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Abstract 14 

Anaerobic microbial sulfate reduction and oxidative sulfur cycling have been studied in long 15 

sediment cores mainly acquired as part of IODP explorations. The most remarkable 16 

observation in many of these studies is the existence of an active sulfur cycle in the deep 17 

subsurface sediments that have very low organic carbon content and are presumably 18 

refractory. Here we investigate the interstitial sulfate concentrations and sulfur isotope ratios 19 

in a 290 m long core collected from the eastern Arabian Sea at a water depth of 2663 m. 20 

Continuous decrease in pore water-sulfate concentrations with depth (up to 75 mbsf) coupled 21 

with enrichment in 34SSO4 values suggests organoclastic sulfate reduction (OSR) processes 22 

attributed to the activity of sulfate-reducing bacteria (SRB) and retention of labile organic 23 

substrates amenable to the SRBs. Below a depth of 75 mbsf, the absence of a further 24 

reduction in sulfate concentrations indicates insufficient labile substrate to drive SRB. An 25 

increase in sulfate concentrations at the deeper subsurface (below 128.5 mbsf) coupled with 26 
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decreasing 34SSO4 values may be attributed to a ferric-oxyhydroxide driven oxidation of Fe-27 

sulfide. This study reveals that even under deep aerobic water columns, organic matter may 28 

continue to be a source of labile organic substrates at significantly deeper subsurface. 29 

Enhanced sulfate concentrations in the deeper depths may be attributed to the oxidation of 30 

sulfides via ferric-oxyhydroxides buried deep within the sediment. A microbiological 31 

investigation may reveal further details of the sulfur cycle at the deep surface.  32 

 33 

1. Introduction 34 

The exploration of the sub-seafloor biosphere and redox zonation in sediments over the 35 

last few decades has enhanced our knowledge of the deep biospheric microbial distribution 36 

(Wasmund et al., 2017), substrates, energy utilization pathways (LaRowe and Amend, 2015) 37 

and diagenetic mineralization (Meister et al., 2019). Microbially mediated biogeochemical 38 

processes in marine sediments are fuelled by simple organic molecules (electron sources) and 39 

inorganic electron acceptors, including O2, NO3
-, Fe3+, Mn4+

,
 SO4

2−, and CO2. Degenerated 40 

and reorganized organic particulates deposited on the sea bed are further subjected to 41 

microbially mediated oxidative degradation and reworking by benthic organisms, enriching 42 

the sediment porewater with fresh dissolved organic matter (Ferdelman et al., 2011; 43 

Maliverno and Martinez, 2015; Bergauer et al., 2017; Luek et al., 2017). Hydrolysis and 44 

subsequent fermentation of complex organic molecules fuels a sequential utilization of 45 

terminal electron acceptors, typically in the order of O2, NO3
-, Mn4+, Fe3+, and SO4

2− followed 46 
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by CO2. At a depth of a few centimetres to meters below the seafloor, oxidative 47 

remineralization is taken over by strictly anaerobic, organoclastic sulfate reduction (OSR), 48 

which accounts for up to 29% of the remineralization of accumulated seafloor organic matter 49 

(Bowles et al., 2014).  50 

The availability of simple organic compounds like volatile fatty acids (VFA), including 51 

formate, acetate, propionate, and H2,
 in the sediment pore-fluid is crucial in sustaining OSR 52 

and the growth of sulfate-reducing bacteria (SRB). However, in the deep subsurface, due to 53 

depletion in the availability of labile organic molecules, sulfate reducers may use methanol, 54 

long-chain fatty acids, and aromatic compounds as electron sources (Sousa et al., 2018). 55 

Wellsbury et al. (2002) reported SO4
2- reduction up to 100 mbsf in a deep-sea sediment core 56 

characterized by low organic carbon content (~0.4%) and attributed the SO4
2- reduction 57 

process to the presence of culturable fermenters and acetogens in the deep subsurface. 58 

Micromolar acetate concentrations (4 – 14 µM) have been reported by D’Hondt et al. (2003) 59 

in marine deep subsurface sediments. Sulfate-reducing bacteria may metabolize, and even 60 

grow at extremely low rates under energy-limited conditions (Hoehler and Jørgensen, 2013; 61 

Bowles et al., 2014; Jørgensen and Marshall, 2016) through physiological adaptations 62 

including increased substrate uptake efficiency (Lever et al., 2015; Jørgensen and Marshall, 63 

2016), and use of alternative electron carriers like rubredoxin and rubrerythrin for ATP 64 

generation (Wenk et al., 2017). Sulfate reducers may also adapt to sporulation in extreme 65 
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deep subsurface conditions (Klemps et al., 1985; Kotelnikova and Pedersen, 1997). In 66 

addition, H2 generated in porewater by radiolysis or anaerobic mineral reactions may also 67 

play an important role in deep-subsurface SO4
2-   reduction (Stevens and Mckinley, 1995; 68 

Schrenk et al., 2013). 69 

Sulfate reduction typically decreases interstitial dissolved SO4
2- concentrations as the 70 

sediment is buried beneath the seafloor, eventually reaching below detection levels within the 71 

sulfate-methane transition zone (Jørgensen and Kasten, 2006). The sulfate concentration 72 

profile is also accompanied by a distinct alteration in interstitial water compositions, 73 

including total alkalinity, HCO3
-, NH4

+, HS- concentrations, and sulfur stable isotope (34SSO4 74 

and 
34SHS) ratios. However, pore water analyses of long sedimentary cores from IODP or 75 

other expeditions often show anomalous SO4
2− concentrations in the deeper sediment layers 76 

after initial drawdown (Meyers and Shaw, 1996) at shallower depths. These observations 77 

have been attributed to deep subsurface Fe-sulfide oxidation, disproportionation of S0 78 

(Riedinger et al., 2010), and brine flux from deeper sources (Meister et al., 2019). Recycling 79 

of sulfur species and the cryptic sulfur cycle has also been reported from the deep subsurface 80 

SO4
2−-poor sediments (Holmkvist et al., 2011; Brunner et al., 2016) coupled with the 81 

continuous detection of functional genes of sulfate-reducing microbes (Leloup et al., 2007; 82 

Leloup et al., 2009; Blazejak and Schippers, 2011; Aoki et al., 2015). Chloroflexi is notable 83 
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for being relatively abundant in deep sediments and could therefore hint at their roles in the 84 

deep subsurface sulfur cycle (Wasmund et al., 2016). 85 

In the present work, we have attempted to explain the anomalous SO4
2- concentrations and 86 

34SSO4 profiles in the interstitial waters in a long sediment core collected from the eastern 87 

Arabian Sea (off the west coast of India) during the 2006 NGHP-01 Expedition on board 88 

ORV JOIDES-Resolution. The cruise was undertaken as part of the Indian gas hydrate 89 

exploration program (Collette et al., 2008).  90 

 91 

2. Geology 92 

 93 

The Western Continental Margin of India has evolved due to rifting of the Indian 94 

landmass from Madagascar and Seychelles islands, since the Middle Cretaceous (Norton and 95 

Sclater, 1979). Subsequent seafloor spreading between these landmasses formed the Arabian 96 

Sea (Chaubey et al., 1993). The Carlsberg Ridge divides the Arabian Sea into two major 97 

basins: the Arabian Basin to the east and the Somali Basin to the west (Mckenzie and Sclater, 98 

1971). The Arabian Sea (3.862 million km²) has an average water depth of 2,734 m. It is 99 

bordered to the west by the Horn of Africa and the Arabian Peninsula, to the north by Iran 100 

and Pakistan, to the east by India, and to the south by the Indian Ocean.  101 

The western continental margin of India, which forms the eastern boundary of the  102 

Arabian Sea, is a passive margin and characterized by (i) an NW-SE trending continental 103 

shelf  (~200 to 50 km wide) (ii) a straight outer edge limited by 200 m isobath, (iii) a narrow 104 
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continental slope bounded by the 200 and 2000 m isobaths, (iv) deep sedimentary basins viz., 105 

Kori-Comorin and Kerala-Konkan  Basins and, (v) several structural features like Chagos-106 

Laccadive Ridge, Laxmi Ridge and Pratap Ridge (Naini and Talwani, 1982). The N-S 107 

trending Chagos-Laccadive Ridge represents the trace of the Reunion hotspot (Duncan, 108 

1981).  109 

The Kerala-Konkan Basin forms the southern part of the western continental margin 110 

of India and extends from Goa to the tip of Cape Comorin. The coring site NGHP-01-01A is 111 

located in the Kerala-Konkan Basin at a water depth of 2663 m (Fig.1). NGHP-01-01A 112 

coring site lies on the western flank of the Chagos-Laccadive Ridge. Seismic lines show a 113 

prominent basement high beneath the site (Rao et al., 2001).  114 

NGHP-01-01A core is characterized by a remarkably homogenous sequence of carbonate-115 

rich oozes (Kumar et al., 2014) with variable clay content. The oozes include nannofossil 116 

ooze and foraminifera-bearing nannofossil ooze. The sediment core shows a varying degree 117 

of bioturbation, ranging from moderate to abundant (Collett et al., 2008). 118 

 119 

3. Methodology 120 

 121 

Advanced piston coring (APC), extended core barrel (XCB), and pressure core (PCS) 122 

techniques were used on-board JOIDES Resolution (NGHP-01 cruise) under the aegis of the 123 

National Gas Hydrate Program of India. The core NGHP-01-01A (15°18.366’N, 070° 124 

54.192’E) (Fig. 1) was sampled on-board following the IODP sampling protocol. Whole-125 
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round sediment samples were collected at variable resolutions for interstitial water analyses. 126 

A Manheim-type hydraulic press (Sayles et al., 1973; Gieskes, 1974) was used to squeeze out 127 

the porewater under nitrogen flow to avoid oxidation of hydrogen sulfide (HS- + H2S). The 128 

porewater aliquots were sealed in glass vials following N2 purging for onshore 129 

measurements. Chloride (Cl-) concentrations were measured onboard using a Metrohm IC 130 

(Collett et al., 2008). Porewater-SO4
2- ion concentrations were measured using a Dionex-600 131 

ion chromatograph at the CSIR-National Institute of Oceanography. A detailed analytical 132 

protocol is given in Mazumdar et al. (2007). Total alkalinity (Gieskes et al., 1986) was 133 

measured by the Gran titration method using a Metrohm Autotitrator (Titrino 799 GPT). 134 

Dissolved SO4
2- in the porewater aliquot was precipitated as BaSO4 using 1 ml of high-purity 135 

BaCl2 (Mazumdar and Strauss, 2006). The acidified BaSO4 suspension was boiled for a few 136 

minutes and allowed to cool down at room temperature, and the filtrate was subsequently 137 

dried in a hot air oven. The sulfur isotope ratio (34S) measurement of the BaSO4 precipitate 138 

was carried out using an EA-IRMS (Thermo Delta V-Plus with EA1112) with a continuous 139 

flow system. IAEA-standards including SO-5, SO-6 (BaSO4) and, S-1, S-2 (Ag2S) were used 140 

as calibration standards for S-isotope ratio measurement. Sample reproducibility of 34S 141 

values was better than ± 0.3‰ VCDT (Vienna Canyon Diablo Troilite). Total inorganic 142 

carbon (TIC) contents in the sediment samples were measured using a UIC carbon 143 

coulometer (CM 5130). Ultrapure CaCO3 (Sigma-Aldrich) was used as a TIC (wt%) 144 

measurement standard. Total carbon content (TC wt%) was measured using an elemental 145 
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analyzer (Thermo EA1112). Reproducibility for TC and TIC measurements are 1% and 146 

1.4%, respectively. Total organic carbon (TOC wt%) was calculated by subtracting TIC from 147 

TC.  148 

4. Results and Discussion 149 

4.1 Organoclastic sulfate reduction and sulfide oxidation 150 

Based on SO4
2- (Table-1) concentration and 34SSO4 isotope ratios (Fig. 2C & D), the 151 

sedimentary core NGHP-01-01A may be partitioned into four zones (I: 1.3-75.4 mbsf; II: 75.4 152 

- 128.5 mbsf; III: 128.5 - 171.9 mbsf and IV: 171.9 - 290.8 mbsf). Within zone–I, SO4
2- 153 

concentrations decrease from 28.4 (2.4 mbsf) to 19.1 mM at a depth of 75.4 mbsf. Within this 154 

zone, 34SSO4 values increase steadily down depth from a core top value of +22.8 to +43.9 ‰. 155 

Within zone–II, 34SSO4 varies from +42.9 to +47.3 ‰, whereas the SO4
2- concentration varies 156 

from 18.4 to 20 mM. The 34SSO4 ratio drops from +48.9 to +36.2 ‰ within zone-III (128.5 to 157 

171.9 mbsf) coupled with an increase in SO4
2- concentration up to 24 mM. Below zone-III, the 158 

34SSO4 values remain between +33.5 and +39.8 ‰. In contrast, SO4
2- concentrations show 159 

significant scatter and range from 17.3 to 24 mM. The bulk organic carbon content ranges 160 

from 0.03 to 1.1% and is characterized by a logarithmic depth profile (Fig. 2A). 161 

The marked variations in SO4
2- concentrations and 34SSO4 values suggest active sulfur 162 

biogeochemistry involving microbial SO4
2- reduction and sulfide oxidation in the deep 163 

subsurface of the eastern Arabian Sea. Microbial SO4
2- reduction in the marine sediment 164 
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involves organoclastic (Froelich et al., 1979; Treude et al., 2005; Jørgensen and Kasten, 2006; 165 

Riedinger et al., 2017; Beulig et al., 2018; Jørgensen et al., 2019) and anaerobic oxidation of 166 

methane (AOM) pathways (Froelich et al., 1979; Reeburgh, 1980; Valentine and Reeburgh, 167 

2000; Boetius et al., 2000; Knittel and Boetius, 2009; Ouboter et al., 2022) represented by 168 

stoichiometric equations 1 and 2 respectively, 169 

(CH2O)106(NH3)16(H3PO4) + 53 SO4
2- 
 106 HCO3

- +53 HS- + 16 NH3 + H3PO4 + 53 H+   170 

Eq.1 171 

CH4+ SO4
2-   HCO3

- + HS- + H2O                             Eq.2 172 

The absence of detectable methane concentrations in the core sample (Collett et al., 173 

2008) suggests that OSR is the most critical microbial pathway responsible for the drop in 174 

SO4
2- concentrations. Additionally, the lack of chloride (Cl-) anomaly (Fig.2B) indicates the 175 

absence of methane hydrate in the core sediments. Microbial SO4
2- reduction results in 34S 176 

enrichment (kinetic fractionation) of residual interstitial SO4
2- owing to preferential 177 

partitioning of 32S in the HS-/H2S phase (Canfield, 2001; Detmers et al., 2001; Wing and 178 

Halevy, 2014). Dissolved SO4
2- in the modern ocean has a sulfur isotopic composition of 179 

about +20.5 ‰ (Böttcher et al., 2000). Compared to seawater, 34SSO4 values of the 180 

porewater-SO4
2- (Fig 2D) indicate enrichment of 34S (Böttcher et al., 2004). The absence of 181 

interstitial HS-/H2S is attributed to consumption via Fe-sulfide synthesis (Canfield and 182 

Thampdrup, 1994; Canfield, 2001; Claypool, 2004; Canfield et al., 2005; Jørgensen & 183 

Kasten, 2006; Jørgensen et al., 2019) or incorporation into organic molecules (Werne et al., 184 
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2008; Raven et al., 2016). The presence of pyrite in the NGHP-01-01A core was reported by 185 

Collett et al. (2008).  186 

The activity of SRB driving the OSR in marine sediments is controlled by the 187 

composition and concentrations of buried labile organic molecules including simple dissolved 188 

fatty acids (acetate, lactate, formate), alcohol (methanol and ethanol), and H2 in the interstitial 189 

waters (Glombitza et al., 2015; Jørgensen et al., 2019). The interstitial volatile fatty acids 190 

(VFA) and alcohols are fermentation/ acetogenesis products of hydrolyzed organic molecules 191 

buried below the oxygenated zone in the marine sediments (Jørgensen et al., 2019). 192 

Additional factors influencing SO4
2- reduction rate and sulfur isotopic fractionation include 193 

bacterial groups/ population, temperature, and SO4
2- concentrations (Canfield, 2001; 194 

Jørgensen and Karsten, 2006). The steady drop in interstitial SO4
2- concentrations in zone-I 195 

thus indicates the availability of bioamenable organic substrates in the interstitial waters, 196 

which fuels SO4
2- reduction. Intuitively, the lack of a noticeable drop in SO4

2- concentrations 197 

within zone–II possibly indicates a significant limitation of substrate availability to sustain 198 

SO4
2- reduction. The bulk organic matter content and reactivity markedly decrease down 199 

depth (Fig. 2A) with potential retention of refractory organic components (Parkes et al., 1994; 200 

Wellsbury et al., 1997; Jørgensen and Kasten, 2006; Johnson et al., 2014). Below zone-II, the 201 

SO4
2 concentrations show a moderate increase coupled with a drop in 34SSO4 values, 202 

suggesting possible oxidation of Fe-sulfide via the Fe3+ reduction pathway (Eq.- 3; McKibben 203 
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and Barnes, 1986; Balci et al., 2007; Mazumdar et al., 2008). Ferric-oxide enrichment within 204 

this zone (Collett et al., 2008) supports the above contention. In the absence of microbial 205 

population data, the possible role of microbial activity in the oxidative phase of the sulfur 206 

cycle (Riedinger et al., 2010) remains speculative in this study. The decrease in carbonate 207 

alkalinity within zone-I and II (Fig. 2E) likely indicates HCO3
- uptake by Ca-carbonate 208 

precipitation (Eq. 4), whereas, in zone-IV, the enhanced alkalinity trend may be attributed to 209 

CaCO3 dissolution and HCO3
- production (Eq. 5). The enhanced alkalinity in zone-IV is 210 

supported by increased calcium carbonate content (ranging from 22 to 86. wt%) reported by 211 

Johnson et al. (2014). The H+ availability in the interstitial waters may be attributed to Fe-212 

sulfide oxidation (Eq. 3). Enhanced bicarbonate alkalinity due to pyrite oxidation in 213 

carbonate-rich sediment has also been reported by Appelo et al. (1998).   214 

 FeS2 + Fe3++ 8H2O  2Fe2+ +16H+ + 2SO4
2-       Eq. 3 215 

 HCO3
- + Ca2+ 

 CaCO3 + H+                      Eq. 4 216 

 CaCO3 + H+  HCO3
- +Ca2+                         Eq. 5 217 

4.2 Depositional environment and organic matter reactivity 218 

One of the most interesting findings of this study is the microbially mediated deep-219 

surface reductive and abiotic oxidative sulfur cycle. The SO4
2- reduction process indicates the 220 

presence of microbially amenable simple organic molecules in organic carbon-depleted 221 

sediments deposited below the deep aerobic water column. The 2663 m water column at the 222 
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study site is characterized by a top 100 m of productive zone followed by 850 m (150 to 1000 223 

mbsl) of oxygen minimum zone (Mazumdar et al., 2007) and 1560 m of aerobic water with 224 

dissolved oxygen concentrations increasing from 0.5 to 3.2 ml/l. Phytoplankton, including 225 

diatoms and dinoflagellates, comprise the eastern Arabian Sea's dominant particulate biomass 226 

(Marra and Barber, 2005). Organic matter sinks from surface water to the seafloor via the 227 

biological pump (Ducklow et al., 2001). The dissolved and particulate organic matter 228 

undergoes a remarkable transformation during transit through the water depth (with 229 

increasing DO concentrations) due to direct utilization by the biota and/or solubilization via 230 

extracellular enzymatic activity by heterotrophic microbes (Brophy and Carlson, 1989; 231 

Bergauer et al., 2017). The quality and quantity of the organic matter in the bottom sediment, 232 

which fuels the biogeochemical reaction during burial, depends on the molecular 233 

transformation of the settling organic load (Zonneveld et al., 2010; Arndt et al., 2013) 234 

through the water column. Numerous factors like adsorption of organic matter on siliciclastic 235 

particulates, physical protection/isolation of organic matter by siliciclastics, rate of vertical 236 

fall (ballast effect), aggradation/degradation of particulate flocs, and temperature influence 237 

the rate and extent of breakdown of organic matter in the aerobic water column (Lee et al., 238 

2004; Arndt et al., 2013). Only a small fraction of the organic matter is exported to the 239 

seafloor (Holland, 1978; Hedges and Keil, 1995; Berner, 2004; Arndt et al., 2013) since the 240 

majority of the organic matter is remineralized to CO2 during its trajectory (Burdige, 2007). 241 

En route to the sea bed, the particulate organic matter rapidly and preferentially gets depleted 242 
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in amino acids, carbohydrates, polyunsaturated fatty acids, and lipids by microbial and 243 

zooplankton activity. Whereas, marine and terrestrially derived refractory organic matter are 244 

preferentially transferred to the sea bed (Kharbush et al., 2020).  245 

The sulfur dynamics observed in our study support the retention of microbially amenable 246 

simple organic molecules to fuel SO4
2− reduction at least in the top 75 mbsf, which implies 247 

that despite extensive aerobic degradation in the water column, the organic particulates retain 248 

sufficient hydrolyzable compounds to fuel anaerobic fermentation to drive SO4
2- reduction. 249 

This conjecture is supported by the reported retention of 10–20 % carbohydrates, 10 % 250 

nitrogenous compounds (mostly amino acids), and 5–15 % lipids in organic particulates 251 

(Hedges and Oades, 1997; Burdige, 2007). Agatova and Bogdanov (1972), Danovaro et al. 252 

(1993), and Dell’Anno et al. (2000) also reported hydrolysed protein and carbohydrate pools 253 

in deep-sea sediments.  254 

5. Conclusions 255 

Sulfate concentration and sulfur isotope ratio (34SSO4) profiles of interstitial waters in the 256 

sediment core (NGHP-01-01A) from the eastern Arabian Sea show tell-tale evidence of OSR 257 

and sulfide oxidation attributed to deep subsurface biotic and abiotic processes respectively. 258 

Definite evidence of SO4
2- reduction down to a depth of 75 mbsf may be attributed to the 259 

retention of labile organic molecules in sediment in despite burial and overlying 1560 m 260 

aerobic water column. The absence of a steady drop in SO4
2- concentrations below 75 m may 261 
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be attributed to the enhanced refractory nature of the organic matter (due to burial) and 262 

insufficient labile content to support active SO4
2- reduction. Iron-oxyhydroxide-driven Fe-263 

sulfide oxidation has been suggested as a possible mechanism to explain the enhanced SO4
2- 264 

concentrations and drop in 34SSO4 values. A detailed microbiological study is required in 265 

future investigations to understand the possibility of the cryptic sulfur cycle and 266 

disproportionation processes in deep cores of the eastern Arabian Sea. 267 
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Figure and Table Captions 632 

 633 

Figure 1: Regional map showing the location of sediment core (NGHP-01-01A) in Kerala-634 

Konkan Basin. The bathymetry map was generated using ocean data view software.  635 

 636 

Figure 2: Geochemical composition NGHP-01-01A core. A. TOC (wt. %) with logarithmic 637 

regression fit. B. Chloride concentration in interstitial waters (data from Collett et al., 2008). 638 

C. Interstitial SO4
2− concentrations (mM). D. S-isotope ratio (δ34SSO4) of interstitial SO4

2-. E. 639 

Total alkalinity (TA) concentrations (mM) in the interstitial water. The horizontal dashed 640 

lines demarcate Zone I to IV. Vertical dashed lines demarcate the average seawater 641 

compositions. 642 

 643 

Table 1:  Concentrations and isotope ratios of pore water SO4
2− and total alkalinity (TA) of 644 

the core NGHP-01-01A. 645 

Table 2: Total organic carbon content of the core NGHP-01-01A. 646 
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Table 1 

 

Sl. 
No 

Depth Sulfate 34S Alkalinity 

  (mbsf) (mM)  (‰-VCDT)  (mM) 
1 1.3  24.3 3.7 
2 2.4 28.4    
3 2.7 28.3 22.8 3.3 
4 4 27.1 24.3 3.0 
5 9.7 23.1 25.2 3.4 
6 11  28.6 4.4 
7 12.4 25.1 28.6 4.2 
8 13.4 24.7 31.3 4.5 
9 18 22.8 32.5 4.8 
10 19.2 23.9 31.1 3.9 
11 20.8 24.3 33.9 4.2 
12 22.2 24.3 32.5 4.5 
13 23.6 24.3 34.2 4.6 
14 25 23.0 34.3 3.9 
15 26.4 23.0 34.6 3.6 
16 27.8 23.1 36.7 3.9 
17 29.2 19.5 37.3 3.9 
18 30.6 23.9 37.1 3.5 
19 32  37.5 3.5 
20 33.4  38.5 3.0 
21 36.2  38.6   
22 39 24.3 39.7 3.2 
23 41.8 24.1 41.1 5.0 
24 46.7 21.1 38.6   
25 53 23.0 42.8 3.2 
26 55.8 21.5 43.3 3.5 
27 58.6 22.4 44.7 3.1 
28 61.4 18.1 41.9 2.1 
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29 62.3 19.4    
30 64.2 20.1 43.7 1.3 
31 67 18.3 44.9 1.8 
32 69.8 19.9 43.9 2.1 
33 72.6 21.4 45.0 3.0 
34 75.4 19.1 47.3   
35 78.2  43.7 1.9 
36 81 18.6 47.3 2.3 
37 83.8 20.0 44.9 2.2 
38 86.6 18.9 46.3 2.1 
39 87.8 18.5    
40 89.4 19.1 45.9 2.4 
41 92.2 19.0 45.1 2.9 
42 102.3 19.2    
43 103.4 19.1 45.0 2.4 
44 106.2 18.7 46.6 3.0 
45 109 19.4 45.5 1.2 
46 111.8 19.0 44.9 1.8 
47 114.6 18.6  2.1 
48 117.4 19.6  1.9 
49 120.1 19.6  2.2 
50 121.3 19.6    
51 122.9 19.0 48.9 2.0 
52 125.7 18.5 45.3 2.3 
53 128.5  43.4 1.8 
54 131.3  46.3 2.1 
55 134.1 20.4 44.5 3.0 
56 136.9  42.3 1.0 
57 139.7 19.0 44.6 1.6 
58 141.7 18.9 44.9 1.3 
59 143.9 19.5 42.6 1.6 
60 146.7  43.1 2.1 
61 144.1 22.3    
62 146.7 19.0    
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63 149.5 19.4 42.4 1.5 
64 152.3  37.5 1.3 
65 158.5  36.2   
66 160.3 24.0    
67 169.1  39.3   
68 171.9  33.5 1.3 
69 174.7  38.5   
70 177.5 21.1 36.6 1.8 
71 180.3  35.7   
72 183.1  39.8   
73 185.7 22.0    
74 187.3  37.6 2.4 
75 190.1  37.4   
76 192.9 18.7    
77 195.7 22.6 39.8 2.6 
78 198.5 17.3 36.3 2.9 
79 201.3  37.8 1.8 
80 204.1 21.1 35.5 1.5 
81 207.4 20.3    
82 209.7 17.6 37.6 1.7 
83 212.5 22.6  2.2 
84 213.9 22.4 36.3 1.6 
85 215.3  35.9 2.9 
86 217.1  33.8 2.9 
87 218.1  36.3   
88 219.5 24.0 38.3 2.2 
89 222.7  37.9 3.1 
90 243.2  37.5 2.8 
91 251.1 20.6    
92 262.8 21.3 36.0 4.3 
93 265.1  35.1   
94 268.4 21.7 36.3 4.3 
95 271.2  36.2   
96 274  34.9 3.0 
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97 282.4   3.6 
98 285.2  35.3 4.4 
99 287.6 20.0    
100 288.0 21.9 33.9 4.4 
101 290.8 20.9 35.8 5.6 
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Table 2 

Sr. 
no 

Depth TOC 

  (mbsf) (wt. %) 
1 0.5 1.07 
2 5.7 1.12 
3 9.8 1.00 
4 19.8 1.14 
5 29.2 0.62 
6 38.7 0.55 
7 47.2 0.60 
8 59.7 0.53 
9 62.7 0.56 
10 72.2 0.36 
11 81.7 0.28 
12 91.2 0.42 
13 102.7 0.22 
14 112.2 0.39 
15 121.7 0.20 
16 131.2 0.60 
17 142.7 0.31 
18 152.2 0.23 
19 160.7 0.43 
20 170.4 0.39 
21 180.1 0.18 
22 189.2 0.01 
23 199.3 0.02 
24 209.4 0.08 
25 220.5 0.03 
26 230.2 0.17 
27 239.8 0.03 
28 248.5 0.10 
29 259.1 0.04 
30 268.8 0.09 
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31 278.4 0.19 
32 288.0 0.14 
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