

that CMIP6 models overestimate the Revelle factor and propose that CMIP6 models underestimate the anthropogenic 

ocean carbon sink 1994-2007 by 9%, of which around 3% can be explained by the overestimation of the Revelle factor 

and the remaining 6% are related to the models’ underestimation of the  Atlantic Meridional overturning 

circulationformation of mode and intermediate water in the Southern Ocean (Terhaar et al., 2021).  385 

It is helpful to understand the contributions of the physical and biological - the soft tissue and calcium carbonate - 

pumps to these TA biases in ESMs. The value of decomposing the carbon pump has already been recognized in 

previous studies (e.g., Sarmiento and Gruber 2006; Kwon et al. 2009); however, there is not a common standard  to 

achieve this decomposition. Here, we separated the global mean vertical TA bias into contributions from preformed 

alkalinity (TA0, physical pump), remineralization (Tar, soft tissue pump) and alkalinity from calcification and 390 

carbonate dissolution (TA*, CaCO3 pump) following Koeve et al. (2014). This decomposition method aims to 

compute the physical contribution to the alkalinity distribution explicitly, similar to Oka et al. (2020) and contrary to 

Sarmiento and Gruber (2006) and Planchat et al. (2023). The performed TA is not purely physical but also contains 

the physical redistribution of already biased TA, Another advantage of this method is that the preformed alkalinity is 

computed for each grid point and therefore is resolved spatially. In their presentation of the method, Koeve et al. 395 

(2014) note that the computation of TA* according to equations (2) to (4) reproduces tracer-based simulated TA* 

robustly in most of the global ocean, but that higher uncertainties occur in the Atlantic and in the 500 m to a 1,000 m 

layer in the Pacific and Indian ocean. Here, we only focused on the TA* results for the global mean ocean. Another 

caveat that was mentioned by Koeve et al. is that AOU is known to overestimate true oxygen utilization by 20–25 %. 

Hence our TAr computed from AOU probably also overestimates by this percentage. But TAr is rather small and here 400 

we focus on the implication of the TA* biases in ESMs and potential remedies for these biases.  
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The conclusion from this analysisresult from our TA* analysis is that especially in the upper ocean the global 

distribution of TA in ESMs is largely determined by preformed TA which is set by ocean model physics (advection, 

overturning, mixing, etc.). Below the upperIn the sub-surface and deep ocean, biases in TA are also driven by the 

CaCO3 cycle, while contributions from remineralization are negligible. Although Planchat et al. (2022) do not assess 405 

alkalinity biases due to the physical carbon pump, they also point to a larger contribution of the carbonate pump 

relative to the soft tissue pump (remineralization) to the (normalized) TA biases. The model processes involving the 

physical distribution of TA are tuned to achieve the best overall model performance and it could be tested whether a 

tuning to improve TA would support this goal. The findings regarding the contribution to the TA biases from the 

CaCO3 cycle simulation suggest that improving the parametrizations of biogeochemical processes that are sources and 410 

sinks of TA, e.g., calcification, remineralization of sinking detritus, chemical dissolution of calcium carbonate, 

biological CaCO3 formation and dissolution, etc. would be beneficial. Since the bias in TA from remineralization is 

small in all models, parametrizations that affect the carbonate chemistry are the most practical lever to improve the 

TA distribution for most models. This, in turn, needs a much-improved process understanding of CaCO3 dissolution 

in microenvironments such as aggregates, zooplankton and fish guts above the calcite and aragonite saturation 415 

horizons (Sulpis et al., 2021; Jansen and Wolf-Gladrow, 2001; Salter et al., 2017) from field and laboratory studies in 

order to mechanistically represent these processes and how they might be altered in a high-CO2 ocean. In the absence 

of this mechanistic understanding, some suggestions to reduce TA biases are: 

Possibilities for model tuning:   

• If TA is low at the surface, decreasing the calcification (rate) within realistic limits or increasing near-surface 420 

dissolution could be beneficial (Gangstø et al., 2008; Gehlen et al., 2007). 

• If the calcite dissolution is prescribed to increase with depth (Yamanaka and Tajika, 1996) this process could 

be tuned with a better match to the observed vertical distributions of calcite or TA. 

Possible expansion of model parametrizations:  

• If calcite dissolution is formulated as (mostly) saturation-dependent and is therefore (close to) zero above the 425 

calcite saturation horizon, a term can should be implemented that encompasses dissolution processes that 

have been observed to occur above said horizon, e.g., calcite dissolution in microenvironments like marine 

snow and zooplankton guts (Sulpis et al., 2021). It was shown that the acidic environment in guts of starving 

copepods can dissolve up to 38% of the calcite taken up by grazing (White et al., 2018). For non-starving 

copepods this value was somewhat lower (Pond et al., 1995; Jansen and Wolf-Gladrow, 2001).  430 

• In addition to those processes, it is known that aragonite and high-magnesium calcite have a shallower 

saturation horizon than calcite and contribute to upper-ocean calcium carbonate dissolution (Sabine et al., 

2002; Gangstø et al., 2008; Barrett et al., 2014; Battaglia et al., 2016), ). while aAlmost all models only 

simulate calcite explicitly (Planchat et al. 20222023) which is a deficit since Buitenhus et al.(2019) proposed 

that aragonite producing pteropods might contribute at least 33% to export of CaCO3 at 100 m and up to 89% 435 

to the pelagic calcification . Although exact numbers might be subject to reevaluation when more data 
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becomes available, a carbon cycle formulation expanded to also simulate aragonite (formation and 

dissolution) may be beneficial for a more realistic alkalinity distribution.  

• The representation of CaCO3 treatment at the bottom-sediment interface (dissolution, sedimentation, 

sediment weathering) is important for the total alkalinity budget and also for upper ocean alkalinity especially 440 

in more shallow regions where alkalinity-enriched waters (through dissolution) can recirculate to the upper 

ocean more quickly (Gehlen et al., 2008). 

The back-of-the-envelope calculation of the ESMs’ carbonate system states revealed that all but two of the models 

have a higher global mean Revelle Factor than calculated from GLODAP (see also Terhaar et al., 2022), correlated 

with a higher TA-DIC-ratio than suggested by observations (see also Terhaar et al., 2022). For a hypothetical addition 445 

of 100 µmol kg-1 TA this bias leads to an overestimatione of the initial pCO2 reduction by up to 13% proposed 

(affecting CO2 uptake from the atmosphere). by up to 13%. The addition of just 100 µmol kg-1 TA is actually at the 

very low end of the spectrum used in past and current OAE experiments in models and in mesocosms (Hartmann et 

al., 2022; Ferderer et al., 2022). This calculation is a simplified exercise since gas exchange between ocean and  

atmosphere is not accounted for nor the potential precipitation and sinking of calcium carbonate (Hartmann et al., 450 

2022). The CO2 uptake efficiency factor, ηCO2, relates changes in surface DIC to alkalinity input. We computed this 

metric here with constant pCO2 after alkalinity addition which suggests complete equilibration and neglects any 

reduction in atmospheric CO2 due to OAE. Studies suggest that the time scale and efficiency of the equilibration can 

differ immensely depending on the ocean region. He and Tyka (2023) found that after one year ηCO2 varied between 

0.2 and 0.85 and that after 10 years most locations showed an uptake fraction of 0.65–0.80. Jones et al. quantified the 455 

mean global air-sea equilibration timescale for CO2 at 4.4 months (range 0.5 to 24 months regionally). Bach et al. 

(2023) suggest a pragmatic time scale of 10 years for a 95% DIC equilibration after OAE measures. It is within this 

range of suggested equilibration time scales that the differences in simulated pCO2 change between ESMs are 

important.  

The results of our idealized calculation also highlight the need to monitor at least two carbonate system variables to 460 

characterize the full carbonate system after alkalinity addition in a potential real world application. Knowing the 

amount of alkalinity added and then monitoring pCO2 with an autonomous sensor will not be sufficient to characterize 

the full carbonate system and the level of equilibrium reached, particularly as alkalinity and carbon will be subject to 

transport through mixing and advection. Autonomous sensors with high accuracy are currently only available for 

pCO2, whereas alkalinity sensors are not commercially available (see review in Ho et al., 2023) and pH sensors do not 465 

have high enough accuracy (Wimart-Rousseau et al., 2023). This poses a challenge for monitoring, reporting and 

verification (MRV) that may be tackled through (i) measuring discrete water samples until technical advances make 

autonomous measurements of two carbonate system variables possible or (ii) using models of high fidelity.  

In order to fully capture the effect of OAE on atmospheric CO2 concentration and the model spread related to biases 

stemming from circulation and biogeochemical assumptions, these model OAE experiments need to be performed in 470 

a suite of fully coupled emission-driven ESMs with a precise protocol and with realistic representation of the carbonate 
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pump, including CaCO3 dissolution above the carbonate saturation horizon, which is not even sufficiently understood 

in the real world (Sulpis et al., 2021).  
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