

1	Evidence of deep subsurface sulfur cycle in a sediment core from
2	eastern Arabian Sea
3	
4	Aninda Mazumdar ^{*1} , Aditya Peketi ^{*1} , Namrata Khadke ¹ , Subhashree Mishra ¹ ,
5	Ankita Ghosh ^{1, 2} , Sai Pavan Kumar Pillutla ^{1, 3} , Mohammad Sadique ^{1, 3} , Kalyani
6	Sivan ^{1, 2} , Anjali Zatale ^{1, 2}
7	
8	¹ CSIR-National Institute of Oceanography, Dona Paula, Goa-403004.
9	² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
10	³ School of earth, ocean, and atmospheric sciences, Goa University, Taleigao, Goa 403206.
11	
12	Correspondence to: Aninda Mazumdar (maninda@nio.org); Aditya Peketi (aditya@nio.org)
13	
14	Abstract

Anaerobic microbial sulfate reduction and oxidative sulfur cycling have been studied in long 15 sediment cores mainly acquired as part of IODP explorations. The most remarkable 16 observation in many of these studies is the existence of an active sulfur cycle in the deep 17 subsurface sediments that have very low organic carbon content and are presumably 18 refractory. Here we investigate the interstitial sulfate concentrations and sulfur isotope ratios 19 in a 290 m long core collected from the eastern Arabian Sea at a water depth of 2663 m. 20 Continuous decrease in pore water-sulfate concentrations with depth (up to 75 mbsf) coupled 21 with enrichment in $\delta^{34}S_{SO4}$ values suggests organoclastic sulfate reduction (OSR) processes 22 attributed to the activity of sulfate-reducing bacteria (SRB) and retention of labile organic 23 substrates amenable to the SRBs. Below a depth of 75 mbsf, the absence of a further 24 reduction in sulfate concentrations indicates insufficient labile substrate to drive SRB. An 25 increase in sulfate concentrations at the deeper subsurface (below 128.5 mbsf) coupled with 26

decreasing $\delta^{34}S_{SO4}$ values may be attributed to a ferric-oxyhydroxide driven oxidation of Fesulfide. This study reveals that even under deep aerobic water columns, organic matter may continue to be a source of labile organic substrates at significantly deeper subsurface. Enhanced sulfate concentrations in the deeper depths may be attributed to the oxidation of sulfides via ferric-oxyhydroxides buried deep within the sediment. A microbiological investigation may reveal further details of the sulfur cycle at the deep surface.

33

34 1. Introduction

The exploration of the sub-seafloor biosphere and redox zonation in sediments over the 35 last few decades has enhanced our knowledge of the deep biospheric microbial distribution 36 (Wasmund et al., 2017), substrates, energy utilization pathways (LaRowe and Amend, 2015) 37 and diagenetic mineralization (Meister et al., 2019). Microbially mediated biogeochemical 38 processes in marine sediments are fuelled by simple organic molecules (electron sources) and 39 inorganic electron acceptors, including O₂, NO₃⁻, Fe³⁺, Mn⁴⁺, SO₄²⁻, and CO₂. Degenerated 40 and reorganized organic particulates deposited on the sea bed are further subjected to 41 microbially mediated oxidative degradation and reworking by benthic organisms, enriching 42 the sediment porewater with fresh dissolved organic matter (Ferdelman et al., 2011; 43 Maliverno and Martinez, 2015; Bergauer et al., 2017; Luek et al., 2017). Hydrolysis and 44 45 subsequent fermentation of complex organic molecules fuels a sequential utilization of terminal electron acceptors, typically in the order of O₂, NO₃⁻, Mn⁴⁺, Fe^{3+,} and SO₄²⁻ followed 46

by CO₂. At a depth of a few centimetres to meters below the seafloor, oxidative
remineralization is taken over by strictly anaerobic, organoclastic sulfate reduction (OSR),
which accounts for up to 29% of the remineralization of accumulated seafloor organic matter
(Bowles et al., 2014).

The availability of simple organic compounds like volatile fatty acids (VFA), including 51 52 formate, acetate, propionate, and H_2 in the sediment pore-fluid is crucial in sustaining OSR and the growth of sulfate-reducing bacteria (SRB). However, in the deep subsurface, due to 53 depletion in the availability of labile organic molecules, sulfate reducers may use methanol, 54 55 long-chain fatty acids, and aromatic compounds as electron sources (Sousa et al., 2018). Wellsbury et al. (2002) reported SO_4^{2-} reduction up to 100 mbsf in a deep-sea sediment core 56 characterized by low organic carbon content (~0.4%) and attributed the SO_4^{2-} reduction 57 58 process to the presence of culturable fermenters and acetogens in the deep subsurface. Micromolar acetate concentrations $(4 - 14 \mu M)$ have been reported by D'Hondt et al. (2003) 59 in marine deep subsurface sediments. Sulfate-reducing bacteria may metabolize, and even 60 61 grow at extremely low rates under energy-limited conditions (Hoehler and Jørgensen, 2013; Bowles et al., 2014; Jørgensen and Marshall, 2016) through physiological adaptations 62 63 including increased substrate uptake efficiency (Lever et al., 2015; Jørgensen and Marshall, 2016), and use of alternative electron carriers like rubredoxin and rubrerythrin for ATP 64 generation (Wenk et al., 2017). Sulfate reducers may also adapt to sporulation in extreme 65

deep subsurface conditions (Klemps et al., 1985; Kotelnikova and Pedersen, 1997). In addition, H₂ generated in porewater by radiolysis or anaerobic mineral reactions may also play an important role in deep-subsurface SO_4^{2-} reduction (Stevens and Mckinley, 1995; Schrenk et al., 2013).

Sulfate reduction typically decreases interstitial dissolved SO_4^{2-} concentrations as the 70 71 sediment is buried beneath the seafloor, eventually reaching below detection levels within the sulfate-methane transition zone (Jørgensen and Kasten, 2006). The sulfate concentration 72 profile is also accompanied by a distinct alteration in interstitial water compositions, 73 including total alkalinity, HCO_3^- , NH_4^+ , HS^- concentrations, and sulfur stable isotope ($\delta^{34}S_{SO4}$) 74 and $\delta^{34}S_{HS}$) ratios. However, pore water analyses of long sedimentary cores from IODP or 75 other expeditions often show anomalous SO_4^{2-} concentrations in the deeper sediment layers 76 after initial drawdown (Meyers and Shaw, 1996) at shallower depths. These observations 77 have been attributed to deep subsurface Fe-sulfide oxidation, disproportionation of S^0 78 (Riedinger et al., 2010), and brine flux from deeper sources (Meister et al., 2019). Recycling 79 of sulfur species and the cryptic sulfur cycle has also been reported from the deep subsurface 80 SO4²⁻-poor sediments (Holmkvist et al., 2011; Brunner et al., 2016) coupled with the 81 continuous detection of functional genes of sulfate-reducing microbes (Leloup et al., 2007; 82 Leloup et al., 2009; Blazejak and Schippers, 2011; Aoki et al., 2015). Chloroflexi is notable 83

for being relatively abundant in deep sediments and could therefore hint at their roles in the
deep subsurface sulfur cycle (Wasmund et al., 2016).

In the present work, we have attempted to explain the anomalous SO_4^{2-} concentrations and $\delta^{34}S_{SO4}$ profiles in the interstitial waters in a long sediment core collected from the eastern Arabian Sea (off the west coast of India) during the 2006 NGHP-01 Expedition on board ORV *JOIDES-Resolution*. The cruise was undertaken as part of the Indian gas hydrate exploration program (Collette et al., 2008).

91

92 2. Geology

93

3

The Western Continental Margin of India has evolved due to rifting of the Indian 94 95 landmass from Madagascar and Seychelles islands, since the Middle Cretaceous (Norton and Sclater, 1979). Subsequent seafloor spreading between these landmasses formed the Arabian 96 Sea (Chaubey et al., 1993). The Carlsberg Ridge divides the Arabian Sea into two major 97 98 basins: the Arabian Basin to the east and the Somali Basin to the west (Mckenzie and Sclater, 1971). The Arabian Sea (3.862 million km²) has an average water depth of 2,734 m. It is 99 bordered to the west by the Horn of Africa and the Arabian Peninsula, to the north by Iran 100 101 and Pakistan, to the east by India, and to the south by the Indian Ocean.

102 The western continental margin of India, which forms the eastern boundary of the 103 Arabian Sea, is a passive margin and characterized by (i) an NW-SE trending continental 104 shelf (~200 to 50 km wide) (ii) a straight outer edge limited by 200 m isobath, (iii) a narrow

105	continental slope bounded by the 200 and 2000 m isobaths, (iv) deep sedimentary basins viz.,
106	Kori-Comorin and Kerala-Konkan Basins and, (v) several structural features like Chagos-
107	Laccadive Ridge, Laxmi Ridge and Pratap Ridge (Naini and Talwani, 1982). The N-S
108	trending Chagos-Laccadive Ridge represents the trace of the Reunion hotspot (Duncan,
109	1981).
110	The Kerala-Konkan Basin forms the southern part of the western continental margin
111	of India and extends from Goa to the tip of Cape Comorin. The coring site NGHP-01-01A is
112	located in the Kerala-Konkan Basin at a water depth of 2663 m (Fig.1). NGHP-01-01A
113	coring site lies on the western flank of the Chagos-Laccadive Ridge. Seismic lines show a
114	prominent basement high beneath the site (Rao et al., 2001).
115	NGHP-01-01A core is characterized by a remarkably homogenous sequence of carbonate-
116	rich oozes (Kumar et al., 2014) with variable clay content. The oozes include nannofossil
117	ooze and foraminifera-bearing nannofossil ooze. The sediment core shows a varying degree
118	of bioturbation, ranging from moderate to abundant (Collett et al., 2008).
119 120 121	3. Methodology
122	Advanced piston coring (APC) extended core barrel (XCB) and pressure core (PCS)

Advanced piston coring (APC), extended core barrel (XCB), and pressure core (PCS) techniques were used on-board JOIDES Resolution (NGHP-01 cruise) under the aegis of the National Gas Hydrate Program of India. The core NGHP-01-01A (15°18.366'N, 070° 54.192'E) (Fig. 1) was sampled on-board following the IODP sampling protocol. Whole-

round sediment samples were collected at variable resolutions for interstitial water analyses. 126 A Manheim-type hydraulic press (Sayles et al., 1973; Gieskes, 1974) was used to squeeze out 127 the porewater under nitrogen flow to avoid oxidation of hydrogen sulfide ($HS^- + H_2S$). The 128 porewater aliquots were sealed in glass vials following N₂ purging for onshore 129 measurements. Chloride (Cl⁻) concentrations were measured onboard using a Metrohm IC 130 (Collett et al., 2008). Porewater-SO₄²⁻ ion concentrations were measured using a Dionex-600 131 ion chromatograph at the CSIR-National Institute of Oceanography. A detailed analytical 132 protocol is given in Mazumdar et al. (2007). Total alkalinity (Gieskes et al., 1986) was 133 measured by the Gran titration method using a Metrohm Autotitrator (Titrino 799 GPT). 134 Dissolved SO₄²⁻ in the porewater aliquot was precipitated as BaSO₄ using 1 ml of high-purity 135 BaCl₂ (Mazumdar and Strauss, 2006). The acidified BaSO₄ suspension was boiled for a few 136 minutes and allowed to cool down at room temperature, and the filtrate was subsequently 137 dried in a hot air oven. The sulfur isotope ratio (δ^{34} S) measurement of the BaSO₄ precipitate 138 was carried out using an EA-IRMS (Thermo Delta V-Plus with EA1112) with a continuous 139 flow system. IAEA-standards including SO-5, SO-6 (BaSO₄) and, S-1, S-2 (Ag₂S) were used 140 as calibration standards for S-isotope ratio measurement. Sample reproducibility of δ^{34} S 141 values was better than $\pm 0.3\%$ VCDT (Vienna Canyon Diablo Troilite). Total inorganic 142 carbon (TIC) contents in the sediment samples were measured using a UIC carbon 143 coulometer (CM 5130). Ultrapure CaCO₃ (Sigma-Aldrich) was used as a TIC (wt%) 144 measurement standard. Total carbon content (TC wt%) was measured using an elemental 145

analyzer (Thermo EA1112). Reproducibility for TC and TIC measurements are 1% and
1.4%, respectively. Total organic carbon (TOC wt%) was calculated by subtracting TIC from
TC.

149 4. Results and Discussion

150 4.1 Organoclastic sulfate reduction and sulfide oxidation

Based on SO₄²⁻ (Table-1) concentration and $\delta^{34}S_{SO4}$ isotope ratios (Fig. 2C & D), the 151 sedimentary core NGHP-01-01A may be partitioned into four zones (I: 1.3-75.4 mbsf; II: 75.4 152 - 128.5 mbsf; III: 128.5 - 171.9 mbsf and IV: 171.9 - 290.8 mbsf). Within zone-I, SO42-153 concentrations decrease from 28.4 (2.4 mbsf) to 19.1 mM at a depth of 75.4 mbsf. Within this 154 zone, δ^{34} S_{SO4} values increase steadily down depth from a core top value of +22.8 to +43.9 ‰. 155 Within zone–II, $\delta^{34}S_{SO4}$ varies from +42.9 to +47.3 ‰, whereas the SO₄²⁻ concentration varies 156 from 18.4 to 20 mM. The δ^{34} Sso4 ratio drops from +48.9 to +36.2 ‰ within zone-III (128.5 to 157 171.9 mbsf) coupled with an increase in SO₄²⁻ concentration up to 24 mM. Below zone-III, the 158 $\delta^{34}S_{SO4}$ values remain between +33.5 and +39.8 %. In contrast, SO₄²⁻ concentrations show 159 significant scatter and range from 17.3 to 24 mM. The bulk organic carbon content ranges 160 from 0.03 to 1.1% and is characterized by a logarithmic depth profile (Fig. 2A). 161

162 The marked variations in SO_4^{2-} concentrations and $\delta^{34}S_{SO4}$ values suggest active sulfur 163 biogeochemistry involving microbial SO_4^{2-} reduction and sulfide oxidation in the deep 164 subsurface of the eastern Arabian Sea. Microbial SO_4^{2-} reduction in the marine sediment

- 165 involves organoclastic (Froelich et al., 1979; Treude et al., 2005; Jørgensen and Kasten, 2006;
- 166 Riedinger et al., 2017; Beulig et al., 2018; Jørgensen et al., 2019) and anaerobic oxidation of
- 167 methane (AOM) pathways (Froelich et al., 1979; Reeburgh, 1980; Valentine and Reeburgh,
- 168 2000; Boetius et al., 2000; Knittel and Boetius, 2009; Ouboter et al., 2022) represented by
- 169 stoichiometric equations 1 and 2 respectively,

170
$$(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 53 SO_4^{2-} \rightarrow 106 HCO_3^{-} + 53 HS^{-} + 16 NH_3 + H_3PO_4 + 53 H^{+}$$

171 Eq.1

172
$$CH_4 + SO_4^{2-} \rightarrow HCO_3^- + HS^- + H_2O$$
 Eq.2

The absence of detectable methane concentrations in the core sample (Collett et al., 173 2008) suggests that OSR is the most critical microbial pathway responsible for the drop in 174 SO₄²⁻ concentrations. Additionally, the lack of chloride (Cl⁻) anomaly (Fig.2B) indicates the 175 absence of methane hydrate in the core sediments. Microbial SO_4^{2-} reduction results in ³⁴S 176 enrichment (kinetic fractionation) of residual interstitial SO4²⁻ owing to preferential 177 partitioning of ³²S in the HS⁻/H₂S phase (Canfield, 2001; Detmers et al., 2001; Wing and 178 Halevy, 2014). Dissolved SO_4^{2-} in the modern ocean has a sulfur isotopic composition of 179 about +20.5 % (Böttcher et al., 2000). Compared to seawater, $\delta^{34}S_{SO4}$ values of the 180 porewater-SO₄²⁻ (Fig 2D) indicate enrichment of ³⁴S (Böttcher et al., 2004). The absence of 181 interstitial HS⁻/H₂S is attributed to consumption via Fe-sulfide synthesis (Canfield and 182 Thampdrup, 1994; Canfield, 2001; Claypool, 2004; Canfield et al., 2005; Jørgensen & 183 Kasten, 2006; Jørgensen et al., 2019) or incorporation into organic molecules (Werne et al., 184

2008; Raven et al., 2016). The presence of pyrite in the NGHP-01-01A core was reported byCollett et al. (2008).

The activity of SRB driving the OSR in marine sediments is controlled by the 187 composition and concentrations of buried labile organic molecules including simple dissolved 188 189 fatty acids (acetate, lactate, formate), alcohol (methanol and ethanol), and H₂ in the interstitial waters (Glombitza et al., 2015; Jørgensen et al., 2019). The interstitial volatile fatty acids 190 (VFA) and alcohols are fermentation/ acetogenesis products of hydrolyzed organic molecules 191 buried below the oxygenated zone in the marine sediments (Jørgensen et al., 2019). 192 Additional factors influencing SO_4^{2-} reduction rate and sulfur isotopic fractionation include 193 bacterial groups/ population, temperature, and SO4²⁻ concentrations (Canfield, 2001; 194 Jørgensen and Karsten, 2006). The steady drop in interstitial SO_4^{2-} concentrations in zone-I 195 thus indicates the availability of bioamenable organic substrates in the interstitial waters, 196 which fuels SO_4^{2-} reduction. Intuitively, the lack of a noticeable drop in SO_4^{2-} concentrations 197 within zone-II possibly indicates a significant limitation of substrate availability to sustain 198 SO₄²⁻ reduction. The bulk organic matter content and reactivity markedly decrease down 199 depth (Fig. 2A) with potential retention of refractory organic components (Parkes et al., 1994; 200 Wellsbury et al., 1997; Jørgensen and Kasten, 2006; Johnson et al., 2014). Below zone-II, the 201 SO_4^2 concentrations show a moderate increase coupled with a drop in $\delta^{34}S_{SO4}$ values, 202 suggesting possible oxidation of Fe-sulfide via the Fe³⁺ reduction pathway (Eq.- 3; McKibben 203

and Barnes, 1986; Balci et al., 2007; Mazumdar et al., 2008). Ferric-oxide enrichment within 204 this zone (Collett et al., 2008) supports the above contention. In the absence of microbial 205 population data, the possible role of microbial activity in the oxidative phase of the sulfur 206 207 cycle (Riedinger et al., 2010) remains speculative in this study. The decrease in carbonate alkalinity within zone-I and II (Fig. 2E) likely indicates HCO₃⁻ uptake by Ca-carbonate 208 precipitation (Eq. 4), whereas, in zone-IV, the enhanced alkalinity trend may be attributed to 209 CaCO₃ dissolution and HCO₃⁻ production (Eq. 5). The enhanced alkalinity in zone-IV is 210 supported by increased calcium carbonate content (ranging from 22 to 86. wt%) reported by 211 Johnson et al. (2014). The H⁺ availability in the interstitial waters may be attributed to Fe-212 sulfide oxidation (Eq. 3). Enhanced bicarbonate alkalinity due to pyrite oxidation in 213 carbonate-rich sediment has also been reported by Appelo et al. (1998). 214

215
$$FeS_2 + Fe^{3+} + 8H_2O \rightarrow 2Fe^{2+} + 16H^+ + 2SO_4^{2-}$$
 Eq. 3

216
$$HCO_3^- + Ca^{2+} \rightarrow CaCO_3 + H^+$$
 Eq. 4

217
$$CaCO_3 + H^+ \rightarrow HCO_3^- + Ca^{2+}$$
 Eq. 5

218 *4.2 Depositional environment and organic matter reactivity*

One of the most interesting findings of this study is the microbially mediated deepsurface reductive and abiotic oxidative sulfur cycle. The SO_4^{2-} reduction process indicates the presence of microbially amenable simple organic molecules in organic carbon-depleted sediments deposited below the deep aerobic water column. The 2663 m water column at the

study site is characterized by a top 100 m of productive zone followed by 850 m (150 to 1000 223 mbsl) of oxygen minimum zone (Mazumdar et al., 2007) and 1560 m of aerobic water with 224 dissolved oxygen concentrations increasing from 0.5 to 3.2 ml/l. Phytoplankton, including 225 226 diatoms and dinoflagellates, comprise the eastern Arabian Sea's dominant particulate biomass (Marra and Barber, 2005). Organic matter sinks from surface water to the seafloor via the 227 biological pump (Ducklow et al., 2001). The dissolved and particulate organic matter 228 229 undergoes a remarkable transformation during transit through the water depth (with increasing DO concentrations) due to direct utilization by the biota and/or solubilization via 230 extracellular enzymatic activity by heterotrophic microbes (Brophy and Carlson, 1989; 231 Bergauer et al., 2017). The quality and quantity of the organic matter in the bottom sediment, 232 which fuels the biogeochemical reaction during burial, depends on the molecular 233 234 transformation of the settling organic load (Zonneveld et al., 2010; Arndt et al., 2013) 235 through the water column. Numerous factors like adsorption of organic matter on siliciclastic particulates, physical protection/isolation of organic matter by siliciclastics, rate of vertical 236 fall (ballast effect), aggradation/degradation of particulate flocs, and temperature influence 237 the rate and extent of breakdown of organic matter in the aerobic water column (Lee et al., 238 2004; Arndt et al., 2013). Only a small fraction of the organic matter is exported to the 239 seafloor (Holland, 1978; Hedges and Keil, 1995; Berner, 2004; Arndt et al., 2013) since the 240 majority of the organic matter is remineralized to CO₂ during its trajectory (Burdige, 2007). 241 En route to the sea bed, the particulate organic matter rapidly and preferentially gets depleted 242

in amino acids, carbohydrates, polyunsaturated fatty acids, and lipids by microbial and
zooplankton activity. Whereas, marine and terrestrially derived refractory organic matter are
preferentially transferred to the sea bed (Kharbush et al., 2020).

246 The sulfur dynamics observed in our study support the retention of microbially amenable simple organic molecules to fuel SO_4^{2-} reduction at least in the top 75 mbsf, which implies 247 that despite extensive aerobic degradation in the water column, the organic particulates retain 248 sufficient hydrolyzable compounds to fuel anaerobic fermentation to drive SO₄²⁻ reduction. 249 This conjecture is supported by the reported retention of 10–20 % carbohydrates, 10 % 250 nitrogenous compounds (mostly amino acids), and 5-15 % lipids in organic particulates 251 (Hedges and Oades, 1997; Burdige, 2007). Agatova and Bogdanov (1972), Danovaro et al. 252 (1993), and Dell'Anno et al. (2000) also reported hydrolysed protein and carbohydrate pools 253 254 in deep-sea sediments.

255 5. Conclusions

Sulfate concentration and sulfur isotope ratio ($\delta^{34}S_{SO4}$) profiles of interstitial waters in the sediment core (NGHP-01-01A) from the eastern Arabian Sea show tell-tale evidence of OSR and sulfide oxidation attributed to deep subsurface biotic and abiotic processes respectively. Definite evidence of SO₄²⁻ reduction down to a depth of 75 mbsf may be attributed to the retention of labile organic molecules in sediment in despite burial and overlying 1560 m aerobic water column. The absence of a steady drop in SO₄²⁻ concentrations below 75 m may

- be attributed to the enhanced refractory nature of the organic matter (due to burial) and insufficient labile content to support active SO_4^{2-} reduction. Iron-oxyhydroxide-driven Fesulfide oxidation has been suggested as a possible mechanism to explain the enhanced SO_4^{2-} concentrations and drop in $\delta^{34}S_{SO4}$ values. A detailed microbiological study is required in future investigations to understand the possibility of the cryptic sulfur cycle and disproportionation processes in deep cores of the eastern Arabian Sea.
- 268 Appendices: No appendix is there in this manuscript
- 269 Code availability: No code was used in this manuscript.
- 270 Data availability: All the data used in this study is incorporated in the text as table1 and271 table 2.
- 272 Executable research compendium (ERC): NA
- 273 **Sample availability:** Samples are available with the author.
- 274 Video supplement: No video component is there in this manuscript.
- 275 **Supplement link:** there is no supplementary data in this manuscript.

276 Team list: Aninda Mazumdar (CSIR-National Institute of Oceanography, Dona Paula, Goa-

- 277 403004), Aditya Peketi (CSIR-National Institute of Oceanography, Dona Paula, Goa-
- 278 403004), Namrata Khadke (CSIR-National Institute of Oceanography, Dona Paula, Goa-
- 403004), Subhashree Mishra (CSIR-National Institute of Oceanography, Dona Paula, Goa-
- 403004), Ankita Ghosh (CSIR-National Institute of Oceanography, Dona Paula, Goa-403004

& Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India), Sai 281 Pavan Kumar Pillutla (CSIR-National Institute of Oceanography, Dona Paula, Goa-403004 & 282 School of earth, ocean, and atmospheric sciences, Goa University, Taleigao, Goa 403206), 283 284 Mohammad Sadique (CSIR-National Institute of Oceanography, Dona Paula, Goa-403004 & School of earth, ocean, and atmospheric sciences, Goa University, Taleigao, Goa 403206), 285 Kalyani Sivan (CSIR-National Institute of Oceanography, Dona Paula, Goa-403004 & 286 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India), Anjali 287 Zatale (CSIR-National Institute of Oceanography, Dona Paula, Goa-403004 & Academy of 288 Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India) 289

Author contribution: Aninda Mazumdar: Conceptualization, Investigation, Methodology,
Visualization, Funding acquisition, formal analysis, Writing – original draft. Aditya Peketi:
Conceptualization, Investigation, Methodology, Visualization, Formal analysis, Writing –
original draft. Namrata Khadge: Data generation, Methodology, Subhashree Mishra: Data
generation, Methodology, A. Ghosh: Data generation, Methodology, S.P.K. Pillutla: Data
generation, Methodology, Mohd. Sadique: Data generation, Methodology, Kalyani Sivan:
Data generation, A. Zatale: Data generation, Methodology

297 Competing interests: The authors declare that they have no conflict of interest.

298 Disclaimer: NA

299 Special issue statement: Regular article

300	6.	Acknow	ledgement
-----	----	--------	-----------

301

We thank the director of CSIR-NIO for supporting this study. We thank NGHP for providing samples and onboard scientific team for pore fluid data. We sincerely thank MOES for funding the program and CSIR for research fellowship (SRF) to Kalyani Sivan. We thank Mrs. Maria Desa for her contribution to make the figures.

306 **References**

Agatova, A. T. and Bogdanov, Y. A.: Biochemical composition of suspended organic
matter from the Tropical Pacific, Okeanologiya, 12, 267-276, 1972.

309

Aoki, M., Kakiuchi, R., Yamaguchi, T., Takai, K., Inagaki, F., and Imachi, H.:
Phylogenetic diversity of aprA genes in subseafloor sediments on the northwestern Pacific
margin off Japan, Microbes and environments, ME15023, 2015.

313

Appelo, C. A. J., Verweij, E., and Schäfer, H.: A hydrogeochemical transport model for an oxidation experiment with pyrite/calcite/exchangers/organic matter containing sand, Applied geochemistry, 13, 257-268, 1998.

317

Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and
Regnier, P.: Quantifying the degradation of organic matter in marine sediments: a review and
synthesis, Earth-Science Reviews, 123, 53-86, 2013.

321

322	Balci, N., Brunner, B., and Turchyn, A. V.: Tetrathionate and Elemental Sulfur Shape
323	the Isotope Composition of Sulfate in Acid Mine Drainage, Frontiers in microbiology, 8,
324	1564, 2017.
325	
326	Bergauer, K., Fernandez-Guerra, A., Garcia, J. A. L., Sprenger, R. R., Stepanauskas, R.,
327	Pachiadaki, M. G., Jensen, O. N., and Herndl, G. J.: Organic matter processing by microbial
328	communities throughout the Atlantic water column as revealed by metaproteomics,
329	Proceedings of the National Academy of Sciences, 115, E400-E408, 2017.
330	
331	Berner, R. A. and Berner, R. A.: The Phanerozoic carbon cycle: CO2 and O2, Oxford
332	University Press on Demand, 2004.
333	
334	Beulig, F., Roy, H., Glombitza, C., and, Jørgensen, B. B.: Control on rate and pathway
335	of anaerobic organic carbon degradation in the seabed, Proceedings of the National Academy
336	of Sciences, 201715789, 2018.
337	
338	Blazejak, A. and Schippers, A.: Real-time PCR quantification and diversity analysis of
339	the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of
340	the Peru continental margin and the Black Sea, Frontiers in microbiology, 2, 253, 2011.
341	
342	Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Giesecke, A.,
343	Amann, R., Jørgensen, B. B., Witte, U., Pfannkuche, O.: A marine microbial consortium
344	apparently mediating anaerobic oxidation of methane, Nature, 407, 623–626, 2000.
345	
346	Böttcher, M., Khim, B., Suzuki, A., Gehre, M., Wortmann, U., and Brumsack, H.:
347	Microbial sulfate reduction in deep sediments of the Southwest Pacific (ODP Leg 181, Sites

348 1119-1125): evidence from stable sulfur isotope fractionation and pore water modeling,
349 Marine Geology, 205, 249-260, 2004.

350

Böttcher, M. and Lepland, A.: Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures, Journal of Marine Systems, 25, 299-312, 2000.

354

Bowles, M. W., Mogollon, J. M., Kasten, S., Zabel, M., and Hinrichs, K.-U.: Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities, Science, 344, 889-891, 2014.

358

Brophy, J. E. and Carlson, D. J.: Production of biologically refractory dissolved organic
carbon by natural seawater microbial populations, Deep Sea Research Part A. Oceanographic
Research Papers, 36, 497-507, 1989.

362

Brunner, B., Arnold, G. L., Røy, H., Müller, I. A., and Jørgensen, B. B.: Off limits:
sulfate below the sulfate-methane transition, Frontiers in Earth Science, 4, 75, 2016.

365

Burdige, D. J.: Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical reviews, 107, 467-485, 2007.

369 Canfield, D.: Biogeochemistry of sulfur isotopes, Reviews in Mineralogy and370 Geochemistry, 43, 607-636, 2001.

371

372 Canfield, D., Kristensen, E., and Thamdrup, B.: The sulfur cycle, Advances in Marine
373 Biology, 48, 313-381, 2005.

374	
375	Canfield, D. and Thamdrup, B.: The production of 34S-depleted sulfide during
376	bacterial disproportionation of elemental sulfur, Science, 266, 1973-1975, 1994.
377	
378	Chaubey, A. K., Bhattacharya, G. C., Murty, G. P. S., and Desa, M.: Spreading
379	history of the Arabian Sea: Some new constraints, Marine Geology, 112, 343-352, 1993.
380	
381	Claypool, G.: Ventilation of marine sediments indicated by depth profiles of pore
382	water sulfate and δ^{34} S, The Geochemical Society Special Publications, 9, 59-65, 2004.
383	
384	Collett, T., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A.,
385	Sethi, A., Lall, M., and Sibal, V.: Indian National Gas Hydrate Program: Expedition 01,
386	Initial Reports, vol. 1, Dir. Gen. of Hydrocarbon, New Delhi, India, 2008.
387	
388	D'Hondt, S., Jørgensen, B. B., Miller, D.J., Aiello, I.W., Bekins, B., et al.:
389	Proceedings of the Ocean Drilling Program, Vol. 201 Initial Rep.: Controls on Microbial
390	Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin.
391	College Station: Tex. A&M Univ. Ocean Drill. Program, 2003.
392	Danovaro, R., Fabiano, M., and Della Croce, N.: Labile organic matter and
393	microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea), Deep Sea Research
394	Part I: Oceanographic Research Papers, 40, 953-965, 1993.
395	Dell' Anno, A., Fabiano, M., Mei, M. L., and Danovaro, R.: Enzymatically
396	hydrolysed protein and carbohydrate pools in deep-sea sediments: estimates of the potentially
397	bioavailable fraction and methodological considerations, Marine Ecology Progress Series,
398	196, 15-23, 2000.

399	
400	Detmers, J., Bruchert, V., Habicht, K., and Kuever, J.: Diversity of sulfur isotope
401	fractionations by sulfate-reducing prokaryotes, Applied and Environmental Microbiology, 67,
402	888-894, 2001.
403	
404	Ducklow, H. W., Steinberg, D. K., and Buesseler, K. O.: Upper Ocean carbon export
405	and the biological pump, Oceanography, 14, 50-58, 2001.
406	
407	Duncan, R. A.: Hotspots in the southern oceans - an absolute frame of reference for
408	motion of the Gondwana continents, Tectonophysics, 74, 29-42, 1981.
409	
410	Ferdelman, T. G., Ziebis, W., Patel, A., Krupke, A., Expedition, I., and Party, S. S.:
411	Autotrophic and heterotrophic microbial activity in sediments underlying the ultra-
412	oligotrophic South Pacific Gyre, AGU Fall Meeting Abstracts, B51K-0559.
413	
414	Froelich, P., Klinkhammer, G., Bender, M., Luedtke, N., Heath, G., Cullen, D.,
415	Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter
416	in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochimica et
417	Cosmochimica Acta, 43, 1075-1090, 1979.
418	
419	Gieskes, J. M.: INTERSTITIAL WATER STUDIES, LEG 35, edited by: Simpson,
420	E. S. W., Schlich, R., et al., Init. Repts. DSDP, 25, U.S. Govt. Printing Office, Washington,
421	DC (1974), 361-394, 1974.
422	Gieskes, J. M., Peretsman, G., and Rabinowitz, P.: Water chemistry procedures
423	aboard JOIDES Resolution - some comments, ODP Tech. Note, 5, 1-46, 1986.
424	

425	Glombitza, C., Jaussi, M., Roy, H., Seidenkrantz, MS., Lomstein, B. A., and
426	Jorgensen, B. B.: Formate, acetate, and propionate as substrates for sulfate reduction in sub-
427	arctic sediments of Southwest Greenland, Frontiers in Microbiology, 6, 846, 2015.
428	
429	Hedges, J. and Keil, R.: Sedimentary organic matter preservation: an assessment and
430	speculative synthesis, Marine Chemistry, 49, 81-115, 1995.
431	
432	Hedges, J. I. and Oades, M.: A comparative study of marine and soil geochemistry,
433	Org. Geochem, 27, 319-361, 1997.
434	
435	Hoehler, T. M. and Jørgensen, B. B.: Microbial life under extreme energy limitation,
436	Nature Reviews Microbiology, 11, 83-94, 2013.
437	
438	Holland, H. D.: The chemistry of the atmosphere and oceans, John Wiley & Sons,
439	Newyork, 1978.
440	
441	Holmkvist, L., Ferdelman, T. G., and Jørgensen, B. B.: A cryptic sulfur cycle driven
442	by iron in the methane zone of marine sediment (Aarhus Bay, Denmark), Geochimica et
443	Cosmochimica Acta, 75, 3581-3599, 2011.
444	
445	Johnson, J. E., Phillips, S. C., Torres, M. E., Pinero, E., Rose, K. K., and Giosan, L.:
446	Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian
447	continental margins, Marine and Petroleum Geology, 58, 406-424, 2014.
448	
449	Jørgensen, B. B., Findlay, A. J., and Pellerin, A.: The biogeochemical sulfur cycle of
450	marine sediments, Frontiers in microbiology, 10, 849, 2019.

451	
452	Jørgensen, B. and Kasten, S.: Sulfur cycling and methane oxidation, in: Marine
453	geochemistry, Springer, 271-309, 2006.
454	
455	Jørgensen, B. B. and Marshall, I. P. G.: Slow microbial life in the seabed, Annual
456	Review of Marine Science, 8, 311-332, 2016.
457	
458	Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg, R. H., Le
459	Moigne, F. d. r. A. C., Mollenhauer, G., Scholz-Bottcher, B., Obreht, I., and Koch, B. P.:
460	Particulate organic carbon deconstructed: molecular and chemical composition of particulate
461	organic carbon in the ocean, Frontiers in Marine Science, 7, 518, 2020.
462	
463	Klemps, R., Cypionka, H., Widdel, F., and Pfennig, N.: Growth with hydrogen, and
464	further physiological characteristics of Desulfotomaculum species, Archives of
465	Microbiology, 143, 203-208, 1985.
466	
467	Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with an
468	unknown process, Annual review of microbiology, 63, 311-334, 2009.
469	
470	Kotelnikova, S. and Pedersen, K.: Evidence for methanogenic Archaea and
471	homoacetogenic Bacteria in deep granitic rock aquifers, FEMS Microbiology Reviews, 20,
472	339-349, 1997.
473	
474	Kumar, P., Collett, T. S., Boswell, R., Cochran, J. R., Lall, M., Mazumdar, A.,
475	Ramana, M. V., Ramprasad, T., Riedel, M., and Sain, K.: Geologic implications of gas

476	hydrates in the offshore of India: Krishna - Godavari Basin, Mahanadi Basin, Andaman Sea,
477	Kerala - Konkan Basin, Marine and Petroleum Geology, 58, 29-98, 2014.
478	
479	LaRowe, D. E. and Amend, J. P.: Power limits for microbial life, Frontiers in
480	microbiology, 6, 718, 2015.
481	
482	Lee, C., Wakeham, S., and Arnosti, C.: Particulate organic matter in the sea: the
483	composition conundrum, AMBIO: A Journal of the Human Environment, 33, 565-575, 2004.
484	
485	Leloup, J., Fossing, H., Kohls, K., Holmkvist, L., Borowski, C., and Jørgensen, B. B.:
486	Sulfate - reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and
487	diversity related to geochemical zonation, Environmental microbiology, 11, 1278-1291,
488	2009.
489	
490	Leloup, J., Loy, A., Knab, N. J., Borowski, C., Wagner, M., and Jørgensen, B. B.:
491	Diversity and abundance of sulfate - reducing microorganisms in the sulfate and methane
492	zones of a marine sediment, Black Sea, Environmental microbiology, 9, 131-142, 2007.
493	
494	Lever, M. A., Rogers, K. L., Lloyd, K. G., Overmann, J. r., Schink, B., Thauer, R. K.,
495	Hoehler, T. M., and Jørgensen, B. B.: Life under extreme energy limitation: a synthesis of
496	laboratory-and field-based investigations, FEMS Microbiology Reviews, 39, 688-728, 2015.
497	
498	Luek, J. L., Thompson, K. E., Larsen, R. K., Heyes, A., and Gonsior, M.: Sulfate
499	reduction in sediments produces high levels of chromophoric dissolved organic matter,
500	Scientific reports, 7, 1-8, 2017.
501	

502	Malinverno, A. and Martinez, E. A.: The effect of temperature on organic carbon
503	degradation in marine sediments, Scientific reports, 5, 1-10, 2015.
504	
505	Marra, J. and Barber, R. T.: Primary productivity in the Arabian Sea: A synthesis of
506	JGOFS data, Progress in Oceanography, 65, 159-175, 2005.
507	
508	Mazumdar, A., Paropkari, A. L., Borole, D. V., Rao, B. R., Khadge, N. H.,
509	Karisiddaiah, S. M., Kocherla, M., and Joao, H. M.: Pore-water sulfate concentration profiles
510	of sediment cores from Krishna-Godavari and Goa basins, India, Geochemical Journal, 41,
511	259-269, 2007.
512	
513	Mazumdar, A. and Strauss, H.: Sulfur and strontium isotopic compositions of
514	carbonate and evaporite rocks from the late Neoproterozoic - early Cambrian Bilara Group
515	(Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur
516	cycle, Precambrian Research, 149, 217-230, 2006.
517	
518	Mazumdar, A., Goldberg, T., and Strauss, H.: Abiotic oxidation of pyrite by Fe (III) in
519	acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in
520	sediments, Chemical geology, 253, 30-37, 2008.
521	
522	McKenzie, D. and Sclater, J. G.: The evolution of the Indian Ocean since the Late
523	Cretaceous, Geophysical Journal International, 24, 437-528, 1971.
524	
525	McKibben, M. A. and Barnes, H. L.: Oxidation of pyrite in low temperature acidic
526	solutions: Rate laws and surface textures, Geochimica et Cosmochimica Acta, 50, 1509-1520,
527	1986.

528	
529	Meister, P., Brunner, B., Picard, A., Böttcher, M. E., and Jørgensen, B. B.: Sulphur
530	and carbon isotopes as tracers of past sub-seafloor microbial activity, Scientific reports, 9, 1-
531	9, 2019.
532	
533	Meyers, P. A. and Shaw, T. J.: Organic matter accumulation, sulfate reduction, and
534	methanogenesis in Pliocene - Pleistocene turbidites on the Iberia Abyssal Plain, Proceedings
535	of the Ocean Drilling Program, Scientific Results, 705, 1996.
536	
537	Naini, B. R. and Talwani, M.: Structural framework and the evolutionary history of
538	the continental margin of Western India: rifted margins: field investigations of margin
539	structure and stratigraphy, 1982.
540	
541	Norton, I. O. and Sclater, J. G.: A model for the evolution of the Indian Ocean and the
542	breakup of Gondwanaland, Journal of Geophysical Research: Solid Earth, 84, 6803-6830,
543	1979.
544	
545	Ouboter, H. T., Berben, T., Berger, S., Jetten, M. S. M., Sleutels, T., Ter Heijne, A.,
546	and Welte, C. U.: Methane-Dependent Extracellular Electron Transfer at the Bioanode by the
547	Anaerobic Archaeal Methanotroph "Candidatus Methanoperedens", Frontiers in
548	microbiology, 1065, 2022.
549	
550	Parkes, R. J., Cragg, B. A., Bale, S. J., Getlifff, J. M., Goodman, K., Rochelle, P. A.,
551	Fry, J. C., Weightman, A. J., and Harvey, S. M.: Deep bacterial biosphere in Pacific Ocean
552	sediments, Nature, 371, 410-413, 1994.
553	

554	Rao, Y., Subrahmanyam, C., Rastogi, A., and Deka, B.: Anomalous seismic
555	reflections related to gas/gas hydrate occurrences along the western continental margin of
556	India, Geo-Marine Letters, 21, 1-8, 2001.
557	
558	Raven, M. R., Sessions, A. L., Fischer, W. W., and Adkins, J. F.: Sedimentary pyrite
559	δ^{34} S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur,
560	Geochimica et Cosmochimica Acta, 186, 120-134, 2016.
561	
562	Reeburgh, W.: Anaerobic methane oxidation: rate depth distributions in Skan Bay
563	sediments, Earth and Planetary Science Letters, 47, 345-352, 1980.
564	
565	Riedinger, N., Brunner, B., Krastel, S., Arnold, G. L., Wehrmann, L., Formolo, M. J.,
566	Beck, A., Bates, S. M., Henkel, S., and Kasten, S.: Sulfur cycling in an iron oxide-dominated,
567	dynamic marine depositional system: The Argentine continental margin, Frontiers in Earth
568	Science, 5, 2017.
569	
570	Riedinger, N., Brunner, B., Formolo, M. J., Solomon, E., Kasten, S., Strasser, M., and
571	Ferdelman, T. G.: Oxidative sulfur cycling in the deep biosphere of the Nankai Trough,
572	Japan, Geology, 38, 851-854, 2010.
573	
574	Sayles, F. L., Manheim, F. T., and Waterman, L. S.: Interstitial water studies on small
575	core samples, Leg 15, Initial Reports of the Deep-Sea Drilling Project, 20, 783-804, 1973.
576	
577	Schrenk, M. O., Brazelton, W. J., and Lang, S. Q.: Serpentinization, carbon, and deep
578	life, Reviews in Mineralogy and Geochemistry, 75, 575-606, 2013.
579	

580	Sousa, D. Z., Visser, M., Van Gelder, A. H., Boeren, S., Pieterse, M. M., Pinkse, M.		
581	W. H., Verhaert, P. D. E. M., Vogt, C., Franke, S., and Kümmel, S.: The deep-subsurface		
582	sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways,		
583	Nature communications, 9, 1-9, 2018.		
584			
585	Stevens, T. O. and McKinley, J. P.: Lithoautotrophic microbial ecosystems in deep		
586	basalt aquifers, Science, 270, 450-455, 1995.		
587			
588	Treude, T., Niggemann, J., Kallmeyer, J., Wintersteller, P., Schubert, C. J., Boetius,		
589	A., and Jørgensen, B. B.: Anaerobic oxidation of methane and sulfate reduction along th		
590	Chilean continental margin, Geochimica et cosmochimica acta, 69, 2767-2779, 2005.		
591			
592	Valentine, D. and Reeburgh, W.: New perspectives on anaerobic methane oxidation,		
593	Environmental Microbiology, 2, 477-484, 2000.		
594			
595	Wasmund, K., Cooper, M., Schreiber, L., Lloyd, K. G., Baker, B. J., Petersen, D. G.,		
596	Jørgensen, B. B., Stepanauskas, R., Reinhardt, R., and Schramm, A.: Single-cell genome and		
597	group-specific dsrAB sequencing implicate marine members of the class Dehalococcoidia		
598	(phylum Chloroflexi) in sulfur cycling, MBio, 7, e00266-00216, 2016.		
599			
600	Wasmund, K., Mußmann, M., and Loy, A.: The life sulfuric: microbial ecology of		
601	sulfur cycling in marine sediments, Environmental microbiology reports, 9, 323-344, 2017.		
602			
603	Wellsbury, P., Goodman, K., Barth, T., Cragg, B. A., Barnes, S. P., and Parkes, R. J.:		
604	Deep marine biosphere fuelled by increasing organic matter availability during burial and		
605	heating, Nature, 388, 573-576, 1997.		

606	
607	Wellsbury, P., Mather, I., and Parkes, R. J.: Geomicrobiology of deep, low organic
608	carbon sediments in the Woodlark Basin, Pacific Ocean, FEMS microbiology ecology, 42,
609	59-70, 2002.
610	
611	Wenk, C. B., Wing, B. A., and Halevy, I.: Electron carriers in microbial sulfate
612	reduction inferred from experimental and environmental sulfur isotope fractionations, The
613	ISME journal, 12, 495-507, 2017.
614	
615	Werne, J. P., Lyons, T. W., Hollander, D. J., Schouten, S., Hopmans, E. C., and
616	Sinninghe Damste, J. S.: Investigating pathways of diagenetic organic matter sulfurization
617	using compound-specific sulfur isotope analysis, Geochimica et Cosmochimica Acta, 72,
618	3489-3502, 2008.
619	
620	Wing, B. A. and Halevy, I.: Intracellular metabolite levels shape sulfur isotope
621	fractionation during microbial sulfate respiration, Proceedings of the National Academy of
622	Sciences, 111, 18116-18125, 2014.
623	
624	Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K. C.,
625	Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., and Middelburg, J. J.: Selective
626	preservation of organic matter in marine environments; processes and impact on the
627	sedimentary record, Biogeosciences, 7, 483-511, 2010.
628	
629	
630	
631	

- 632 **Figure and Table Captions**
- 633
- **Figure 1:** Regional map showing the location of sediment core (NGHP-01-01A) in Kerala-
- 635 Konkan Basin. The bathymetry map was generated using ocean data view software.
- 636
- **Figure 2:** Geochemical composition NGHP-01-01A core. A. TOC (wt. %) with logarithmic
- regression fit. B. Chloride concentration in interstitial waters (data from Collett et al., 2008).
- 639 C. Interstitial SO₄²⁻ concentrations (mM). D. S-isotope ratio ($\delta^{34}S_{SO4}$) of interstitial SO₄²⁻. E.
- 640 Total alkalinity (TA) concentrations (mM) in the interstitial water. The horizontal dashed
- 641 lines demarcate Zone I to IV. Vertical dashed lines demarcate the average seawater
- 642 compositions.
- 643
- **Table 1**: Concentrations and isotope ratios of pore water SO_4^{2-} and total alkalinity (TA) of
- 645 the core NGHP-01-01A.
- **Table 2:** Total organic carbon content of the core NGHP-01-01A.

Figure 1

Figure 2

Table 1

Sl. No	Depth	Sulfate	$\delta^{34}S$	Alkalinity
	(mbsf)	(mM)	(‰-VCDT)	(mM)
1	1.3		24.3	3.7
2	2.4	28.4		
3	2.7	28.3	22.8	3.3
4	4	27.1	24.3	3.0
5	9.7	23.1	25.2	3.4
6	11		28.6	4.4
7	12.4	25.1	28.6	4.2
8	13.4	24.7	31.3	4.5
9	18	22.8	32.5	4.8
10	19.2	23.9	31.1	3.9
11	20.8	24.3	33.9	4.2
12	22.2	24.3	32.5	4.5
13	23.6	24.3	34.2	4.6
14	25	23.0	34.3	3.9
15	26.4	23.0	34.6	3.6
16	27.8	23.1	36.7	3.9
17	29.2	19.5	37.3	3.9
18	30.6	23.9	37.1	3.5
19	32		37.5	3.5
20	33.4		38.5	3.0
21	36.2		38.6	
22	39	24.3	39.7	3.2
23	41.8	24.1	41.1	5.0
24	46.7	21.1	38.6	
25	53	23.0	42.8	3.2
26	55.8	21.5	43.3	3.5
27	58.6	22.4	44.7	3.1
28	61.4	18.1	41.9	2.1

97	282.4			3.6
98	285.2		35.3	4.4
99	287.6	20.0		
100	288.0	21.9	33.9	4.4
101	290.8	20.9	35.8	5.6

Table 2

Sr.	Depth	TOC
no		
	(mbsf)	(wt. %)
1	0.5	1.07
2	5.7	1.12
3	9.8	1.00
4	19.8	1.14
5	29.2	0.62
6	38.7	0.55
7	47.2	0.60
8	59.7	0.53
9	62.7	0.56
10	72.2	0.36
11	81.7	0.28
12	91.2	0.42
13	102.7	0.22
14	112.2	0.39
15	121.7	0.20
16	131.2	0.60
17	142.7	0.31
18	152.2	0.23
19	160.7	0.43
20	170.4	0.39
21	180.1	0.18
22	189.2	0.01
23	199.3	0.02
24	209.4	0.08
25	220.5	0.03
26	230.2	0.17
27	239.8	0.03
28	248.5	0.10
29	259.1	0.04
30	268.8	0.09

31	278.4	0.19
32	288.0	0.14