



# A Modeling Approach to Investigate Drivers, Variability and Uncertainties in O<sub>2</sub> Fluxes and the O<sub>2</sub>:CO<sub>2</sub> Exchange Ratios in a Temperate Forest

Yuan Yan<sup>1</sup>, Anne Klosterhalfen<sup>1</sup>, Fernando Moyano<sup>1</sup>, Matthias Cuntz<sup>2</sup>, Andrew C. Manning<sup>3</sup>, Alexander Knohl<sup>1,4</sup>

- <sup>1</sup> Bioclimatology, University of Goettingen, 37077 Goettingen, Germany
- <sup>2</sup> Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
- <sup>3</sup> Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- <sup>4</sup> Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37073 Goettingen, Germany *Correspondence to*: Yuan Yan (yuanyantwincities@gmail.com)

**Abstract.** The  $O_2$ : $CO_2$  exchange ratio (ER) between terrestrial ecosystems and the atmosphere is a key parameter for partitioning global ocean and land carbon fluxes. The long-term terrestrial ER is considered to be close to 1.10 moles of  $O_2$  consumed per mole of  $CO_2$  produced. Due to the technical challenge in measuring directly the ER of entire terrestrial ecosystems ( $ER_{eco}$ ), little is known about the variations in ER at the hourly and seasonal scales as well as how different components contribute to  $ER_{eco}$ . In this modeling study, we explore the variability and drivers of  $ER_{eco}$  and evaluate the hypothetical uncertainty in determining ecosystem  $O_2$  fluxes based on current instrument precision. We adapted the one-dimensional, multi-layer atmosphere-biosphere gas exchange model, CANVEG, to simulate hourly  $ER_{eco}$  from modeled  $O_2$  and  $ER_{eco}$  from modeled  $ER_{eco}$  from m

We found that the annual mean  $ER_{eco}$  ranged from 1.06 to 1.12 mol mol<sup>-1</sup> within the five years' study period. Hourly  $ER_{eco}$  showed strong variations over diel and seasonal cycles and within the vertical canopy profile. Determination of ER from  $O_2$  and  $CO_2$  mole fractions in air above and within the canopy ( $ER_{conc}$ ) varied between 1.115 and 1.15 mol mol<sup>-1</sup>. CANVEG simulations also indicated that ecosystem  $O_2$  fluxes could be derived using the flux-gradient method in combination with measurements of vertical scalar gradients and  $CO_2$ , sensible heat or latent heat fluxes obtained with the eddy covariance technique. Owing to measurement uncertainties, however, the uncertainty in estimated  $O_2$  fluxes derived with the flux-gradient approach could be as high as 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, which represented the 90% quantile of the uncertainty in hourly data with a high-accuracy instrument. We also demonstrated that  $O_2$  fluxes can be used to partition net  $CO_2$  exchange fluxes into their component fluxes of photosynthesis and respiration, if  $ER_{eco}$  is known. The uncertainty of the partitioned gross assimilation ranged from 1.43 to 4.88  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> assuming a measurement uncertainty of 0.1 or 2.5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> for net ecosystem  $CO_2$  exchange and from 0.1 to 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> for net ecosystem  $O_2$  exchange, respectively. Our analysis suggests that  $O_2$  measurements at ecosystem scale have the potential for partitioning net  $CO_2$  fluxes into their component fluxes, but further improvement in instrument precision is needed.





### 1 Introduction

35

40

45

50

Fluxes of O<sub>2</sub> and CO<sub>2</sub> between the terrestrial biosphere and atmosphere are inversely linked in photosynthesis, which assimilates CO2 and releases O2, and in respiration, which consumes O2 and releases CO2 (Keeling and Manning, 2014; Severinghaus, 1995). The relationship between these opposing fluxes can be described with the so-called O<sub>2</sub>:CO<sub>2</sub> exchange ratio (ER, see Table A1 in the Appendix for an overview of all abbreviations and variable names used here), which should be considered on various temporal and spatial scales – ranging from hourly to decadal temporal and from leaf to global spatial scales. Since the relationship between O<sub>2</sub> and CO<sub>2</sub> fluxes between the atmosphere and different carbon reservoirs (terrestrial biosphere, oceans and fossil fuels) differ on regional and global scales, these different ERs can be applied as parameters in global models in conjunction with observations of atmospheric O<sub>2</sub> and CO<sub>2</sub> abundances to quantify the global sinks of CO<sub>2</sub> in the ocean and in the biosphere (Battle et al., 2000; Ishidoya et al., 2012; Keeling and Manning, 2014; Keeling and Shertz, 1992; Tohjima et al., 2019). The global ER for the land biota is commonly set to 1.1 moles of O2 consumed per mole of CO2 produced (or vice versa) (Severinghaus, 1995) by assuming that this value, derived from elemental abundance data, is a representative long-term average for all land biota (Keeling and Manning, 2014; Manning and Keeling, 2006). An ER of 1.05 mol mol<sup>-1</sup> was determined by Randerson et al. (2006) based on observed chemical compositions of plant parts for quantification of the global carbon sink. Measurements using the oxidative ratio of organic material provided a more recent terrestrial ER estimate of 1.04 ± 0.03 mol mol<sup>-1</sup> (Worrall et al., 2013). Using an ER of 1.05 mol mol<sup>-1</sup> instead of 1.1 mol mol<sup>-1</sup> in carbon budget models will attribute 0.05 Pg C yr<sup>-1</sup> more to the global land carbon sink and an equivalent amount less to the ocean sink (Keeling and Manning, 2014), indicating that the ER should be well constrained when parameterized in global ocean and land carbon cycle models.

On ecosystem-scale, a mole fraction-based and a flux-based  $O_2$ : $CO_2$  ratio can be considered (Ishidoya et al., 2013; Seibt et al., 2004). The former is defined as the fluctuations in the mole fraction of  $O_2$  per mole fraction of  $CO_2$  in the atmosphere ( $ER_{conc}$ ). Thus,  $ER_{conc}$  is usually derived from the slopes of linear regressions between observed atmospheric  $O_2$  and  $CO_2$  mole fractions (Battle et al., 2019; Ishidoya et al., 2013; Seibt et al., 2004). Battle et al. (2019) observed an average  $ER_{conc} = 1.08 \pm 0.007$  mol mol<sup>-1</sup> in a mixed deciduous forest over a six years' period with temporal variations on a 6-hour basis between 0.85 and 1.15 mol mol<sup>-1</sup>. Measurements of canopy air  $O_2$  and  $CO_2$  mole fractions at two different forest sites yielded  $ER_{conc}$  estimations between 1.01 and 1.03 mol mol<sup>-1</sup> averaged over 24-hour periods and between 1.14 and 1.19 mol mol<sup>-1</sup> during daytime only (Seibt et al., 2004). Ishidoya et al. (2013) obtained differing  $ER_{conc}$  at two heights within a cool temperate deciduous forest, reflecting variations of  $ER_{conc}$  with canopy height. Furthermore, they observed different  $ER_{conc}$  during daytime (0.87 mol mol<sup>-1</sup>) and nighttime (1.03 mol mol<sup>-1</sup>) in summer, indicating a significant variation of  $ER_{conc}$  over the diel period (Ishidoya et al., 2013). Faassen et al. (2022) found the much higher  $ER_{conc}$  over 24 hours (2.05  $\pm$  0.03 mol mol<sup>-1</sup>) than for daytime (1.1  $\pm$  0.12 mol mol<sup>-1</sup>) and nighttime (1.22  $\pm$  0.02 mol mol<sup>-1</sup>) due to the variation of the boundary layer height during the measurement period.





The flux-based O<sub>2</sub>:CO<sub>2</sub> ratio is defined as the O<sub>2</sub> flux per CO<sub>2</sub> flux between an ecosystem and the atmosphere (ER<sub>eco</sub>). Flux estimates can be described as the net turbulent exchange or the overall net exchange (turbulent plus storage flux), where we focus on the latter in this study. Only very few studies have attempted to quantify ER<sub>eco</sub> because measuring O<sub>2</sub> fluxes at ecosystem scale is still a major challenge. Since O<sub>2</sub> and CO<sub>2</sub> are strongly anti-correlated in the processes of photosynthesis and respiration, changes in both scalars are very similar in absolute numbers, typically in the order of a few ppm. However, the relative changes in O<sub>2</sub> are much smaller than in CO<sub>2</sub> owing to the much higher atmospheric abundance (around 210,000 ppm for O<sub>2</sub> and around 400 ppm for CO<sub>2</sub>), making O<sub>2</sub> measurements at sufficient precision and accuracy technically challenging. Thus, studies resorted to, for instance, the flux-gradient method, chamber measurements and modeling approaches (see below). Ishidoya et al. (2015) determined a daily mean net turbulent ER = 0.86 mol mol<sup>-1</sup> based on O<sub>2</sub> and CO<sub>2</sub> gradient measurements. Faassen et al. (2022) reported daytime and nighttime ER<sub>eco</sub> as 0.92 ± 0.17 and 1.03 ± 0.05 mol mol<sup>-1</sup>, respectively. In general, ER<sub>eco</sub> depends on the elemental composition and reduction state of organic material, and on the temporal variation and spatial distribution of sinks and sources of ecosystem flux components (Seibt et al., 2004). According to Battle et al. (2019), the dynamics and interrelations of the various sinks and sources within the ecosystem, each with their own ER<sub>eco</sub>, result in the mixed signal ER<sub>conc</sub>.

Current micrometeorological approaches to measure gas exchange between ecosystems and the atmosphere include eddy covariance, flux-gradient and eddy accumulation methods, which could all theoretically be used to determine ecosystem O<sub>2</sub> fluxes. The applicability of the eddy covariance technique for O<sub>2</sub> flux estimation, however, requires high precision at a high measurement frequency (10-20 Hz). Except for a homemade, non-commercial vacuum ultraviolet (VUV) absorption analyzer (Stephens et al., 2003) no suitable instrument exists so far.

With the flux-gradient method, O<sub>2</sub> fluxes can be inferred from an O<sub>2</sub> gradient above a canopy and an eddy diffusivity (K), which can be derived based on additional CO<sub>2</sub>, sensible or latent heat flux measurements (Baldocchi et al., 1988). This method assumes that heat and mass are transported in a similar manner between two adjacent levels above the canopy (Baldocchi et al., 1988). The method's applicability is again particularly challenging for O<sub>2</sub> estimates owing to the typically large measurement uncertainty in relation to the small O<sub>2</sub> gradient. One approach to increase the measurement-to-noise ratio is to move the lower inlet of the gradient measurement closer to or even inside the canopy. This approach, however, violates the assumption of the flux-gradient method owing to infrequent but predominantly large eddies within the canopy, countergradient fluxes and possible non-differentiable gradients (Raupach, 1989; Wilson, 1989). The flux-gradient method has already been used for O<sub>2</sub> flux estimation above a cool temperate forest (Ishidoya et al., 2015), an urban canopy (Ishidoya et al., 2020) and a boreal forest (Faassen et al., 2022). The theoretical limits of the flux-gradient method for O<sub>2</sub> fluxes given current instrument precision and accuracy are, however, not yet fully explored.

Chamber level gas exchange measurements provide an alternative approach to measure the ER of individual components such as leaf, stem and soil, which could be scaled up to ecosystem level. Chamber measurements in a German temperate forest showed an average ER of leaf net assimilation (ER<sub>An</sub>; net assimilation defined as carboxylation minus photorespiration and dark respiration) between  $1.08 \pm 0.16$  mol mol<sup>-1</sup> and  $1.19 \pm 0.12$  mol mol<sup>-1</sup>, and an ER of soil respiration (ER<sub>soil</sub>) of  $0.94 \pm 0.04$ 



100

105

110

115

120

125

130



mol mol<sup>-1</sup> (Seibt et al., 2004). In a cool temperate deciduous forest in Japan, gas exchange chamber measurements indicated an  $ER_{An} = 1.02 \pm 0.03$  mol mol<sup>-1</sup> and  $ER_{soil} = 1.11 \pm 0.01$  mol mol<sup>-1</sup> (Ishidoya et al., 2013). Hilman et al. (2019) measured an average ER of stem respiration (ER<sub>stem</sub>) between 0.97 and 1.95 mol mol<sup>-1</sup> for tropical, temperate and Mediterranean trees with a closed-flow chamber system with two continuous flow analyzers.

The ER variability in assimilation and respiration fluxes found in the studies mentioned above provides a potential approach to partition net  $CO_2$  fluxes into their components following similar approaches based on stable isotopes in  $CO_2$  (Knohl and Buchmann, 2005; Ogee et al., 2004; Wehr and Saleska, 2015; Zobitz et al., 2007). Using simultaneous measurements of net ecosystem  $O_2$  and  $CO_2$  fluxes and considering the ER for the photosynthetic and respiratory processes in a canopy and at the soil surface, two mass balance equations can be written for  $O_2$  and  $CO_2$  (see Eq. (1) below). Hourly or half-hourly ER would be needed to agree with the typical time step of flux estimates derived with the eddy covariance technique, which is the standard method of measuring gas exchange between land surfaces and the atmosphere (Baldocchi et al., 2001; Goulden et al., 1996). Theoretically, such an  $O_2$ -based partitioning method only works for periods when the ER of gross assimilation (ER<sub>A</sub>) and gross ecosystem respiration (ER<sub>R</sub>) differ, because a second independent mass balance equation is needed to yield  $CO_2$  fluxes of assimilation (F<sub>A</sub>) and respiration (F<sub>R</sub>). According to Ogee et al. (2004), the difference in ER has to be large enough to obtain a reasonable accuracy in the partitioned net  $CO_2$  fluxes. Consequently, an analysis of temporal dynamics in ER<sub>A</sub> and ER<sub>R</sub> is necessary in order to evaluate the possibility of applying  $O_2$  observations in a  $CO_2$  flux partitioning approach.

The contribution of flux components to the temporal and spatial variability on overall ecosystem O2 fluxes can also be explored by modeling approaches. For example, net turbulent ER was simulated with a simple one-box model with daily time steps, by assuming that O<sub>2</sub> and CO<sub>2</sub> mole fractions are spatially constant and temporally variable within the canopy (Ishidoya et al., 2015; Seibt et al., 2004). These simulations indicated that variations in net turbulent ER are not only influenced by leaf and soil fluxes, but also by turbulence inside and outside the canopy (Seibt et al., 2004). To explore the drivers of ER variations at ecosystem scale, more precise turbulence effects need to be considered. However, simple one-box models assume uniform and well-mixed air columns throughout the canopy, so that modeled ER lacks variations for different layers within the canopy. Multi-layer atmosphere-biosphere models such as CANVEG (Baldocchi, 1997; Baldocchi and Wilson, 2001) differ from onebox models in that they are designed to represent the temporal and (vertical) spatial scale of an eddy covariance tower. Therefore, they are a good simulator to test and examine new types of observations (Oikawa et al., 2017). CANVEG includes within-canopy transport of CO<sub>2</sub>, water vapor and energy (Baldocchi, 1997; Baldocchi and Wilson, 2001), so that if it were adapted to O<sub>2</sub> processes, one could evaluate the accuracy of different flux measurement techniques such as eddy covariance or flux-gradient approaches. Published ER values of gross and/or net assimilation, stem respiration and soil respiration can be employed as parameters to derive component-specific O2 fluxes from existing modeled CO2 fluxes. Thus, concurrent O2 and CO<sub>2</sub> fluxes, and ER can be simulated for multiple canopy layers and for the whole ecosystem, with which we can analyze the main drivers of modeled ER values, their diel and seasonal variability, and vertical variations. In addition, concurrently simulated mole fraction profiles – a function of turbulent dispersion and the strength and location of scalar sources and sinks - enable us to test the precision of the flux-gradient method for O<sub>2</sub> flux estimation while choosing various measurement heights





inside and above the canopy. Furthermore, the performance of an O<sub>2</sub>-based source partitioning method can be evaluated based on model simulations.

Based on these considerations, we defined the following study objectives: (1) to implement atmosphere-biosphere O<sub>2</sub>:CO<sub>2</sub> exchange ratios for various ecosystem components in the multi-layer CANVEG model; (2) to explore temporal and spatial variations in O<sub>2</sub>:CO<sub>2</sub> exchange ratios as well as the underlying main drivers at ecosystem scale; (3) to evaluate the potential precision of the flux-gradient approach to obtain O<sub>2</sub> fluxes; and (4) to evaluate the feasibility of O<sub>2</sub> flux measurements for CO<sub>2</sub> flux partitioning.

### 140 **2 Methods**

150

155

160

# 2.1 Site description

The meteorological and plant-specific ecophysiological measurements used in the model simulation were derived from the Leinefelde FLUXNET tower site (DE-Lnf, <a href="https://doi.org/10.18140/FLX/1440150">https://doi.org/10.18140/FLX/1440150</a>) located in central Germany (51°19'42"N,  $10^{\circ}22'04$ "E, 450 m a.s.l.; (Anthoni et al., 2004)). The vegetation at the site is an even-aged managed beech stand (*Fagus sylvatica* L.) with an age of approximately 130 years (Tamrakar et al., 2018). The mean annual temperature was  $8.3 \pm 0.7$  °C and the average cumulative annual precipitation was  $600 \pm 150$  mm between 2002 and 2016 (Braden-Behrens et al., 2019). The canopy height (ht) is 37.5 m and maximum effective leaf area index (LAI) was approximately  $4.8 \text{ m}^2 \text{ m}^{-2}$  in 2015 (Braden-Behrens et al., 2017).

Meteorological variables including air temperature, air humidity, direct and diffuse global radiation, photosynthetic photon flux density, wind velocity, air pressure, vapor pressure deficit, precipitation, atmospheric  $CO_2$  mole fraction  $(CO_2)$  atm, soil temperature and soil moisture, as well as fluxes of net ecosystem  $CO_2$  exchange  $(F_{CO_2})$ , sensible heat (H), and latent heat (LE) obtained with the eddy covariance technique are continuously measured at 44 m above the forest canopy (Anthoni et al., 2004). The meteorological variables were used as input data for our model simulations, while the flux estimates were storage-term corrected and then used for model calibration and validation (see below). In this paper, upward fluxes (release to the atmosphere) are presented as positive quantities and downward fluxes (uptake by the ecosystem) as negative quantities. Thus,  $O_2$  fluxes always have opposite signs to their corresponding  $CO_2$  fluxes, which is in line with micrometeorological conventions.

### 2.2 Model description and model set-up

We used the one-dimensional, multi-layer atmosphere-biosphere gas exchange model, "CANVEG", described by Baldocchi (1997) and Baldocchi and Wilson (2001). The model domain includes 120 model layers above the ground, in which the lower 40 above-ground layers cover the entire canopy, while the bottom layer represents the soil surface for the description of soil carbon and energy fluxes. The domain also includes 10 below-ground soil layers; however, this study did not consider processes within the soil column in detail. CANVEG uses hourly meteorological variables as drivers, as well as site-specific



are listed in Table 1.



parameters (see Table 1) to simulate biosphere-atmosphere water vapor, CO<sub>2</sub> and energy fluxes within and above the forest canopy.

- The carbon, water and energy modules in CANVEG have been validated for various environmental conditions and forest types (Baldocchi, 1997; Baldocchi et al., 2002; Baldocchi et al., 1999). Moreover, CANVEG has previously been applied to an unmanaged beech-dominated forest site only 30 km away from the site of this study (Knohl and Baldocchi, 2008), and has recently been used to simulate the isotopic composition of carbon assimilates at Leinefelde (Braden-Behrens et al., 2019). We translated the original C code (Baldocchi, 1997) to Fortran 90, which was then used for further implementations.
- Atmospheric  $O_2$  mole fraction ( $O_{2 \text{ atm}}$ ) as input for the model was deduced from a fixed  $O_2$ : $CO_2$  mole ratio of -1.15 mol mol<sup>-1</sup> ( $R^2 = 0.99$ ) and continuous  $CO_2$  mole fraction measurements at the site (Table 1). The fixed  $O_2$ : $CO_2$  mole ratio was derived from measurements at the University of Göttingen from November 2017 to January 2018 using a high-precision  $O_2$  measurement system developed by Dr. Penelope Pickers (University of East Anglia, UK) and very similar to the system described in Pickers et al. (2017).
- Some model parameters regarding leaf photosynthesis, stomatal conductance and soil respiration were fitted to the actual site conditions via the Markov Chain Monte Carlo (MCMC) method (Van Oijen et al., 2005). Eddy covariance measurements of hourly F<sub>CO<sub>2</sub></sub>, H and LE, and the estimated ecosystem respiration (F<sub>R</sub>) in 2012 and 2013 were used to calibrate the model parameters (
- Table 1). The years 2014-2016 were used for model validation. The leaf phenology parameters, including day of year (DOY) for the start of leaf growth, end of leaf growth, start of leaf fall and end of leaf fall (leafout, leaffall, leaffall, and leaffall\_complete) 180 were derived from daily camera images in 2015 above the canopy. LAI within the annual course was simulated based on these four parameters: The DOY before leafout and after leaffall\_complete were defined as winter when LAI = zero and between leaffull and leaf<sub>fall</sub> as summer when LAI = 4.8 m<sup>2</sup> m<sup>-2</sup>. During spring (leaf<sub>out</sub> < DOY < leaf<sub>full</sub>) and during autumn (leaf<sub>fall</sub> < DOY < leaf<sub>fall\_complete</sub>) LAI increased or decreased linearly and accordingly. The maximum LAI of 4.8 m<sup>2</sup> m<sup>-2</sup> as well as the LAI fraction 185 (f<sub>LAI</sub>) at five different heights in the canopy were measured using a LI-2000 plant canopy analyzer (LI-COR Biosciences GmbH, Germany) in 2015 (Braden-Behrens et al., 2017). The vertical LAI profile was assumed to follow a beta-distribution, which was fitted to the observed f<sub>LAI</sub> (Table 1). This relationship between LAI and height (z) allocates leaves mainly in the upper canopy ( $z/ht \ge 0.45$ ) with almost no leaves in the bottom canopy (Fig. 1a). The wood area index (WAI) consisted of the branches (80% of total WAI) and the stems (20% of total WAI). The branches were situated in the upper canopy ( $z/ht \ge 0.45$ ) 190 following the same distribution algorithm of LAI, while in the lower canopy (z/ht < 0.45), the fraction of stem WAI per layer to total stem area was deduced from the fraction of stem diameter per layer to the diameter at breast height (f<sub>DBH</sub>) as a function of height (z):  $f_{DBH} = 102 - 2.6z + 0.08z^2 - 0.0023z^3$  (Schober, 1952). This set-up of the forest canopy including leaf phenology and the vertical LAI and WAI profiles was used for all years of the model run. All site-specific parameters used in this study
- For the simulation of net ecosystem  $O_2$  fluxes  $(F_{O_2})$ , values of ER had to be chosen: the input parameter of ER<sub>A</sub> was set to 1.00 mol mol<sup>-1</sup> (Table 1), by assuming that photosynthesis produces glucose  $(C_6H_{12}O_6)$ , resulting in equal  $O_2$  and  $CO_2$  fluxes. The





ER of canopy respiration was attributed to the ER of leaf dark respiration ( $ER_{rd}$ ) and stem respiration ( $ER_{stem}$ ).  $ER_{stem}$  was fixed to 1.04 mol mol<sup>-1</sup> (Randerson et al., 2006), while the  $ER_{rd}$  was set to increase with leaf temperature ( $T_{leaf}$ ; Fig. 1b) according to Tcherkez et al. (2003).  $ER_{soil}$  was set to 1.1 mol mol<sup>-1</sup> (Randerson et al., 2006; Severinghaus, 1995).

To validate the model, we used eddy covariance measurements of  $F_{CO_2}$ , H and LE from 2014 to 2016. And to quantify the model performance, we calculated the slope, intercept, and the coefficient of determination ( $R^2$ ) of a linear regression between modeled and observed  $F_{CO_2}$ , H and LE, as well as the root mean squared error (RMSE).

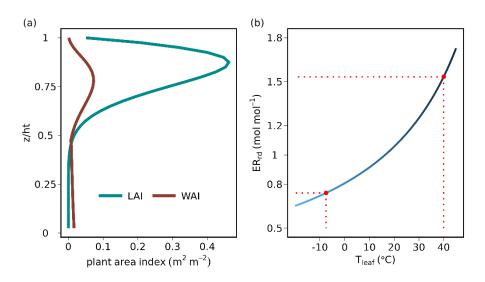



Figure 1. (a) Distribution of vertical leaf and wood area indices (LAI and WAI in  $m^2$   $m^{-2}$  per canopy layer) used in the CANVEG model, derived from measurements at the Leinefelde study site (Braden-Behrens et al., 2017). The y-axis is the ratio of the height in the canopy (z) to the top of the canopy (ht). (b) O<sub>2</sub>:CO<sub>2</sub> exchange ratio of leaf dark respiration (ER<sub>rd</sub> in mol mol<sup>-1</sup>) as a function of leaf temperature (T<sub>leaf</sub> in  $^{\circ}$ C) after Tcherkez et al. (2003). The red dashed lines indicate the range of T<sub>leaf</sub> and corresponding ER<sub>rd</sub> in this study.

Table 1. Model parameters adjusted to the study site Leinefelde, Germany.

| Parameter name      | Details                                                   | Value                                       |
|---------------------|-----------------------------------------------------------|---------------------------------------------|
| k <sub>ball</sub>   | slope of Ball-Berry model after Collatz et al. (1991)     | 10.4 *                                      |
| b                   | intercept of Ball-Berry model after Collatz et al. (1991) | $0.0014~\mu mol~m^{-2}~s^{-1}$ *            |
| $V_{cmax25}$        | maximum carboxylation at 25 °C                            | 59.6 μmol m <sup>-2</sup> s <sup>-1</sup> * |
| $R_{d25}$           | leaf dark respiration at 25 °C                            | $0.0149\cdot V_{cmax25}$ *                  |
| $J_{\text{max}25}$  | maximum electron transport rate at 25 °C                  | $2.24\cdot V_{cmax25}^*$                    |
| $	heta_{	extsf{J}}$ | curvature parameter of light response curve               | 0.882 *                                     |
| α                   | fraction of the photosystem II activity                   | 0.284 *                                     |





| $r_1, r_2$              | coefficients for exponential relationship between soil temperature and soil respiration   | 0.827, 0.075 *                                                                                              |
|-------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| leaf <sub>out</sub>     | DOY for the start of leaf growth                                                          | 110                                                                                                         |
| $leaf_{full}$           | DOY for the end of leaf growth                                                            | 130                                                                                                         |
| $leaf_{fall}$           | DOY for the start of leaf fall                                                            | 282                                                                                                         |
| $leaf_{fall\_complete}$ | DOY for the end of leaf fall                                                              | 320                                                                                                         |
| LAI                     | leaf area index                                                                           | $4.8 \text{ m}^2 \text{ m}^{-2}$                                                                            |
| $f_{LAI}$               | fraction of LAI per layer                                                                 | 0, 0.04, 0.66, 0.2, 0.1 at 7.5, 17, 28, 32.5 and 37.5 m                                                     |
| ${ m O}_{ m 2\ atm}$    | atmospheric O <sub>2</sub> mole fraction                                                  | $O_{2 \text{ atm}} = -1.15 \text{ CO}_{2 \text{ atm}} + 209749.5$ (ppm)                                     |
| ht                      | canopy height                                                                             | 37.5 m                                                                                                      |
| $ER_A$                  | O2:CO2 exchange ratio of gross assimilation                                               | 1.00 mol mol <sup>-1</sup>                                                                                  |
| $ER_{rd}$               | $O_2$ : $CO_2$ exchange ratio of leaf dark respiration depending on leaf temperature (°C) | $ER_{rd} = \frac{1}{-0.0147 \text{ T}_{leaf} + 1.24} \text{ (mol mol}^{-1}\text{)}$ (Tcherkez et al., 2003) |
| ER <sub>stem</sub>      | O <sub>2</sub> :CO <sub>2</sub> exchange ratio of stem respiration                        | 1.04 mol mol <sup>-1</sup> (Randerson et al., 2006)                                                         |
| ER <sub>soil</sub>      | O <sub>2</sub> :CO <sub>2</sub> exchange ratio of soil respiration                        | 1.10 mol mol <sup>-1</sup> (Severinghaus, 1995)                                                             |

<sup>\*</sup> Parameters were calibrated with eddy covariance measurements of hourly F<sub>CO2</sub>, F<sub>R</sub>, H and LE in 2012 and 2013 via the Markov Chain Monte Carlo (MCMC) method.

## 2.3. Model simulations of flux- and mole fraction-based exchange ratios

In CANVEG, CO<sub>2</sub> fluxes are simulated for the leaf, stem and soil components. The O<sub>2</sub> fluxes of each component are estimated by scaling each corresponding CO<sub>2</sub> flux by its ER. Respiratory CO<sub>2</sub> fluxes are defined to be positive, while assimilation CO<sub>2</sub> fluxes are negative. O<sub>2</sub> fluxes always have the opposite sign from the corresponding CO<sub>2</sub> fluxes, which would result in negative ER values. However, we have defined all ER parameters to be positive by including the factor (-1) in all relevant equations (see below), to be consistent with most published literature concerning O<sub>2</sub>:CO<sub>2</sub> exchange ratios (Ishidoya et al., 2013; Seibt et al., 2004). Another way of considering this is that the ERs are the ratios of moles of O<sub>2</sub> consumed per mole of CO<sub>2</sub> produced (or moles of O<sub>2</sub> produced per mole of CO<sub>2</sub> consumed).

The  $O_2$  and  $CO_2$  ecosystem fluxes are the balance of the simulated fluxes of gross assimilation ( $F_A$ , carboxylation minus photorespiration) and gross ecosystem respiration ( $F_R$ ). The latter consists of leaf dark respiration ( $F_{rd}$ ), stem respiration ( $F_{stem}$ ) and soil respiration ( $F_{soil}$ , consisting of 50% respiration by heterotrophs and 50% by autotrophs):

$$\begin{cases} F_{CO_2} = F_A + F_{rd} + F_{stem} + F_{soil} = F_A + F_R \\ F_{O_2} = -F_A ER_A - F_{rd} ER_{rd} - F_{stem} ER_{stem} - F_{soil} ER_{soil} = -F_A ER_A - F_R ER_R \end{cases}$$
(1)



255



where  $ER_A$ ,  $ER_{rd}$ ,  $ER_{stem}$  and  $ER_{soil}$  are given as model parameters (see Section 2.2.). The simulated  $F_{O_2}$  and  $F_{CO_2}$  include the storage fluxes associated with concentration changes of  $O_2$  and  $CO_2$  in the canopy air space, because they were inferred by integrating fluxes for all canopy layers.

For the model simulations, ER of the entire ecosystem, of the net assimilation at leaf level or of only respiratory processes can be obtained by considering the simulations of the corresponding flux components. The ER of the overall ecosystem (ER<sub>eco</sub>) in hourly time steps was calculated as the ratio of the hourly  $F_{O_2}$  and  $F_{CO_2}$  (including storage terms) summed up over the entire canopy height, that is:

235 
$$ER_{eco} = -\frac{F_{O_2}}{F_{CO_2}}$$
 (2)

 $ER_{eco}$  for specific canopy heights ( $ER_{eco}^z$ ) was derived as the slope of linear regressions fitted to  $O_2$  and  $CO_2$  fluxes of multiple simulated time steps for each canopy layer.

Furthermore, the simulated ER of net O<sub>2</sub> and CO<sub>2</sub> assimilation (ER<sub>An</sub>) and of all respiratory fluxes (ER<sub>R</sub>) were derived as:

$$ER_{A_{n}} = -\frac{-F_{A} ER_{A} - F_{rd} ER_{rd}}{F_{A} + F_{rd}}$$
(3)

$$ER_{R} = -\frac{-F_{rd} ER_{rd} - F_{stem} ER_{stem} - F_{soil} ER_{soil}}{F_{rd} + F_{stem} + F_{soil}}$$

$$(4)$$

The atmospheric O<sub>2</sub> mole fraction at each canopy layer was also computed by CANVEG, analogous to that done for CO<sub>2</sub> mole fraction (Baldocchi, 1997). CANVEG estimates atmospheric mole fraction per layer as a function of multi-layer gas flux diffusion determined by a Lagrangian dispersion matrix (Baldocchi, 1992) and the atmospheric background gas mole fraction. The mole fraction-based ER (ER<sub>conc</sub>) and ER<sub>conc</sub> in specific canopy heights (ER<sup>z</sup><sub>conc</sub>) are defined as the ratio between the fluctuations in O<sub>2</sub> and CO<sub>2</sub> mole fractions, and both were calculated as the slopes of linear regressions fitted to hourly atmospheric O<sub>2</sub> versus CO<sub>2</sub> mole fractions for the growing seasons (the days of year with leaves for the canopy, between leaf<sub>out</sub> and leaf<sub>fall\_complete</sub>) of all simulation years (Battle et al., 2019; Ishidoya et al., 2013; Seibt et al., 2004). Thus, we obtained ER<sup>z</sup><sub>eco</sub> and ER<sup>z</sup><sub>conc</sub> with the same approach by deriving the slopes of hourly data to allow a comparison.

### 2.4. Evaluation of the flux-gradient method to obtain O2 fluxes

The CANVEG simulations of ecosystem  $O_2$  fluxes and  $O_2$  mole fraction gradients provided the opportunity to test the applicability of the flux-gradient approach to estimate  $F_{O_2}$ . We assumed the flux-gradient system can be installed both above the canopy and close to the forest floor. We especially aimed at testing the performance of the flux-gradient method based on current typical instrument performance for  $O_2$  measurements. The turbulent  $O_2$  ( $F_{O_2}^{\sim}$ ),  $CO_2$  ( $F_{CO_2}^{\sim}$ ), sensible heat (H<sup>-</sup>) and latent heat (LE<sup>-</sup>) fluxes are related to vertical scalar gradients as follows (Meredith et al., 2014):





$$\begin{cases} F_{O_2}^{\sim} = -K_o \frac{\Delta o}{\Delta z} \rho_n \\ F_{CO_2}^{\sim} = -K_c \frac{\Delta c}{\Delta z} \rho_n \\ H^{\sim} = -K_T \frac{\Delta T}{\Delta z} \rho_m c_p \\ LE^{\sim} = -K_v \frac{\Delta v}{\Delta z} \lambda \end{cases}$$
 (5)

265

where  $\Delta z$  (m) is the vertical height difference,  $\Delta T$ ,  $\Delta v$ ,  $\Delta c$  and  $\Delta o$  denote the vertical gradients of air temperature (K), water vapor (kg m<sup>-3</sup>), CO<sub>2</sub> mole fraction (ppm) and O<sub>2</sub> mole fraction (ppm), respectively,  $\rho_n$  and  $\rho_m$  are the molar density (mol m<sup>-3</sup>) and mass density of the air (kg m<sup>-3</sup>),  $c_p$  is the specific heat capacity of air (J kg<sup>-1</sup> K<sup>-1</sup>), and  $\lambda$  is the latent heat of evaporation (J kg<sup>-1</sup>). The superscript tilde in the flux nomenclatures denotes turbulent fluxes (without storage fluxes).  $K_o$ ,  $K_c$ ,  $K_T$ , and  $K_v$  (m<sup>2</sup> s<sup>-1</sup>) are the eddy diffusivities of the relevant scalars. Assuming that heat and mass are transported in a similar way between two adjacent levels above the canopy and so assuming that  $K_o$ = $K_c$ = $K_T$ = $K_v$  (Baldocchi et al., 1988),  $O_2$  fluxes can be estimated with each of the following equations:

$$\begin{cases} F_{O_{2},c}^{\sim} = F_{CO_{2}}^{\sim} \frac{\Delta o}{\Delta c} \\ F_{O_{2},T}^{\sim} = H^{\sim} \frac{\Delta o \rho_{n}}{\Delta T \rho_{m} c_{p}} \\ F_{O_{2},v}^{\sim} = LE^{\sim} \frac{\Delta o \rho_{n}}{\Delta v \lambda} \end{cases}$$
(6)

270

From simulations of  $F_{CO_2}^{\sim}$ ,  $H^{\sim}$  and  $LE^{\sim}$  and vertical scalar profiles, we derived  $F_{O_2}$  from  $F_{O_2}^{\sim}$  plus the storage term based on the flux-gradient method and compared these to the directly modeled  $F_{O_2}$  (Eq. (1)). Here, the subscripts c, T and v denote which flux and scalar were used.

275

280

There are usually three sources of error in the flux-gradient method: (1) the uncertainty in the vertical gradient (that is, the gradient of  $O_2$  mole fraction,  $\Delta o$ ) resulting from the precision and accuracy of the measurement instruments, (2) the magnitude of the mole fraction difference ( $\Delta c$ ,  $\Delta T$ , or  $\Delta v$ ) between two constant measurement heights, which is usually small when the measurement heights are too close to each other or when the atmosphere is well mixed, and (3) the measurement uncertainty in the turbulent fluxes ( $F_{CO_2}^{\sim}$ ,  $H^{\sim}$ , or  $LE^{\sim}$ ), which we assumed to be zero, because we applied here only our simulated turbulent fluxes. So here, we quantified the extent of the first two sources of error, and defined conditions when the flux-gradient method could perform satisfactorily to obtain  $F_{O_2}$ . The effects of the first uncertainty were evaluated by adding a "measurement error" to  $\Delta o$ , where the error was assumed to be normally distributed with a mean of zero and a standard deviation of  $\pm 0.7$  ppm, based on typical measurement uncertainty of the  $O_2$  mole fraction instrument used to derive the fixed atmospheric  $O_2$ : $CO_2$  ratio (Pickers et al., 2017). Then the difference between the  $F_{O_2}$  derived via the flux-gradient method with and without the measurement error ( $\sigma_{F_{O_2}}$ ) was evaluated.



295

300

305

310



The second uncertainty due to the magnitude in the gradient as a function of  $\Delta z$  was analyzed by estimating  $F_{O_2}$  based on the flux-gradient between a top measurement height at two times the canopy height in our model set-up and each layer below, until the soil surface (z/ht = 0). The top measurement height was set to z/ht = 2 following customary recommendations for the setup of eddy covariance towers following Rebmann et al. (2018). We also included measurement heights inside the canopy, where the vertical profiles are mostly non-linear due to scalar sources and sinks, to illustrate the effect of violating the assumptions of the flux-gradient method. For comparison, the difference between the  $F_{O_2}$  estimations derived by the flux-gradient method ( $F_{O_2,(c,T,v)}^{\sim}$ , based on  $F_{CO_2}^{\sim}$ ,  $H^{\sim}$  or  $LE^{\sim}$  and their respective vertical scalar profile) and by model simulations ( $F_{O_2,CANVEG}^{\sim}$ ) was calculated:

$$\operatorname{diff}_{F_{O_2,(c,T,v)}} = F_{O_2,(c,T,v)}^{\sim} - F_{O_2,CANVEG}^{\sim} \tag{7}$$

where  $diff_{F_{O_2}}$  is the difference for the application between the top measurement height (z/ht = 2) and each layer below.

Finally, we also tested a three-heights flux-gradient method after the recent study of Faassen et al. (2022). They derived scalar concentrations at three heights (z/ht = 0.9, 3.7 and 6.9 with ht = 18 m), fitted a quadratic scalar-height relationship, and expressed the vertical gradient as the first derivative of z (see Eq. (10) and (11) by Faassen et al. (2022)). In our study, we selected the three heights at z/ht = 1.05, 1.45 and 2 with ht = 37.5 m, to be with all heights above the canopy.

### 2.5. Uncertainties in partitioning net ecosystem CO2 fluxes based on O2 fluxes

The net ecosystem  $CO_2$  exchange  $(F_{CO_2})$  consists of two different components: gross assimilation  $(F_A)$  and gross ecosystem respiration  $(F_R)$ . Similar to the stable isotope flux partitioning approach (Bowling et al., 2001; Knohl and Buchmann, 2005; Ogee et al., 2004; Oikawa et al., 2017; Yakir and Wang, 1996),  $O_2$  and  $CO_2$  flux mass balance equations can be written as shown in Eq. (1), where  $F_{CO_2}$  is the observed ecosystem flux from eddy covariance measurements and  $F_{O_2}$  is obtained by multiplying  $F_{CO_2}$  by the modeled  $ER_{eco}$  in CANVEG following Eq. (2) (owing to the lack of actual  $F_{O_2}$  measurements). We treated these mass balance equations as a probabilistic process assuming terms on the right-hand side are uncertainty quantities with *a priori* values  $(F_A^b, F_R^b, ER_A^b, ER_R^b)$  and uncertainties  $(\sigma_{F_A^b}, \sigma_{F_R^b}, \sigma_{ER_A^b}, \sigma_{ER_R^b})$ . Fluxes and exchange ratios, i.e.  $F_A$ ,  $F_R$ ,  $ER_A$  and  $ER_R$ , can be then calculated that minimize the differences between the left-hand side observations and the right-hand side "model" under consideration of their uncertainties, leading to *a posteriori* quantities  $(F_A, F_R, ER_A, ER_R)$  with corresponding uncertainties  $(\sigma_{F_A}, \sigma_{F_R}, \sigma_{ER_A}, \sigma_{ER_R})$ . A cost function (J) was then written as a linear system with all the differences weighted by the corresponding *a priori* uncertainties:

$$J = \frac{1}{2} \left[ \left( \frac{F_{A} + F_{R} - F_{CO_{2}}}{\sigma_{F_{CO_{2}}}} \right)^{2} + \left( \frac{F_{A} ER_{A} + F_{R} ER_{R} - F_{O_{2}}}{\sigma_{FO_{2}}} \right)^{2} + \left( \frac{F_{A} - F_{A}^{b}}{\sigma_{F_{C}^{b}}} \right)^{2} + \left( \frac{F_{R} - F_{R}^{b}}{\sigma_{F_{C}^{b}}} \right)^{2} + \left( \frac{ER_{A} - ER_{A}^{b}}{\sigma_{ER_{C}^{b}}} \right)^{2} \right]$$
(8)





320

330

335

The last four terms allow a solution to be defined even with fewer equations than unknowns. The a posteriori values and uncertainties were returned at minimum J with predefined a priori values and uncertainties (Table 2). For the J function with multiple variables as in our case, the a posteriori means of any parameter, x, were found along the gradient of each variable where its Jacobian equaled zero ( $\frac{\partial J}{\partial x} = 0$ ; (Tarantola, 2004)), while the corresponding a posteriori uncertainties were expressed as the square root of the inverse Hessian at the minimum ( $\frac{\partial^2 J}{\partial x^2}$ ; (Tarantola, 2004)):

$$\begin{bmatrix} \sigma_{F_{A}} \\ \sigma_{F_{R}} \\ \sigma_{ER_{A}} \\ \sigma_{ER_{R}} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2}J}{\partial F_{A}^{2}} & \frac{\partial^{2}J}{\partial F_{A} \partial F_{R}} & \frac{\partial^{2}J}{\partial F_{A} \partial ER_{A}} & \frac{\partial^{2}J}{\partial F_{A} \partial ER_{A}} & \frac{\partial^{2}J}{\partial F_{A} \partial ER_{R}} \\ \frac{\partial^{2}J}{\partial F_{R} \partial F_{A}} & \frac{\partial^{2}J}{\partial F_{R}^{2}} & \frac{\partial^{2}J}{\partial F_{R} \partial ER_{A}} & \frac{\partial^{2}J}{\partial F_{R} \partial ER_{R}} \\ \frac{\partial^{2}J}{\partial ER_{A} \partial F_{A}} & \frac{\partial^{2}J}{\partial ER_{A} \partial F_{R}} & \frac{\partial^{2}J}{\partial ER_{A} \partial ER_{R}} \\ \frac{\partial^{2}J}{\partial ER_{R} \partial F_{A}} & \frac{\partial^{2}J}{\partial ER_{R} \partial F_{R}} & \frac{\partial^{2}J}{\partial ER_{R} \partial ER_{A}} & \frac{\partial^{2}J}{\partial ER_{R}} \end{bmatrix}$$

$$(9)$$

By assuming no correlations among the variables, only the diagonal elements of the Hessian were used in a posteriori uncertainties calculation.

We evaluated the a posteriori uncertainties on partitioned photosynthetic fluxes on a typical day during summer (4 July 2012) with assigned a priori uncertainties. The a priori uncertainty of gross assimilation ( $\sigma_{F_A^b}$ ) was set to 10 µmol m<sup>-2</sup> s<sup>-1</sup> and of ecosystem respiration ( $\sigma_{F_R^b}$ ) to 5 µmol m<sup>-2</sup> s<sup>-1</sup>, following Ogee et al. (2004) assuming less constraint on a posteriori results (Table 2). The uncertainty of the net CO<sub>2</sub> fluxes ( $\sigma_{F_{CO_2}}$ ) was derived from Mann and Lenschow's model (Lenschow et al., 1994) and calculated for our site to be 2.5 µmol m<sup>-2</sup> s<sup>-1</sup> (Braden-Behrens et al., 2019). We also examined if  $\sigma_{F_A}$  could be reduced if more accurate net CO<sub>2</sub> fluxes were measured ( $\sigma_{F_{CO_2}} = 0.5$  µmol m<sup>-2</sup> s<sup>-1</sup>).

The uncertainty of measured ecosystem  $O_2$  fluxes  $(\sigma_{F_{O_2}})$  is unknown to us. Consequently, we used the results from the flux-gradient method evaluation (section 2.4.). In order to clearly quantify the effect of  $\sigma_{F_{O_2}}$  and  $\sigma_{ER_A}$  on flux partitioning precision, we defined a  $\sigma_{F_{O_2}}$  series ranging from 0.1 to 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, representing 90% quantile of random  $\Delta$ 0 measurement uncertainty (see section 2.4.), and a series of  $\sigma_{ER_A^b}$  ranging from 0.001 to 0.1 mol mol<sup>-1</sup>.  $\sigma_{ER_R^b}$  was fixed to either 0.05 or 0.001 mol mol<sup>-1</sup>.

Table 2. Assigned *a priori* values and uncertainties to build the cost function, J, for the uncertainty estimation of using O<sub>2</sub> fluxes to partition net CO<sub>2</sub> fluxes.

| variables | a priori values                          | a priori uncertainties                  |
|-----------|------------------------------------------|-----------------------------------------|
| $F_A$     | -15 μmol m <sup>-2</sup> s <sup>-1</sup> | 10 μmol m <sup>-2</sup> s <sup>-1</sup> |





| $F_R$      | 5 μmol m <sup>-2</sup> s <sup>-1</sup> | 5 μmol m <sup>-2</sup> s <sup>-1</sup>               |
|------------|----------------------------------------|------------------------------------------------------|
| $ER_A$     | 1 mol mol <sup>-1</sup>                | 0.001 - 0.1 mol mol <sup>-1</sup>                    |
| $ER_R$     | 1.1 mol mol <sup>-1</sup>              | $0.05 \text{ or } 0.001 \text{ mol mol}^{-1}$        |
| $F_{CO_2}$ | eddy covariance observations           | 2.5 or 0.1 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> |
| $F_{O_2}$  | CANVEG outputs                         | 0.1 - 15 μmol m <sup>-2</sup> s <sup>-1</sup>        |
|            |                                        |                                                      |

# 3 Results

### 3.1 Model performance

The model generally showed similar performance for  $F_{CO_2}$ , H and LE during both calibration and validation (Fig. 2), indicating robust model behavior as a multi-layer canopy flux simulator. The model validation for  $F_{CO_2}$  ( $R^2 = 0.82$ , slope = 1.016) was generally better than for H ( $R^2 = 0.7$ , slope = 0.879) and LE ( $R^2 = 0.77$ , slope = 1.02) (Fig. 2b, 2d and 2f). The disagreement between modeled and measured  $F_{CO_2}$  indicates some uncertainties in the parameters for soil and stem respiration as well as phenology in the model equations. The similar scale but opposite sign of y-intercepts for H and LE calibration simulations (Fig. 2c and 2e) indicate underestimation in H and the same amount of overestimation in LE. The slopes deviating from one for H and LE could come from a non-closure of the energy balance in the eddy covariance observations.

350

345

340

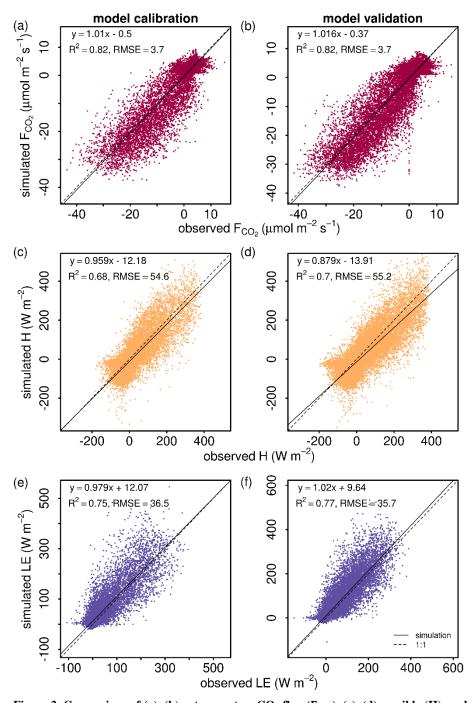



Figure 2. Comparison of (a), (b) net ecosystem  $CO_2$  flux  $(F_{CO_2})$ , (c), (d) sensible (H), and (e), (f) latent (LE) heat flux from 2012 to 2016 between model simulations (y-axes) and eddy covariance observations (x-axes). The left column shows all hourly data points for the calibration period (2012-2013), and the right column shows all hourly data points for the validation period (2014-2016). The linear regression line function, coefficient of determination  $(R^2)$ , and the root mean squared error (RMSE) are included in each panel. The dashed lines are the 1:1 lines.



360

365

370

375

380

385



# 3.2 Temporal dynamics of O2:CO2 exchange ratios

The median of the hourly ecosystem  $O_2:CO_2$  exchange ratio ( $ER_{eco}$ ) throughout the simulation period (2012-2016) was 1.08 mol mol<sup>-1</sup>, where the annual medians did not differ between years. The annual mean  $ER_{eco}$  ranged from 1.06 to 1.12 mol mol<sup>-1</sup> across the five years. Hourly  $ER_{eco}$  also varied seasonally and within the diel course, as shown as an example for the year 2012 in Figure 3a. During the non-growing season,  $ER_{eco}$  were constrained between 1.04 and 1.10 mol mol<sup>-1</sup>, representing a mixture of the prevailing stem and soil respiration processes. During the growing season,  $ER_{eco}$  was close to 1.00 mol mol<sup>-1</sup> during daylight hours, due to the dominance of photosynthetic processes, and sometimes even smaller than 1.00 mol mol<sup>-1</sup>, when daytime  $F_{O_2}$  was smaller than daytime  $F_{CO_2}$ . This can occur with  $ER_A = 1.00$  mol mol<sup>-1</sup>, and  $ER_{stem}$ ,  $ER_{soil}$  and  $ER_{rd} > 1.00$  mol mol<sup>-1</sup> (following Eq. (1)) more  $O_2$  was consumed than  $CO_2$  released for the respiratory fluxes, and thus this decreased the magnitude of net  $F_{O_2}$ . During nighttime in the growing season,  $ER_{eco}$  was > 1.00 mol mol<sup>-1</sup>, representing a mixture of stem, soil and leaf dark respiration. For transition periods (sunrise and sunset), with flux magnitudes close to zero,  $ER_{eco}$  values were very high, owing to very small  $F_{CO_2}$ . Because  $ER_{eco}$  is a ratio, values can get extremely large and approach infinity as  $F_{CO_2}$  approaches zero. However, since corresponding  $F_{O_2}$  values are also very low, these  $ER_{eco}$  values have very little effect on median and mean  $ER_{eco}$  of the overall ecosystem over a longer time period.

The median and mean of hourly  $O_2$ : $CO_2$  net assimilation ratio (ER<sub>An</sub>) were 0.99 mol mol<sup>-1</sup> and 0.96 mol mol<sup>-1</sup>, respectively, for all growing seasons during the simulation period, and did not vary between years. Again, the seasonal and diel variations of ER<sub>An</sub> in the year 2012 are shown in Figure 3b as an example. During nighttime, ER<sub>An</sub> was equivalent to ER<sub>rd</sub> and thus also dependent on  $T_{leaf}$  (Fig. 1b). With low  $T_{leaf}$  at the beginning or end of the growing season, ER<sub>An</sub> was often smaller than 0.90 mol mol<sup>-1</sup>. During daytime, when the magnitude of  $F_A$  was usually much larger than the magnitude of the opposing flux  $F_{rd}$ , ER<sub>An</sub> was negatively correlated to  $T_{leaf}$ . Note that  $F_{rd}$  and ER<sub>rd</sub> respond differently to  $T_{leaf}$ , that is,  $F_{rd}$  is a fraction of  $V_{cmax}$ , which has an optimal temperature at 27 °C (Table 1) while ER<sub>rd</sub> is positively correlated with  $T_{leaf}$  (Fig. 1b). Consequently, during periods with high  $T_{leaf}$  and low irradiation,  $F_{rd}$  was small, but ER<sub>rd</sub> was large and the magnitude of the  $O_2$  flux of leaf respiration was larger than the magnitude of the  $CO_2$  flux with  $|-F_{rd} \cdot ER_{rd}| > |F_{rd}|$ . Moreover,  $|-F_A \cdot ER_A|$  and  $|F_A|$  were small with ER<sub>A</sub> = 1.00 mol mol<sup>-1</sup>. It follows that under these conditions and given model implementation, ER<sub>An</sub> describes the ratio of  $O_2$  uptake and  $CO_2$  uptake (both fluxes with the same sign), when more  $O_2$  was consumed due to dark leaf respiration than released by assimilation ( $|-F_{rd} \cdot ER_{rd}| > |-F_A \cdot ER_A|$ ). In addition, because values of  $F_A$  are below zero and values of  $F_{rd}$  are greater than zero, values of  $ER_{An}$  (Eq. (3)) lie mostly not between  $ER_A$  and  $ER_{rd}$ . Similar to  $ER_{eco}$ , high variations in  $ER_{An}$  were usually found during transition periods with low flux magnitudes.



395

400

405



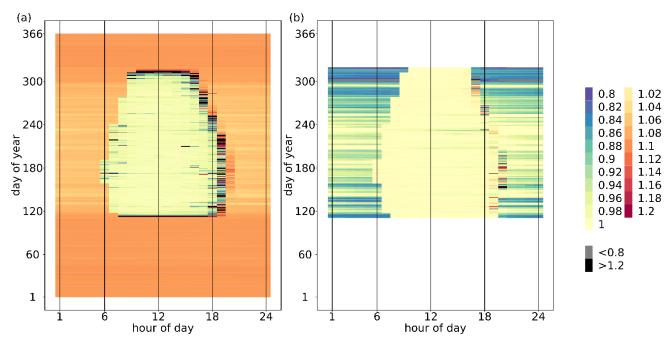



Figure 3. Temporal variations of (a) the exchange ratio of net ecosystem fluxes ( $ER_{eco}$ , mol mol<sup>-1</sup>) and (b) the exchange ratio of net assimilation ( $ER_{An}$ , mol mol<sup>-1</sup>) by hour of day and day of year in 2012. The exchange ratios were calculated as the ratio of the hourly  $F_{O_2}$  and  $F_{CO_2}$  (including storage terms) summed up over the entire canopy height. As a guide, 1<sup>st</sup> July is day 183.

### 3.3 Vertical profiles of O2:CO2 flux- and mole fraction-ratios

The vertical profiles of  $ER_{eco}$  and  $ER_{conc}$  differ temporally and spatially. Figure 4 shows the diel vertical profiles of  $ER_{eco}^z$  and  $ER_{conc}^z$  averaged over all growing seasons from 2012-2016 (between leaf<sub>out</sub> and leaf<sub>fall\_complete</sub>). The mean diel  $ER_{eco}^z$  ranged from 0.985 to 1.10 mol mol<sup>-1</sup> (Fig. 4a).  $ER_{eco}^z$  at the ground and bottom layers ( $z/ht \le 0.35$ ) showed very little variability across the day reflecting the dominance of stem and soil respiration with fixed values of  $ER_{soil}$  and  $ER_{stem}$  (Fig. 4a). The upper levels of the canopy showed  $ER_{eco}^z$  between 0.99 and 1.04 mol mol<sup>-1</sup> during the daylight period (6:00 to 20:00) due to the dominating fluxes of assimilation and stem respiration. The leaf dark respiration did not have a large impact on averaged daytime  $ER_{eco}^z$ . Moreover, the defined LAI and WAI distributions (Fig. 1a) were represented in the vertical profile of  $ER_{eco}^z$ , whereas the top canopy contained a larger proportion of sunlit leaves (z/ht > 0.75) than the middle part (0.35 < z/ht < 0.75). Hence,  $ER_{eco}^z$  in the top canopy was influenced more by fluxes of assimilation in daytime hours and was close to 1.00 mol mol<sup>-1</sup>. Between z/ht = 0.3 and z/ht = 0.5,  $ER_{eco}^z$  was larger than 1.06 mol mol<sup>-1</sup> during daytime due to higher respiratory processes than assimilation affected by low radiation and relatively high temperatures. The  $ER_{eco}^z$  during nighttime (approximately before 6:00 and after 20:00) of the upper and middle canopy was usually larger than 1.04 mol mol<sup>-1</sup> due to respiratory fluxes.

The mean diel ER<sup>z</sup><sub>conc</sub> showed relatively small variations ranging from 1.115 to 1.15 mol mol<sup>-1</sup> (Fig. 4b), and thus, closely matched the prescribed atmospheric O<sub>2</sub>:CO<sub>2</sub> mole fraction slope of 1.15 (Table 1). Especially during nighttime (before 6:00

425



and after 20:00), ER<sup>z</sup><sub>conc</sub> was mainly driven by the atmospheric O<sub>2</sub> and CO<sub>2</sub> background levels. However, bottom layers showed slightly lower values of ER<sup>z</sup><sub>conc</sub>, down to 1.12 mol mol<sup>-1</sup>, owing to an accumulation of CO<sub>2</sub> close to the soil surface produced by soil respiration and low turbulence. During daytime, the canopy air column was well mixed due to stronger turbulence.

Nevertheless, ER<sup>z</sup><sub>conc</sub> values were slightly lower in the top canopy layers towards late afternoon and sunset, caused by prevailing canopy respiration.

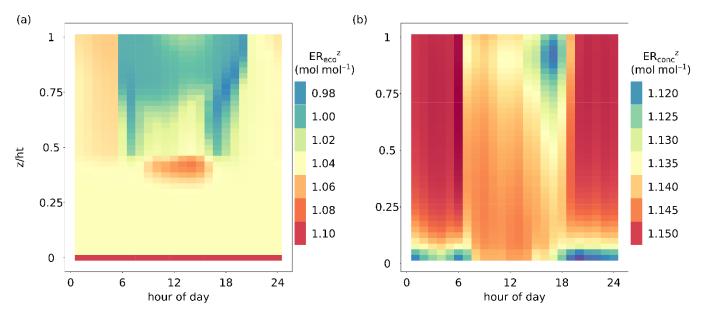



Figure 4. Comparison of the diel dynamics of the height dependent  $O_2:CO_2$  flux- and mole fraction-ratios averaged over all growing seasons (day of year 110 to 320) from 2012 to 2016. (a) Vertical profile of the  $O_2:CO_2$  flux-ratio inside the canopy ( $ER^z_{eco}$ , mol mol<sup>-1</sup>), including the whole canopy domain and the soil component (z/ht = 0); (b) Vertical profile of the  $O_2:CO_2$  mole fraction-ratio inside the canopy ( $ER^z_{conc}$ , mol mol<sup>-1</sup>), including the whole canopy domain. The exchange ratios for specific canopy heights were derived as the slope of linear regressions fitted to  $O_2$  and  $CO_2$  fluxes or concentrations of multiple simulated time steps for each canopy layer.

### 3.4 Evaluation of the flux-gradient method to obtain O<sub>2</sub> fluxes

The vertical profiles of air temperature, water vapor,  $CO_2$ , and  $O_2$  mole fractions were modeled for the entire CANVEG domain including 40 canopy layers and 80 atmosphere layers above the canopy. Figure 5 shows examples of vertical profiles for 12:00 p.m. to 13:00 p.m. (daytime) and 23:00 p.m. to 00:00 a.m. (nighttime) on 4 July 2012, an arbitrarily chosen sunny day. Generally, during daytime the vertical profiles within the canopy (Fig. 5a and 5c) were mostly induced by radiative transfer, leaf photosynthesis, transpiration and autotrophic respiration, which were influenced by the vertical LAI and WAI distributions (Fig. 1a). Furthermore, soil evaporation and respiration resulted in higher water vapor and  $CO_2$  mole fractions close to the soil surface. For the layers above the canopy (z/ht >1), the profiles changed monotonically. Daytime  $O_2$  and  $CO_2$  profiles (Fig. 5c) show a mirrored shape because the  $O_2$  and  $CO_2$  fluxes were contributing inversely to the atmospheric mole fractions. Nighttime



435

440

445

450

455



water vapor and CO<sub>2</sub> profiles (Fig. 5d and 5d) show a continuous decrease with height and the O<sub>2</sub> profile a continuous increase, 430 due to the dominance of soil evaporation and soil, stem and leaf respiration in the lower layers being a sink for O<sub>2</sub>. During nighttime, air temperature (Fig. 5b) is slightly lower at the canopy top than inside the canopy due to higher energy loss by emission of longwave radiation.

Based on these modeled vertical profiles and the corresponding flux ( $F_{CO_2}$ , H or LE, respectively),  $O_2$  fluxes were calculated with the flux-gradient method and compared to the modeled  $O_2$  fluxes from CANVEG, both corrected for the storage terms. So in the following we always describe the ecosystem fluxes (turbulent fluxes plus storage terms). Figures 5e and 5f show the difference between the various flux-gradient methods derived and modeled  $F_{O_2}$  (diff $_{F_{O_2,(C,T,V)}}$ , (Eq. (7)) for the respective simulation hours, when the scalar gradients were derived from two heights (section 2.4). An  $F_{O_2}$  estimate and a diff $_{F_{O_2}}$  value were obtained for each layer. Generally,  $diff_{F_{O_2}}$  derived with the flux-gradient method based on the  $CO_2$  profile ( $diff_{F_{O_2,C}}$ ) was lower than  $diff_{F_{O_2}}$  derived from the temperature and water vapor profile ( $diff_{F_{O_2,T}}$ ,  $diff_{F_{O_2,V}}$ , Fig. 5e and 5f). For daytime conditions (Fig. 5e), the mean  $diff_{F_{O_2,C}}$ ,  $diff_{F_{O_2,T}}$  and  $diff_{F_{O_2,V}}$  above the canopy were  $0.030 \pm 0.09 \ \mu mol \ m^2 \ s^{-1}$ ,  $1.55 \pm 0.54 \ \mu mol \ m^2 \ s^{-1}$  and  $-4.26 \pm 0.63 \ \mu mol \ m^2 \ s^{-1}$ , respectively. There is little vertical variation in  $diff_{F_{O_2}}$  above the canopy for nighttime (Fig. 5f). Here, the mean  $diff_{F_{O_2,C}}$ ,  $diff_{F_{O_2,T}}$  and  $diff_{F_{O_2,V}}$  were  $-0.53 \pm 0.04$ ,  $-1.98 \pm 0.20$  and  $-0.47 \pm 0.24 \ \mu mol \ m^2 \ s^{-1}$ , respectively. By applying the three-heights flux-gradient method after Faassen et al. (2022),  $diff_{F_{O_2,V}}$  for the daytime hour had a similar magnitude for  $diff_{F_{O_2,C}}$  with  $-0.13 \ \mu mol \ m^2 \ s^{-1}$  and for  $diff_{F_{O_2,V}}$  with  $-4.31 \ \mu mol \ m^{-2} \ s^{-1}$ , and was larger for  $diff_{F_{O_2,T}}$  with  $-4.72 \ \mu mol \ m^{-2} \ s^{-1}$ . The corresponding nighttime  $diff_{F_{O_2,C}}$ ,  $diff_{F_{O_2,V}}$  derived from the three-heights flux-gradient method were -0.50,  $-2.41 \ and -0.66 \ \mu mol \ m^{-2} \ s^{-1}$ , indicating the similar  $diff_{F_{O_2,C}}$ 

The diff $_{F_{O_2}}$  within the canopy during daytime increased and was highly variable for all three methods due to the presence of sources and sinks, and non-linearity of the gradients (Fig. 5e). diff $_{F_{O_2},C}$  and diff $_{F_{O_2},T}$  showed hyperbolic shapes with very low (< -50  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) and high values (> 50  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) where the CO<sub>2</sub> concentrations or the temperatures, respectively, were very close to the conditions at the top measurement height, and so the gradients were very small. The sudden jumps from large positive to large negative values were caused by the change in signs of  $\Delta c$  and  $\Delta T$ .

To guarantee a large gradient, the height with z/ht = 2 and z/ht = 1.05 were finally used in inferring  $F_{O_2}$  from vertical  $CO_2$ , temperature and water vapor gradients. Figures 6a, 6b, and 6c show the median diel courses of  $diff_{F_{O_2},c}$ ,  $diff_{F_{O_2},T}$  and  $diff_{F_{O_2},v}$  for all growing seasons from 2012-2016. Assuming that with these heights the gradients are large enough, the inferred  $F_{O_2}$  agreed well with modeled  $F_{O_2}$  for  $diff_{F_{O_2},c}$  throughout the median diel course ranging from -0.45 to -0.15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> (Fig. 6a). The medians of  $diff_{F_{O_2},T}$  and  $diff_{F_{O_2},v}$  indicated that  $F_{O_2,T}$  was overestimated by up to 1.59  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> and  $F_{O_2,v}$  underestimated by up to 5.43  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> during daytime hours (Fig. 6b and 6c). The standard deviations of  $diff_{F_{O_2}}$  reflected



460

465



the diel variation of turbulent conditions and vertical gradients, which are also dependent on the eddy diffusivity. The nighttime standard deviation of  $diff_{F_{0_2},v}$  was relatively large, but smaller for  $diff_{F_{0_2},T}$ . The latter produced more outliers during daytime, especially during times of sunrise and sunset. The standard deviation of  $diff_{F_{0_2},c}$  was relatively low and usually < 10  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> across all times of the day except at 08:00, 12:00 and 19:00 o'clock (Fig. 6a).

The above analysis evaluates the flux-gradient method solely regarding the characteristics and dynamics of various scalar gradients. Moreover, accurate and precise measurements of the scalars are also necessary for a satisfactory performance of this method. We added a random uncertainty to our modeled  $O_2$  mole fractions to simulate gradient measurements with the current instrument uncertainty ( $\Delta$ o in Eq. (6)). Figure 6d shows the distribution of the differences ( $\sigma_{F_{Q_2}}$ ) between the  $F_{Q_2}$  estimates based on the flux-gradient method including a random measurement error in  $\Delta$ o or not. For this analysis, only hourly timesteps within all growing seasons from 2012-2016 were chosen with  $\Delta$ o  $\geq$  1 ppm, when  $O_2$  concentration increased with decreasing height above the canopy due to prevailing gross assimilation during daytime. The median of resulting  $\sigma_{F_{Q_2}}$  was 0.20  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> and thus very close to zero. Here, we extracted the 10% and 90% quantile of  $\sigma_{F_{Q_2}}$  = -14.2 and 14.5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>. Thus, we used 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> as the upper limit of  $\sigma_{F_{Q_2}}$  in the evaluation of the flux partitioning approach (section 3.5).





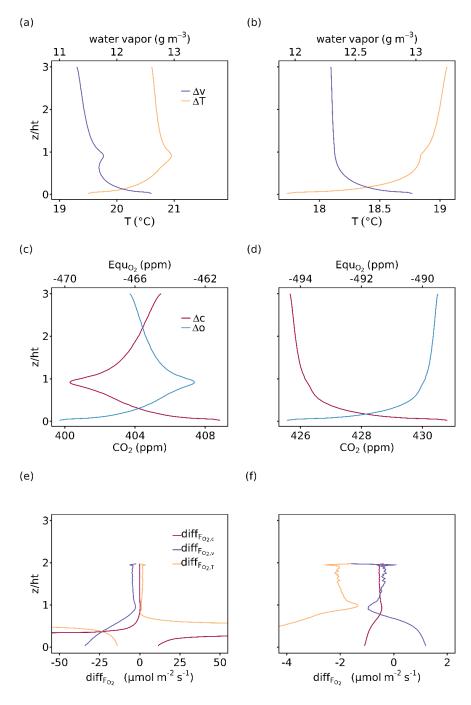
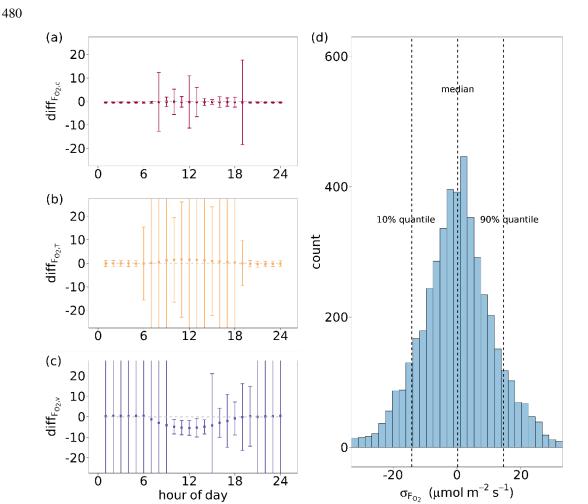




Figure 5. Vertical profiles of (a), (b) air temperature (T) and water vapor, and (c), (d)  $CO_2$  and  $O_2$  mole fractions of the entire model domain, where  $O_2$  mole fractions are shown as the difference from 209750 ppm (Equ<sub> $O_2$ </sub>). (e), (f) diff<sub> $F_{O_2}$ </sub> that resulted from Eq. (7) (section 2.4). The left panels (a), (c) and (e) show mean profiles for 12:00 p.m. to 13:00 p.m. (daytime) and the right panels (c), (d) and (f) for 23:00 p.m. to 00:00 a.m. (nighttime), all for 4 July 2012. The flux-gradient method was applied for the gradients between





a top measurement height at z/ht = 2 and each layer below, and based on profiles and fluxes of  $CO_2$ , H and LE (diff $_{F_{0_2},C}$ , diff $_{F_{0_2},T}$ and  $diff_{F_{02},v}$ ).



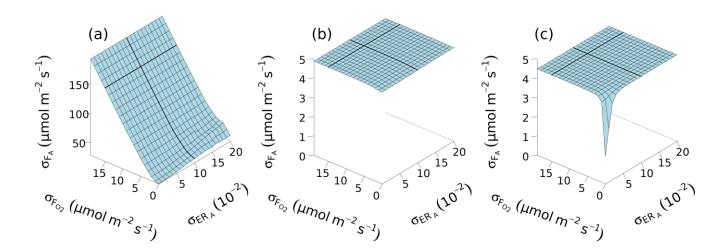
hour of day

Figure 6. (a), (b), (c) Median diel cycles of the differences between O2 fluxes derived by flux-gradient method and by CANVEG simulation (diff $_{F_{0_2}}$ ) for all growing seasons from 2012-2016. The flux-gradient method was applied for the gradients between z/ht = 2 and z/ht = 1.05, and based on profiles and fluxes of (a) CO<sub>2</sub>, (b) H and (c) LE (diff $_{F_{0_2},c}$ , diff $_{F_{0_2},T}$  and diff $_{F_{0_2},v}$ ). The error bars  $indicate \ the \ standard \ deviation \ of \ diff_{F_{0_2}} \ by \ hour. \ (d) \ Histogram \ of \ uncertainties \ in \ F_{0_2} \ (\sigma_{F_{0_2}}) \ derived \ by \ the \ flux-gradient \ method$ based on CO<sub>2</sub> profile and fluxes, when a random uncertainty in the vertical gradient in O<sub>2</sub> mole fractions (Δo) was included. The uncertainty in  $\Delta o$  followed a normal distribution with mean = 0 and a standard deviation of 0.7 ppm (Pickers et al., 2017). In order to include daytime hours with an active canopy,  $\Delta o \ge 1$  ppm was used as a filter, assuming higher oxygen concentration close to the canopy than in the top domain layers.

490

485






500

505

### 3.5 Uncertainties in partitioning net ecosystem CO<sub>2</sub> fluxes based on O<sub>2</sub> fluxes

For the test day from 07:00 to 19:00 on 4 July 2012, model output of hourly  $F_{O_2}$  was used to derive the main  $CO_2$  flux components. The a posteriori uncertainties on the partitioned fluxes of gross assimilation ( $\sigma_{FA}$ ) decreased significantly with decreasing uncertainties of  $\sigma_{ERA}$  and  $\sigma_{FO_2}$ , indicating the importance of reducing errors in ER and  $O_2$  flux measurements (Fig. 7). The a priori uncertainties had strong effects on a posteriori uncertainties, because a large  $\sigma_{FA}^b$  allowed large  $|F_A - F_A^b|$  to reach a minimum J value and vice versa (Eq. (8)). Without the constraints of a priori uncertainties (Fig. 7a),  $\sigma_{FA}$  reached 193 µmol  $m^{-2}$  s<sup>-1</sup> at its maximum, then reduced with smaller  $\sigma_{FO_2}$  and  $\sigma_{ERA}$  to 28 µmol  $m^{-2}$  s<sup>-1</sup>, which was still larger than the a priori value (Table 2). If a priori uncertainties ( $\sigma_{FA}^b$ ,  $\sigma_{FR}^b$ ,  $\sigma_{ERA}^b$ ,  $\sigma_{ERA}^b$ ,  $\sigma_{ERA}^b$ ) were included (Fig. 7b and 7c),  $\sigma_{FA}$  was much lower. When assuming an uncertainty for the net  $CO_2$  fluxes ( $\sigma_{FCO_2}$ ) of 2.5 µmol  $m^{-2}$  s<sup>-1</sup>,  $\sigma_{FA}$  showed very little variation and ranged between 4.74 and 4.88 µmol  $m^{-2}$  s<sup>-1</sup> remaining close to the minimum of the chosen a priori uncertainty in  $F_A$  and  $F_R$  (Fig. 7b). When assuming more accurate  $F_{CO_2}$  and  $F_R$  measurements with  $\sigma_{FCO_2} = 0.5$  µmol  $F_R^a$  showed very little variation and ranged between 4.74 and 4.84 µmol  $F_R^a$  and  $F_R^a$  measurements with  $\sigma_{FCO_2} = 0.5$  µmol  $F_R^a$  showed very little variation and ranged between 4.74 and 4.88 µmol  $F_R^a$  and  $F_R^a$  measurements with  $F_R^a$  and  $F_R^a$  showed very little variation and ranged between 4.74 and 4.88 µmol  $F_R^a$  and  $F_R^a$  measurements with  $F_R^a$  and  $F_R^a$  showed very little variation and ranged between 4.74 and 4.88 µmol  $F_R^a$  and  $F_R^a$  from  $F_R^a$  remaining close to the minimum of the chosen a priori uncertainty in  $F_R^a$  and  $F_R^a$  was reduced to a minimum of 1.43 µmol  $F_R^a$  from  $F_R^a$  for our test day. In this case, the parti





510

515

520

525

530

535

540



Figure 7. Uncertainty in partitioned gross assimilation  $CO_2$  flux  $(F_A)$  determined from eddy covariance net ecosystem  $CO_2$  flux  $(F_{CO_2})$  with net ecosystem  $O_2$  flux  $(F_{O_2})$ ,  $O_2$ : $CO_2$  ratio of gross assimilation  $(ER_A)$  and ecosystem respiration  $(ER_R)$  on 4 July 2012; (a) Optimized a posteriori uncertainty of  $F_A$  ( $\sigma_{F_A}$ ) without a priori  $F_A$  values and uncertainties; (b) Optimized  $\sigma_{F_A}$  including all of the a priori terms in the J function as written in Eq. (8), with a priori uncertainty of  $F_{CO_2}$  ( $\sigma_{F_{CO_2}}$ ) = 2.5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> and a priori uncertainty of  $ER_R$  ( $\sigma_{ER_R^b}$ ) = 0.05 mol mol<sup>-1</sup>; (c) Same cost function as for (b) but with  $\sigma_{F_{CO_2}}$  = 0.5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> and  $\sigma_{ER_R^b}$  = 0.001 mol mol<sup>-1</sup>. The bold black lines show the practical optimization test with  $\sigma_{ER_R^b}$  and  $\sigma_{F_{O_2}}$  around 0.01 mol mol<sup>-1</sup> and 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, respectively (cf. Figure 6d).

### 4 Discussions

### 4.1 Model set-up and model performance

We added O<sub>2</sub>:CO<sub>2</sub> exchange ratios and O<sub>2</sub> flux processes into the one-dimensional, multi-layer atmosphere-biosphere gas exchange model, CANVEG. To represent natural atmosphere-ecosystem exchange satisfactorily, we first calibrated and validated the model based on eddy covariance CO<sub>2</sub> and energy flux observations from a temperate deciduous forest in Leinefelde, Germany, from 2012-2016. In a previous study, model performance was evaluated based on hourly CO<sub>2</sub>, water vapor and energy fluxes in temperate oak forests (Baldocchi and Wilson, 2001). That evaluation, for hourly F<sub>CO2</sub>, yielded a slope = 1.09 of the regression between observations and simulation with an  $R^2 = 0.82$ , which is comparable to our results (slope = 1.02 and  $R^2 = 0.82$ , Fig. 2b). The model application in a deciduous temperate forest in central Germany (Knohl and Baldocchi, 2008) also showed a high match between hourly modeled and measured  $F_{CO_2}$  (slope = 0.997,  $R^2$  = 0.857). In addition, Hanson et al. (2004) compared the CANVEG model with seven other stand-level models where CANVEG performed very well (slope = 0.93,  $R^2$  = 0.82) based on simulated  $F_{CO_2}$ . In our study, the comparison between hourly LE simulation and observations obtained a regressed slope = 1.02 and  $R^2 = 0.77$  (Fig. 2f), indicating a better model performance than for daily evapotranspiration by Hanson et al. (2004) (slope = 1.17, R<sup>2</sup> = 0.73). Knohl and Baldocchi (2008) found a slope = 0.926 and  $R^2 = 0.825$  for hourly LE simulation, and a slope = 1.021 and  $R^2 = 0.869$  for hourly H simulation, indicating an underestimation of LE and a small overestimation of H. In our study, we observed an overestimation of LE and underestimation of H. The model performance in the energy fluxes was generally lower than for CO<sub>2</sub> flux simulations because fitted parameters mainly affected the CO<sub>2</sub> fluxes and leaf assimilation (Table 1). By adjusting the assimilation rate, only transpiration was also changed, which then had an impact on LE and H. The non-unity slope of H and LE could also point to the non-closure of the energy balance in the eddy covariance observations.

Furthermore, the modeling error could be caused by the implemented soil respiration algorithm, which did not consider the influence of soil water changes. Moreover, parameters for soil respiration were only calibrated based on eddy covariance observations ( $F_{CO_2}$  and  $F_R$ ) on ecosystem scale, where independent chamber measurements would be beneficial. Moreover, an error in the seasonality of carbon and energy fluxes could be introduced by the uncertainty in leaf growth phenology and annual LAI. Although we simulated fluxes from 2012 to 2016, the total leaf-full LAI and leaf growth phenology parameters (Table



545

550

555

560

565

570



1) were only measured in the year 2015 and kept constant across the modeling period (Table 1). Adjusting LAI annually would only affect the timing of the fluxes, but not the overall O<sub>2</sub>:CO<sub>2</sub> exchange ratio (ER) pattern.

This study used fixed ER parameter values owing to the lack of direct chamber O<sub>2</sub> and CO<sub>2</sub> flux measurements for leaf, stem and soil flux components at our study site. The O<sub>2</sub>:CO<sub>2</sub> exchange ratio of gross assimilation (ER<sub>A</sub>) was set to 1.00 mol mol<sup>-1</sup> (Table 1), describing the production of carbohydrates by gross assimilation. Busch et al. (2018) described how plants use nitrogen while assimilating CO<sub>2</sub>, resulting in carbon loss from the photorespiratory pathway in the form of glycine and serine. Since nitrogen assimilation increases O<sub>2</sub> emissions but has smaller effects on CO<sub>2</sub> uptake, incorporating nitrogen assimilation in the Farquhar et al. (1980) photosynthesis model would help to represent photosynthetic O<sub>2</sub> emissions more mechanistically in models. In this case, environmental conditions such as nitrogen fertilization and utilization would cause different ER<sub>A</sub> values.

Studies obtaining exchange ratios of O<sub>2</sub> and CO<sub>2</sub> via chamber measurements at the soil- or stem-scale often state the so-called apparent respiratory quotient (ARQ), which is defined as the ratio of CO<sub>2</sub> efflux to O<sub>2</sub> uptake (Angert et al., 2012; Helm et al., 2021; Hilman and Angert, 2016; Hilman et al., 2022). Thus, ARQ could be compared to our ER<sub>soil</sub> or ER<sub>stem</sub> by taking the inverse of ARQ, which is the CO<sub>2</sub>:O<sub>2</sub> conductance ratio, following Hilman and Angert (2016). However, ARQ is also influenced by biotic and abiotic non-respiratory processes such as dissolution and refixation of respired CO<sub>2</sub> in the xylem sap (Angert et al., 2012; Hilman and Angert, 2016; Hilman et al., 2022), so we expect differences between the various quantities. Furthermore, studies state the so-called oxidative ratio (OR) based on the elemental analysis of organic material. OR is based on the stoichiometry of the respiratory product or net synthesized biomass, which represents the oxidation state of respiratory substances (Hilman et al., 2022; Juergensen et al., 2021).

All ARQ values from the cited references were converted to  $ER_{stem}$  or  $ER_{soil}$  for easier comparison. The  $ER_{stem}$  parameter = 1.04 mol mol<sup>-1</sup> used in this study was derived by Randerson et al. (2006) based on the OR of chemical compositions (lipid, lignin, protein, soluble phenolic etc.) assigned to woody stems. Hilman and Angert (2016) measured a mean  $ER_{stem} = 1.47$  mol mol<sup>-1</sup> (ARQ =  $0.68 \pm 0.04$  mol mol<sup>-1</sup>) with direct continuous measurements for an apple tree. In addition,  $ER_{stem}$  also showed variations between 1.22 and 1.61 mol mol<sup>-1</sup> (ARQ = 0.62 to 0.82 mol mol<sup>-1</sup>) during the measurement period (Hilman and Angert, 2016). The  $ER_{stem}$  varies between 1.28 and 2.56 mol mol<sup>-1</sup> (ARQ = 0.39 to 0.78 mol mol<sup>-1</sup>) with the mean of 1.69 mol mol<sup>-1</sup> (ARQ = 0.59 mol mol<sup>-1</sup>) among tropical, temperate, and Mediterranean forests (Hilman et al., 2019). Besides, dry or wet environmental conditions lead to a seasonal variation in  $ER_{stem}$  (Angert et al., 2012).

The global OR of soils is suggested to be equal  $1.10 \pm 0.05$  (Severinghaus, 1995). According to Hockaday et al. (2015), the soil OR is 1.006 at ambient CO<sub>2</sub> level and increases to 1.054 with elevated CO<sub>2</sub> level. (Worrall et al., 2013) also derived a global soil OR = 1.04. Seibt et al. (2004) obtained an ER<sub>soil</sub> = 0.94 mol mol<sup>-1</sup> with field chamber measurements, while Ishidoya et al. (2013) obtained ER<sub>soil</sub> = 1.11 mol mol<sup>-1</sup>. ER<sub>soil</sub> also showed seasonal variations from about 1.11 mol mol<sup>-1</sup> (ARQ = 0.9 mol mol<sup>-1</sup>) during late spring and summer to about 1.43 mol mol<sup>-1</sup> (ARQ = 0.7 mol mol<sup>-1</sup>) during winter in a Mediterranean mixed conifer forest (Hicks Pries et al., 2020). Depending on ecosystem type, such as alpine areas, temperate, Mediterranean or tropical forests, and on sampling strategies, such as sampling of soil air or bulk soil, obtained ER<sub>soil</sub> varied between 0.88 to 4.35 mol mol<sup>-1</sup> (ARQ = 0.23 to 1.14 mol mol<sup>-1</sup>) (Angert et al., 2015; Angert et al., 2012; Hilman et al., 2022). These variabilities



580

605



related to seasons, forest types and ecosystem processes highly indicate that site specific ER<sub>stem</sub> and ER<sub>soil</sub> should be used in O<sub>2</sub> flux simulations. A logarithmic relationship between soil ARQ and soil temperature, as found by Hilman et al. (2022), could also be introduced to future soil O<sub>2</sub> flux models.

Due to this high variance between derived ER of these different studies, we conducted a sensitivity analysis by changing  $ER_A$ ,  $ER_{stem}$  or  $ER_{soil}$  by  $\pm$  10% to show how these parameters affected the modeled  $F_{O_2}$ . If  $ER_A$  was increased or decreased by 10%, the modeled  $F_{O_2}$  sum of the entire study period increased or decreased on average by 18.6% correspondingly. Similarly, a change by a 10% increment on  $ER_{soil}$  and  $ER_{stem}$  caused the  $F_{O_2}$  sum to increase or decrease by 6.9% and 1.7%, respectively. These results directly followed Eq. (1) where the derivative with respect to a specific ER gives the corresponding flux in percent. Oxygen fluxes are hence most sensitive to the ER of the largest carbon fluxes.

### 4.2 Temporal and vertical dynamics of O2:CO2 exchange ratios

The O<sub>2</sub>:CO<sub>2</sub> flux exchange ratio (ER<sub>eco</sub>) quantifies the simultaneous canopy-atmosphere gas exchange of the whole ecosystem. We obtained ER<sub>eco</sub> by aggregating simulated O<sub>2</sub> and CO<sub>2</sub> fluxes of all canopy layers and taking the ratio or by deriving the slopes of linear regressions fitted to O<sub>2</sub> and CO<sub>2</sub> fluxes of multiple simulated time steps for each canopy layer (ER<sup>z</sup><sub>eco</sub>). The variations in ER<sub>eco</sub> were evoked by diel and seasonal variations in the flux contributions of gross assimilation and respiration to net ecosystem O<sub>2</sub> and CO<sub>2</sub> exchange. Since assimilation and respiration are two individual processes but they have - corresponding to their respective main drivers, photosynthetic photon flux density and temperature - shifted diel cycles. Furthermore, fluxes of respiration consist of various components originating from various sources (e.g., respiration by heterotrophs, leaves or roots), which can also differ in their diel cycles, in their ER and in their proportions of total O<sub>2</sub> and CO<sub>2</sub> ecosystem fluxes. Further studies should obtain ER independently with respective chamber measurements in order to separate environmental effects (e.g., radiation, temperature, humidity) on each componential O<sub>2</sub> and CO<sub>2</sub> fluxes.

The ER<sub>eco</sub> contains information of the turbulent flux exchange and of the O<sub>2</sub> and CO<sub>2</sub> storage terms between soil surface and measurement height. Our study focused on the whole ecosystem O<sub>2</sub> and CO<sub>2</sub> exchange ratio including storage terms. Annual mean ER<sub>eco</sub> ranged from 1.06 to 1.12 mol mol<sup>-1</sup> within the five years and estimates of ER<sup>z</sup><sub>eco</sub> varied between 0.99 and 1.10 mol mol<sup>-1</sup> with height in the canopy (Fig. 4a). Seibt et al. (2004) reported daytime net turbulent ER (considering turbulent fluxes and not including storage terms) between 1.26 and 1.38 mol mol<sup>-1</sup>, which they derived with a one-box model. Next to the inference in considered time periods: our simulations covered five years' growing seasons of O<sub>2</sub> and CO<sub>2</sub> fluxes between the canopy and the atmosphere, and Seibt et al. (2004) focused on July and August between 1999 and 2001. Moreover, we used different componential ER parameters (Table 1) in our simulations.

Diel  $ER_{An}$  variations reflected separate responses of gross assimilation and leaf dark respiration to temperature. The median and mean of hourly  $ER_{An}$  were 0.99 and 0.96 mol mol<sup>-1</sup>, respectively, for all growing seasons during the study period. However,  $ER_{An}$  showed extreme values during transition hours with low flux magnitudes (Fig. 3b). Ishidoya et al. (2013) found  $ER_{An}$ 



610

620

625

630

635



values close to 1.02 mol mol<sup>-1</sup> via leaf chamber measurements. According to Seibt et al. (2004), ER<sub>An</sub> ranged between 1.04 and 1.20 mol mol<sup>-1</sup> observed also via chamber measurements when flux rates are between 2 and 5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>. A lower flux rate (1.7  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) leads to a higher variability in ER<sub>An</sub> (Seibt et al., 2004). The divergence between our ER<sub>An</sub> estimates (which were close to 1.00 mol mol<sup>-1</sup>) and to the chamber measurements could be caused by the synthesis of varying nitrogen sources that would increase ER<sub>An</sub> (Seibt et al., 2004).

The mole-based O<sub>2</sub>:CO<sub>2</sub> exchange ratio (ER<sub>conc</sub>) is determined by the atmospheric background concentrations of O<sub>2</sub> and CO<sub>2</sub>, by the distributions and dynamics of sources and sinks and the turbulence inside the canopy. ER<sub>conc</sub> is usually derived based on the slopes of Deming regressions of observed O2 and CO2 mole fractions accounting for uncertainty in both variables (Battle et al., 2019; Ishidoya et al., 2020). Our results of ERconc and ERconc confirmed that ERconc cannot represent simultaneous O2 and CO<sub>2</sub> exchange as ER<sub>eco</sub>, which was also recently found (Faassen et al., 2022). We also estimated ER<sup>z</sup><sub>conc</sub> for each canopy layer representing O<sub>2</sub> and CO<sub>2</sub> mole fractions of air on certain canopy heights. The mean diel ER<sup>z</sup><sub>conc</sub> showed only very small variations ranging from 1.12 to 1.15 mol mol<sup>-1</sup> within the diel course. Battle et al. (2019) observed an average  $ER_{conc} = 1.081$  $\pm$  0.007 mol mol<sup>-1</sup> in a mixed deciduous forest over a six years' period and ER<sub>conc</sub> = 1.03  $\pm$  0.01 mol mol<sup>-1</sup> on two summer days in July 2007. Their ER<sub>conc</sub> measurements also showed temporal variations on a 6-hour basis between 0.85 and 1.15 mol mol<sup>-1</sup>. Seibt et al. (2004) measured and modelled ER<sub>conc</sub> during day- and nighttime at several sites and obtained values varying between 1.04 and 1.19 mol mol<sup>-1</sup>. Ishidoya et al. (2013) observed daily average  $ER_{conc} = 0.94 \pm 0.01$  mol mol<sup>-1</sup>, with daytime  $ER_{conc} = 0.87 \pm 0.02 \text{ mol mol}^{-1}$  and nighttime  $ER_{conc} = 1.03 \pm 0.02 \text{ mol mol}^{-1}$ . Ishidoya et al. (2013) also built a one-box canopy  $O_2/CO_2$  budget model applying the same parameter values  $ER_A = 1.00$  mol mol<sup>-1</sup> and  $ER_R = 1.10$  mol mol<sup>-1</sup> as our study. Their observed daytime  $ER_{conc} = 0.87$  mol mol<sup>-1</sup> agrees with their modeled net turbulent ER = 0.89 mol mol<sup>-1</sup>. Our modeled  $ER_{conc}^z$ estimates showed a lower temporal variability within the mean diel course than in the cited studies. This is to a large part due to background O<sub>2</sub> that was fixed to 1.15 of atmospheric CO<sub>2</sub> concentrations (Table 2). One would expect, though, that this ratio might be lower during summer and most probably has also a diel cycle. Future work could include continuous measurements at the site resulting in a varying background value and potentially larger diel and seasonal variability. It is also possible that mixing in CANVEG was too strong so that modeled ER<sup>z</sup><sub>conc</sub> was too influenced by the background value. This could be improved in future by comparing modelled temperature, H<sub>2</sub>O and CO<sub>2</sub> concentrations with measured concentrations in different canopy heights, which become standard measurements at eddy covariance sites on forests now.

# 4.3 Estimation of ecosystem $O_2$ fluxes and applications

Eddy covariance measurements, as typically conducted for CO<sub>2</sub> fluxes, are currently not possible for O<sub>2</sub> fluxes, because no sufficiently fast and precise O<sub>2</sub> analyzer is commercially available, yet (except for a self-made, non-commercial vacuum ultraviolet (VUV) absorption analyzer developed by Stephens et al. (2003)). Requirements would be a precision of below 1 ppm against a background concentration of 210 000 ppm on a high, turbulence resolving measurement frequency (Keeling and Manning, 2014). However, vertical profiles of air temperature, water vapor, CO<sub>2</sub> and O<sub>2</sub> mole fractions can already be obtained with high precision. With our modeled vertical profiles, we determined O<sub>2</sub> fluxes based on the flux-gradient approach, testing



655

660

665

670



640 various profile set-ups and the necessary instrument precision for O<sub>2</sub> concentration measurements (Fig. 5 and 6). By choosing various heights to derive the mole fraction gradients, we could confirm that the selected heights should be both above the canopy. This guarantees that the profiles are differentiable as there are no sources or sinks between sampling heights, and that the eddy diffusivity of O<sub>2</sub> is the same as of the other corresponding scalars (Baldocchi et al., 1988). In addition, the mole fraction difference between the two heights should be as large as possible to decrease the uncertainty in O<sub>2</sub> flux estimates. 645 Here, we selected amongst others heights at z/ht = 1.05 and = 2 to obtain large gradients. Faassen et al. (2022) applied the fluxgradient method to estimate O<sub>2</sub> fluxes in a boreal forest with a canopy height = 18 m. Their measurements were conducted between 23 m and 125 m for the vertical scalar gradient, reaching about seven times the canopy height. Such a large distance between measurement heights in a profile system is usually only feasible for cropland, grassland or peatland study sites with low vegetation. For high vegetation, such as forest sites, a tall tower is needed (as in Faassen et al., 2022). However, by 650 choosing two measurement heights with a large distance (e.g., multiple tens of meters), the difference between the footprint extensions of each height becomes also large, potentially resulting in erroneous flux estimates. If, for instance, the vertical CO2 gradient could be doubled, the error in FO2 fluxes caused by the measurement error of O2 gradients would be reduced by 50% according to Eq. (6).

The median differences between  $F_{O_2}$  derived with the flux-gradient method and modeled  $F_{O_2}$  (diff $_{F_{O_2}}$ ) were generally < 5.5  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, independent of which scalar concentrations and fluxes were used for the latter. However, diff $_{F_{O_2},V}$  and diff $_{F_{O_2},V}$  deviated more from zero during daytime, indicating that  $F_{O_2}$  estimates based on LE and water vapor profile and H and temperature profile would lead to underestimation or overestimation, respectively, during daytime by the flux-gradient method (Fig. 6). The  $F_{O_2}$  estimates during nighttime were more uncertain based on temperature and water vapor, as indicated by large standard deviations. These "outliers" occurred due to too small vertical gradients, caused by a small activity of sources and sinks and/or of insufficient turbulence. The flux-gradient method based on  $CO_2$  concentrations and fluxes yielded  $F_{O_2}$  estimates in better agreement with modeled  $F_{O_2}$ . But this was probably because the  $O_2$  sources and sinks were highly correlated to  $CO_2$  processes due to the  $O_2$  modeling set-up and constant ER (Eq. (1)). Consequently, it is still recommended to use all the available gas or energy gradients to derive  $O_2$  fluxes with the flux-gradient methods, and then choose the most appropriate method (if this is possible) for various times during the day or year depending on the magnitude of the gradients, the quality of flux measurements and the turbulence. The magnitude of the gradients could additionally be increased for each scalar by choosing scalar-specific measurement heights.

The flux-gradient method has already been used for  $O_2$  flux estimation above a cool temperate forest (Ishidoya et al., 2015), an urban canopy (Ishidoya et al., 2020) and a boreal forest (Faassen et al., 2022). The latter study applied a three-heights flux gradient approach, where they estimated the eddy diffusivity K based on  $CO_2$  and temperature measurements at three heights and applied a vertical  $O_2$  gradient between two heights. We also tested here this three-heights flux gradient approach based on our model simulations, but we assumed that all scalars including  $O_2$  were measured at three heights. Based on our simulations,



675

680

685

690

695



we could not observe an improvement of the flux estimation due to the inclusion of three measurement heights in the flux-gradient method instead of two heights.

Uncertainty on  $O_2$  mole fraction estimates resulted in a median close to zero for the uncertainty  $\sigma_{F_{O_2}}$ . The uncertainty in  $O_2$  concentration estimates were selected randomly following a normal distribution in the model simulations. Our analysis showed that the flux-gradient method has the potential for  $F_{O_2}$  estimation, but we also found that estimated  $F_{O_2}$  could be over- or underestimated by up to  $\pm 5.5$  µmol m<sup>-2</sup> s<sup>-1</sup>. To make the flux-gradient method more precise, the vertical scalar gradient should be as large as possible and flux and profile measurements as precise as possible. To achieve this, on the one hand, a larger distance between measurement heights is needed (not possible over large forest stands, but applicable for crop-, grass-, and peatland), and on the other hand, a higher measurement precision is necessary to reduce the uncertainty in scalar gradient measurements.

 $F_{CO_2}$  obtained with the eddy covariance technique was source partitioned based on simulated  $F_{O_2}$  and the uncertainty in gross assimilation  $(\sigma_{F_A})$  was evaluated. By estimating  $CO_2$  flux components following the same approach based on stable isotopes in  $CO_2$ , Knohl and Buchmann (2005) derived a  $\sigma_{F_A}$  for instantaneous half-hourly data of 6  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> assuming  $CO_2$  and  $^{13}CO_2$  flux uncertainties of 0.5  $\mu mol~m^{-2}~s^{-1}$  and 25%  $\mu mol~m^{-2}~s^{-1}$ , respectively. A  $\sigma_{F_A}$  of around 4  $\mu mol~m^{-2}~s^{-1}$  was found with a higher uncertainty in  $CO_2$  fluxes ( $\sigma_{F_{CO_2}}$ ) = 2  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> by Ogee et al. (2004). Our study obtained comparable results under similar  $\sigma_{F_{CO_2}} = 2.5 \mu mol \ m^{-2} \ s^{-1}$  (Fig. 7b). However, Ogee et al. (2004) found that  $\sigma_{F_A}$  can be reduced to 2  $\mu mol \ m^{-2} \ s^{-1}$  when an isotopic disequilibrium is larger than 0.004 (Fig. 6 in Ogee et al. (2004), page 11). We obtained ER<sub>A</sub> and ER<sub>R</sub> disequilibrium  $(|ER_A - ER_R|)$  of around 0.086 mol mol<sup>-1</sup>, but still could not improve our  $\sigma_{F_A}$  under normal  $\sigma_{F_{CO_2}}$  level (Fig. 7b). This was probably because our uncertainty in  $O_2$  fluxes  $(\sigma_{F_{O_2}})$  was much larger (up to 15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) relative to the ER<sub>A</sub> and ER<sub>R</sub> disequilibrium (0.086 mol mol<sup>-1</sup>) (Ogee et al., 2004). Here, we derived  $\sigma_{F_{0_2}}$  based on the analysis of the flux-gradient application (Fig. 6d). Thus, a higher precision in  $F_{0_2}$  estimates and/or a larger  $ER_A$  and  $ER_R$  disequilibrium  $\geq 0.086$  mol mol <sup>1</sup> is needed. In our simulations, the disequilibrium had low variation due to the fixed ER parameters. A small variation was only introduced by the variable ER<sub>rd</sub> due to leaf temperature. By implementing variable ER parameters (depending on environmental conditions etc.) in the model or obtaining real ER values by measurements could be beneficial. Figure 7c showed that by improving the precision in  $F_{CO_2}$  and  $ER_R$  estimates and not so much in  $F_{O_2}$  also yields a lower uncertainty in estimates of gross assimilation. Faassen et al. (2022) changed ER<sub>eco</sub> by ±0.20 mol mol<sup>-1</sup>, which resulted in a change in partitioned F<sub>A</sub> of 6.7%. However, they compared their partitioned flux components with F<sub>A</sub> and F<sub>R</sub> derived by the eddy covariance method, by assuming that the latter describes the "true" values. They emphasize the importance of a correct estimate for  $ER_{eco}$ . Our evaluation of  $\sigma_{F_A}$  was based on assigned a priori uncertainties to all elements which were independent of the flux values (Ogee et al., 2004). Compared with eddy covariance data, our partitioned FA also differed by about 6% which is comparable to flux partitioning results by Faassen et al. (2022).





### **5 Conclusions**

705

We implemented  $O_2$ : $CO_2$  exchange ratios in the CANVEG multi-layer ecosystem-atmosphere gas exchange model to enable hourly ecosystem  $O_2$ : $CO_2$  exchange ratio ( $ER_{eco}$ ) showed strong diel and seasonal variations. The annual mean  $ER_{eco}$  ranged from 1.06 to 1.12 mol mol<sup>-1</sup> during the five years' study period and depended significantly on our assumptions about the fixed model parameters describing the exchange ratios of the ecosystem components: leaves, stem and soil ( $ER_A$ ,  $ER_{stem}$ ,  $ER_{soil}$ ). We also found that hourly  $ER_{eco}$  and exchange ratios of net assimilation ( $ER_{An}$ ) exhibited high variability during transition periods (e.g., during sunrise and sunset) with low flux magnitudes.

According to our simulations, it is feasible to derive ecosystem O<sub>2</sub> fluxes with the flux-gradient approach based on sensible heat, latent heat and CO<sub>2</sub> turbulent flux measurements under field conditions, when the vertical gradients are measured between 1.05 to 2 times of the canopy height. Specially, the vertical O<sub>2</sub> gradient should be larger than 1 ppm. However, including uncertainty in O<sub>2</sub> mole fraction measurements by 0.7 ppm would increase the uncertainty in O<sub>2</sub> flux estimates up to 15 μmol m<sup>-2</sup> s<sup>-1</sup>. The precision of the source partitioning application was driven by a priori uncertainties of O<sub>2</sub> and CO<sub>2</sub> flux, ER<sub>A</sub> and ER<sub>R</sub> measurements. With an ER<sub>A</sub> and ER<sub>R</sub> disequilibrium (|ER<sub>A</sub> - ER<sub>R</sub>|) of about 0.086 mol mol<sup>-1</sup>, the uncertainty of partitioned gross assimilation can be constrained to < 5 μmol m<sup>-2</sup> s<sup>-1</sup> by narrowing the uncertainty of CO<sub>2</sub> measurements and ER<sub>R</sub> estimates to 2.5 μmol m<sup>-2</sup> s<sup>-1</sup> and 0.05 mol mol<sup>-1</sup>. O<sub>2</sub> fluxes measurements and additional information on the exchange ratios of gross assimilation and ecosystem respiration (ER<sub>A</sub>, ER<sub>R</sub>), for example obtained by chamber measurements, can thus be used as a source partitioning approach for net CO<sub>2</sub> fluxes.

Our model study highlights the potential temporal and spatially variability of O<sub>2</sub>:CO<sub>2</sub> exchange ratios of various ecosystem components and the drivers of O<sub>2</sub> fluxes at a forest study site. Furthermore, we provided guidance to micrometeorological approaches, such as the flux-gradient method, to obtain sufficient O<sub>2</sub> flux estimates depending on measurement set-up and on current instrument precision. We further tested the usage of O<sub>2</sub> flux estimates to source partition net CO<sub>2</sub> fluxes. Further understanding of the relationship between environmental drivers and O<sub>2</sub> fluxes and O<sub>2</sub>:CO<sub>2</sub> exchange ratios, and continuous and long-term observations based on for instance chamber measurements, will greatly help to improve our ecosystem model and our understanding of the carbon cycle in terrestrial ecosystems.

### Acknowledgements

730

This research was funded by the European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement no. 682512–OXYFLUX). We acknowledge support by the Open Access Publication Funds of the Göttingen University. We thank the staff from the Bioclimatology Group of the University of Göttingen, especially Dietmar Fellert, Frank Tiedemann, Edgar Tunsch and Marek Peksa, for their continuous support in data acquisition and instrument maintenance. We thank Penelope A. Pickers, Emmanuel Blei, Julian Deventer and Mattia Bonazza for building O<sub>2</sub> flux instruments and providing atmospheric O<sub>2</sub> and CO<sub>2</sub> background data. We also thank Jelka Braden-Behrens for obtaining leaf area measurements, Ashehad Ali for suggestions on model parameter calibrations, Jan Muhr for interpretations





of ER results, and Rijan Tamrakar and Christian Markwitz for preparing the meteorological and eddy covariance data. Lastly, we also thank the forest manager Ulrich Breitenstein for allowing the experimental setup at the Leinefelde site.

# Appendix A

Table A1. Nomenclature and abbreviations. \*\* Units with m<sup>-2</sup> indicate "per leaf area" (otherwise always "per ground area").

| Abbreviation                    | Unit                                                          | Full name                                                                                                                                                                                                                                         |
|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARQ                             | mol mol <sup>-1</sup>                                         | apparent respiratory quotient                                                                                                                                                                                                                     |
| b                               | $\mu mol~m^{-2}~s^{-1}$ **                                    | intercept of Ball-Berry model after Collatz et al. (1991)                                                                                                                                                                                         |
| CO <sub>2 atm</sub>             | ppm                                                           | atmospheric CO <sub>2</sub> mole fraction                                                                                                                                                                                                         |
| $c_p$                           | $\mathrm{J}\;\mathrm{kg}^{\text{-1}}\;\mathrm{K}^{\text{-1}}$ | specific heat capacity of air                                                                                                                                                                                                                     |
| diff <sub>Fo2</sub> ,x          | $\mu mol \ m^{-2} \ s^{-1}$                                   | difference between O <sub>2</sub> fluxes derived by the flux-gradient method and by model simulations. The subscript "x" represents the considered scalar profile (T: temperature, v: water vapor, c: CO <sub>2</sub> mole fraction). day of year |
| Equ <sub>O2</sub>               | ppm                                                           | difference of O <sub>2</sub> mole fraction from 209750 ppm                                                                                                                                                                                        |
| ER                              | mol mol <sup>-1</sup>                                         | O <sub>2</sub> :CO <sub>2</sub> exchange ratio                                                                                                                                                                                                    |
| $ER_A$                          | mol mol <sup>-1</sup>                                         | O2:CO2 exchange ratio of gross assimilation                                                                                                                                                                                                       |
| $ER^{b}_{A}$                    | mol mol <sup>-1</sup>                                         | a priori mean of ER <sub>A</sub>                                                                                                                                                                                                                  |
| ER <sub>An</sub>                | mol mol <sup>-1</sup>                                         | O2:CO2 exchange ratio of net assimilation                                                                                                                                                                                                         |
| ER <sub>conc</sub>              | mol mol <sup>-1</sup>                                         | atmospheric O2:CO2 mole fraction ratio                                                                                                                                                                                                            |
| ER <sup>z</sup> <sub>conc</sub> | mol mol <sup>-1</sup>                                         | height dependent atmospheric O2:CO2 mole fraction ratio                                                                                                                                                                                           |
| ER <sub>eco</sub>               | mol mol <sup>-1</sup>                                         | ecosystem O <sub>2</sub> :CO <sub>2</sub> exchange ratio                                                                                                                                                                                          |
| $\mathrm{ER^{z}_{eco}}$         | mol mol <sup>-1</sup>                                         | height dependent ecosystem O2:CO2 exchange ratio                                                                                                                                                                                                  |
| $ER_R$                          | mol mol <sup>-1</sup>                                         | O2:CO2 exchange ratio of ecosystem respiration                                                                                                                                                                                                    |
| $ER^{b}_{R}$                    | mol mol <sup>-1</sup>                                         | a priori mean of ER <sub>R</sub>                                                                                                                                                                                                                  |
| $ER_{rd}$                       | mol mol <sup>-1</sup>                                         | O2:CO2 exchange ratio of leaf dark respiration                                                                                                                                                                                                    |
| $ER_{\mathrm{soil}}$            | mol mol <sup>-1</sup>                                         | O <sub>2</sub> :CO <sub>2</sub> exchange ratio of soil respiration                                                                                                                                                                                |
| $ER_{stem}$                     | mol mol <sup>-1</sup>                                         | O <sub>2</sub> :CO <sub>2</sub> exchange ratio of stem respiration                                                                                                                                                                                |
| $F_A$                           | $\mu$ mol m <sup>-2</sup> s <sup>-1</sup>                     | gross assimilation CO2 flux (gross carboxylation minus photorespiration                                                                                                                                                                           |
| $F^b_A$                         | $\mu mol~m^{-2}~s^{-1}$                                       | a priori mean of F <sub>A</sub>                                                                                                                                                                                                                   |





| $F_{CO_2}$                    | $\mu mol~m^{-2}~s^{-1}$   | net ecosystem CO <sub>2</sub> flux                         |
|-------------------------------|---------------------------|------------------------------------------------------------|
| $F_{CO_2}^z$                  | $\mu mol~m^{-2}~s^{-1}$   | height dependent net ecosystem CO2 flux                    |
| $F_{CO_2}^{\sim}$             | $\mu mol~m^{-2}~s^{-1}$   | net turbulent CO <sub>2</sub> flux                         |
| $ m f_{DBH}$                  |                           | fraction of stem diameter to the diameter at breast height |
| ${ m f_{LAI}}$                |                           | fraction of LAI per layer                                  |
| $F_{O_2}$                     | $\mu mol~m^{-2}~s^{-1}$   | net ecosystem O2 flux                                      |
| $F_{O_2}^z$                   | $\mu mol~m^{-2}~s^{-1}$   | height dependent net ecosystem O2 flux                     |
| $F_{O_2}^{\sim}$              | $\mu mol\ m^{-2}\ s^{-1}$ | net turbulent O <sub>2</sub> flux                          |
| $F_R$                         | $\mu mol\ m^{-2}\ s^{-1}$ | gross ecosystem respiration CO2 flux                       |
| $F_R^b$                       | $\mu mol\ m^{-2}\ s^{-1}$ | a priori mean of F <sub>R</sub>                            |
| $F_{rd}$                      | $\mu mol\ m^{-2}\ s^{-1}$ | leaf dark respiration CO2 flux                             |
| $F_{\text{soil}}$             | $\mu mol~m^{-2}~s^{-1}$   | soil respiration CO <sub>2</sub> flux                      |
| $F_{\text{stem}}$             | $\mu mol~m^{-2}~s^{-1}$   | stem respiration CO <sub>2</sub> flux                      |
| Н                             | $W m^{-2}$                | net ecosystem sensible heat flux                           |
| H~                            | $W m^{-2}$                | net turbulent sensible heat flux                           |
| ht                            | m                         | canopy height                                              |
| J                             |                           | cost function                                              |
| $J_{\text{max}25}$            | $\mu mol\ m^{-2}\ s^{-1}$ | maximum electron transport rate at 25 $^{\circ}\text{C}$   |
| $k_{ball}$                    |                           | slope of Ball-Berry model after Collatz et al. (1991)      |
| $K_c$ , $K_o$ , $K_T$ , $K_v$ | $m^2 s^{-1}$              | eddy diffusivity of CO2, O2, heat and water vapor          |
| LAI                           | $m^2 m^{-2}$              | leaf area index                                            |
| LE                            | $W m^{-2}$                | net ecosystem latent heat flux                             |
| LE~                           | W m <sup>-2</sup>         | net turbulent latent heat flux                             |
| leaf <sub>out</sub>           |                           | DOY for the start of leaf growth                           |
| leaf <sub>full</sub>          |                           | DOY for the end of leaf growth                             |
| leaf <sub>fall</sub>          |                           | DOY for the start of leaf fall                             |
| $leaf_{fall\_complete}$       |                           | DOY for the end of leaf fall                               |
| MCMC                          |                           | Markov-Chain Monte Carlo methods                           |
| $O_{2\;atm}$                  | ppm                       | atmospheric O <sub>2</sub> mole fraction                   |





| OR                                  |                                      | oxidative ratio                                                                         |
|-------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|
| $r_1, r_2$                          | . 2 1                                | coefficients for exponential relationship between soil temperature and soil respiration |
| $R_{d25}$                           | μmol m <sup>-2</sup> s <sup>-1</sup> | leaf dark respiration at 25 °C                                                          |
| RMSE                                |                                      | root mean squared error                                                                 |
| T                                   | °C                                   | air temperature                                                                         |
| $T_{leaf}$                          | °C                                   | leaf temperature                                                                        |
| $T_{\mathrm{optjm}}$                | °C                                   | optimum temperature for electron transport                                              |
| $T_{\mathrm{optvc}}$                | °C                                   | optimum temperature for maximum carboxylation                                           |
| $V_{cmax25}$                        | $\mu mol~m^{-2}~s^{-1}$ **           | maximum carboxylation at 25 °C                                                          |
| WAI                                 | $\mathrm{m}^2\mathrm{m}^{-2}$        | wood area index                                                                         |
| z                                   | m                                    | height above the surface                                                                |
| α                                   |                                      | fraction of the photosystem II activity                                                 |
| Δc                                  | ppm                                  | vertical CO <sub>2</sub> mole fraction gradient                                         |
| Δο                                  | ppm                                  | vertical O <sub>2</sub> mole fraction gradient                                          |
| ΔΤ                                  | °C                                   | vertical air temperature gradient                                                       |
| $\Delta { m v}$                     | kg m <sup>-3</sup>                   | vertical water vapor density gradient                                                   |
| $\Delta z$                          | m                                    | vertical height gradient                                                                |
| $\theta_{ m J}$                     |                                      | curvature parameter of light response curve                                             |
| λ                                   | J kg <sup>-1</sup>                   | latent heat of vaporization                                                             |
| $ ho_m$                             | kg m <sup>-3</sup>                   | air mass density                                                                        |
| $\rho_{n}$                          | mol m <sup>-3</sup>                  | air molar density                                                                       |
| $\sigma_{\mathrm{ER}_{\mathbf{A}}}$ | mol mol <sup>-1</sup>                | a posteriori uncertainty of ERA                                                         |
| $\sigma_{ER_A^b}$                   | mol mol <sup>-1</sup>                | a priori uncertainty of ERA                                                             |
| $\sigma_{\mathrm{ER}_{\mathrm{R}}}$ | mol mol <sup>-1</sup>                | a posteriori uncertainty of ERR                                                         |
| $\sigma_{ER_R^b}$                   | mol mol <sup>-1</sup>                | a priori uncertainty of ER <sub>R</sub>                                                 |
| $\sigma_{F_{\mathbf{A}}}$           | $\mu mol~m^{-2}~s^{-1}$              | a posteriori uncertainty of FA                                                          |
| $\sigma_{F_A^b}$                    | $\mu mol \ m^{-2} \ s^{-1}$          | a priori uncertainty of F <sub>A</sub>                                                  |
| $\sigma_{F_{CO_2}}$                 | $\mu mol \ m^{-2} \ s^{-1}$          | uncertainty of CO <sub>2</sub> flux estimates                                           |
| $\sigma_{F_{O_2}}$                  | $\mu mol~m^{-2}~s^{-1}$              | uncertainty of O <sub>2</sub> flux estimates                                            |





| $\sigma_{F_R}$   | μmol m <sup>-2</sup> s <sup>-1</sup> | a posteriori uncertainty of F <sub>R</sub> |
|------------------|--------------------------------------|--------------------------------------------|
| $\sigma_{F_R^b}$ | $\mu mol~m^{-2}~s^{-1}$              | a priori uncertainty of F <sub>R</sub>     |

### 740 References

- Angert, A., Yakir, D., Rodeghiero, M., Preisler, Y., Davidson, E., and Weiner, T.: Using O<sub>2</sub> to study the relationships between soil CO<sub>2</sub> efflux and soil respiration, Biogeosciences, 12, 2089-2099, doi:10.5194/bg-12-2089-2015, 2015.
- Angert, A., Muhr, J., Negron Juarez, R., Alegria Muñoz, W., Kraemer, G., Ramirez Santillan, J., Barkan, E., Mazeh, S., Chambers, J. Q., and Trumbore, S. E.: Internal respiration of Amazon tree stems greatly exceeds external CO<sub>2</sub> efflux, Biogeosciences, 9, 4979-4991, doi:10.5194/bg-9-4979-2012, 2012.
  - Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O., and Schulze, E. D.: Forest and agricultural land-use-dependent CO<sub>2</sub> exchange in Thuringia, Germany, Global Change Biol, 10, 2005-2019, doi:10.1111/j.1365-2486.2004.00863.x, 2004.
- Baldocchi, D.: A Lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy, Bound-Lay Meteorol, 61, 113-144, doi:10.1007/BF02033998, 1992.
- Baldocchi, D.: Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought, Plant Cell Environ, 20, 1108-1122, doi:10.1046/j.1365-3040.1997.d01-147.x, 1997.
  - Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P.,
- Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B Am Meteorol Soc, 82, 2415-2434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
  - Baldocchi, D. D. and Wilson, K. B.: Modeling CO<sub>2</sub> and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales, Ecol Model, 142, 155-184, doi:10.1016/S0304-3800(01)00287-3, 2001.
- Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods, Ecology, 69, 1331-1340, doi:10.2307/1941631, 1988.
  - Baldocchi, D. D., Wilson, K. B., and Gu, L. H.: How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-an assessment with the biophysical model CANOAK, Tree Physiology, 22, 1065-1077, doi:10.1093/treephys/22.15-16.1065, 2002.
- Baldocchi, D. D., Fuentes, J. D., Bowling, D. R., Turnipseed, A. A., and Monson, R. K.: Scaling isoprene fluxes from leaves to canopies: Test cases over a boreal aspen and a mixed species temperate forest, J Appl Meteorol, 38, 885-898, doi:10.1175/1520-0450(1999)038<0885:SIFFLT>2.0.CO;2, 1999.
  - Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T., Conway, T., and Francey, R. J.: Global carbon sinks and their variability inferred from atmospheric O-2 and delta C-13, Science, 287, 2467-2470, 2000.
- Battle, M. O., Munger, J. W., Conley, M., Sofen, E., Perry, R., Hart, R., Davis, Z., Scheckman, J., Woogerd, J., Graeter, K., Seekins, S., David, S., and Carpenter, J.: Atmospheric measurements of the terrestrial O<sub>2</sub>: CO<sub>2</sub> exchange ratio of a midlatitude forest, Atmos Chem Phys, 19, 8687-8701, doi:10.5194/egusphere-egu22-4213, 2019.
  - Bowling, D. R., Tans, P. P., and Monson, R. K.: Partitioning net ecosystem carbon exchange with isotopic fluxes of CO<sub>2</sub>, Global Change Biol, 7, 127-145, doi:10.1046/j.1365-2486.2001.00400.x, 2001.
- Braden-Behrens, J., Markwitz, C., and Knohl, A.: Eddy covariance measurements of the dual-isotope composition of evapotranspiration, Agricultural and Forest Meteorology, 269, 203-219, doi:10.1016/j.agrformet.2019.01.035, 2019.
  - Braden-Behrens, J., Yan, Y., and Knohl, A.: A new instrument for stable isotope measurements of <sup>13</sup>C and <sup>18</sup>O in CO<sub>2</sub> instrument performance and ecological application of the Delta Ray IRIS analyzer, Atmos. Meas. Tech., 10, 4537-4560, 10.5194/amt-10-4537-2017, 2017.
- Busch, F. A., Sage, R. F., and Farquhar, G. D.: Plants increase CO<sub>2</sub> uptake by assimilating nitrogen via the photorespiratory pathway, Nature Plants, 4, 46-54, doi:10.1038/s41477-017-0065-x, 2018.
  - Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration a model that includes a laminar boundary-layer, Agricultural and Forest Meteorology, 54, 107-136, doi:10.1016/0168-1923(91)90002-8, 1991.





- Faassen, K. A. P., Nguyen, L. N. T., Broekema, E. R., Kers, B. A. M., Mammarella, I., Vesala, T., Pickers, P. A., Manning, A. C., Vilà-Guerau de Arellano, J., Meijer, H. A. J., Peters, W., and Luijkx, I. T.: Diurnal variability of atmospheric O<sub>2</sub>, CO<sub>2</sub> and their exchange ratio above a boreal forest in southern Finland, Atmos. Chem. Phys. Discuss., 2022, 1-33, 10.5194/acp-2022-504, 2022.

  Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A Biochemical-Model of Photosynthetic CO<sub>2</sub> Assimilation in Leaves of C<sub>3</sub> Species, Planta, 149, 78-90, doi:10.1007/BF00386231, 1980.
- Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Global Change Biol, 2, 169-182, doi:10.1111/j.1365-2486.1996.tb00070.x, 1996. Hanson, P. J., Amthor, J. S., Wullschleger, S. D., Wilson, K., Grant, R. F., Hartley, A., Hui, D., Hunt, J., E Raymond, Johnson, D. W., and Kimball, J. S.: Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data, Ecological Monographs, 74, 443-489, doi:10.1890/03-4049, 2004.
- Helm, J., Hartmann, H., Göbel, M., Hilman, B., Herrera Ramírez, D., and Muhr, J.: Low-cost chamber design for simultaneous CO<sub>2</sub> and O<sub>2</sub> flux measurements between tree stems and the atmosphere, Tree Physiology, 41, 1767-1780, doi:10.1093/treephys/tpab022, 2021. Hicks Pries, C., Angert, A., Castanha, C., Hilman, B., and Torn, M. S.: Using respiration quotients to track changing sources of soil respiration seasonally and with experimental warming, Biogeosciences, 17, 3045-3055, doi:10.5194/bg-17-3045-2020, 2020.
- Hilman, B. and Angert, A.: Measuring the ratio of CO<sub>2</sub> efflux to O<sub>2</sub> influx in tree stem respiration, Tree Physiology, 36, 1422-1431, doi:10.1093/treephys/tpw057, 2016.
  - Hilman, B., Weiner, T., Haran, T., Masiello, C. A., Gao, X., and Angert, A.: The Apparent Respiratory Quotient of Soils and Tree Stems and the Processes That Control It, Journal of Geophysical Research: Biogeosciences, 127, e2021JG006676, doi:10.1029/2021JG006676, 2022.
- Hilman, B., Muhr, J., Trumbore, S. E., Kunert, N., Carbone, M. S., Yuval, P., Wright, S. J., Moreno, G., Pérez-Priego, O., Migliavacca, M., Carrara, A., Grünzweig, J. M., Osem, Y., Weiner, T., and Angert, A.: Comparison of CO<sub>2</sub> and O<sub>2</sub> fluxes demonstrate retention of respired CO<sub>2</sub> in tree stems from a range of tree species, Biogeosciences, 16, 177-191, doi:10.5194/bg-16-177-2019, 2019.

  Hockaday, W. C., Gallagher, M. E., Masiello, C. A., Baldock, J. A., Iversen, C. M., and Norby, R. J.: Forest soil carbon oxidation state and

oxidative ratio responses to elevated CO<sub>2</sub>, J Geophys Res-Biogeo, 120, 1797-1811, doi:10.1002/2015JG003010, 2015.

- Ishidoya, S., Murayama, S., Kondo, H., Saigusa, N., Kishimoto-Mo, A. W., and Yamamoto, S.: Observation of O<sub>2</sub>: CO<sub>2</sub> exchange ratio for net turbulent fluxes and its application to forest carbon cycles, Ecol Res, 30, 225-234, doi:10.1007/s11284-014-1241-3, 2015.

  Ishidoya, S., Morimoto, S., Aoki, S., Taguchi, S., Goto, D., Murayama, S., and Nakazawa, T.: Oceanic and terrestrial biospheric CO2 uptake
- estimated from atmospheric potential oxygen observed at Ny-Alesund, Svalbard, and Syowa, Antarctica, Tellus B, 64, 2012.
  Ishidoya, S., Sugawara, H., Terao, Y., Kaneyasu, N., Aoki, N., Tsuboi, K., and Kondo, H.: O<sub>2</sub>: CO<sub>2</sub> exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO<sub>2</sub> emissions, Atmos Chem Phys, 20, 5293-5308, doi:10.5194/acp-20-5293-2020, 2020.
- Ishidoya, S., Murayama, S., Takamura, C., Kondo, H., Saigusa, N., Goto, D., Morimoto, S., Aoki, N., Aoki, S., and Nakazawa, T.: O<sub>2</sub>:CO<sub>2</sub> exchange ratios observed in a cool temperate deciduous forest ecosystem of central Japan, Tellus B, 65, doi:10.3402/tellusb.v65i0.21120, 2013
- Juergensen, J., Muhr, J., and Knohl, A.: Variations of the Oxidative Ratio across Ecosystem Components and Seasons in a Managed Temperate Beech Forest (Leinefelde, Germany), Forests, 12, 2021.
- Keeling, R. F. and Manning, A. C.: 5.15 Studies of Recent Changes in Atmospheric O<sub>2</sub> Content, in: Treatise on Geochemistry (Second Edition), edited by: Holland, H. D., and Turekian, K. K., Elsevier, Oxford, 385-404, doi:10.1016/B978-0-08-095975-7.00420-4, 2014. Keeling, R. F. and Shertz, S. R.: Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle, Nature, 358, 723-727, doi:10.1038/358723a0, 1992.
- Knohl, A. and Baldocchi, D. D.: Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem, J Geophys Res-Biogeo, 113, doi:10.1029/2007JG000663, 2008.
  - Knohl, A. and Buchmann, N.: Partitioning the net  $CO_2$  flux of a deciduous forest into respiration and assimilation using stable carbon isotopes, Global Biogeochem Cy, 19, doi:10.1029/2004GB002301, 2005.
- Lenschow, D. H., Mann, J., and Kristensen, L.: How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics, J Atmos Ocean Tech, 11, 661-673, doi:10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2, 1994.
- Manning, A. C. and Keeling, R. F.: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, Tellus B, 58, 95-116, doi:10.1111/j.1600-0889.2006.00175.x, 2006.
  - Meredith, L., Commane, R., Munger, J., Dunn, A., Tang, J., Wofsy, S., and Prinn, R.: Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods, Atmos Meas Tech, 7, 2787-2805, doi:10.5194/amt-7-2787-2014, 2014.
- Ogee, J., Peylin, P., Cuntz, M., Bariac, T., Brunet, Y., Berbigier, P., Richard, P., and Ciais, P.: Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with <sup>13</sup>CO<sub>2</sub> and CO<sup>18</sup>O data, Global Biogeochem Cy, 18, doi:10.1029/2003GB002166, 2004.
  - Oikawa, P. Y., Sturtevant, C., Knox, S. H., Verfaillie, J., Huang, Y. W., and Baldocchi, D. D.: Revisiting the partitioning of net ecosystem exchange of CO<sub>2</sub> into photosynthesis and respiration with simultaneous flux measurements of <sup>13</sup>CO<sub>2</sub> and CO<sub>2</sub>, soil respiration and a
- biophysical model, CANVEG, Agricultural and Forest Meteorology, 234-235, 149-163, doi:10.1016/j.agrformet.2016.12.016, 2017.





- Pickers, P. A., Manning, A. C., Sturges, W. T., Le Quéré, C., Mikaloff Fletcher, S. E., Wilson, P. A., and Etchells, A. J.: In situ measurements of atmospheric O<sub>2</sub> and CO<sub>2</sub> reveal an unexpected O<sub>2</sub> signal over the tropical Atlantic Ocean, Global Biogeochem Cy, 31, 1289-1305, doi:10.1002/2017GB005631, 2017.
- Randerson, J., Masiello, C., Still, C., Rahn, T., Poorter, H., and Field, C.: Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O<sub>2</sub>, Global Change Biol, 12, 260-271, doi:10.1111/j.1365-2486.2006.01099.x, 2006.

  Raupach, M. R.: Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies,
  - Agricultural and Forest Meteorology, 47, 85-108, doi:10.1016/0168-1923(89)90089-0, 1989.

    Rebmann, C., Aubinet, M., Schmid, H., Arriga, N., Aurela, M., Burba, G., Clement, R., De Ligne, A., Fratini, G., Gielen, B., Grace, J., Graf,
- A., Gross, P., Haapanala, S., Herbst, M., Hortnagl, L., Ibrom, A., Joly, L., Kljun, N., Kolle, O., Kowalski, A., Lindroth, A., Loustau, D., Mammarella, I., Mauder, M., Merbold, L., Metzger, S., Molder, M., Montagnani, L., Papale, D., Pavelka, M., Peichl, M., Roland, M., Serrano-Ortiz, P., Siebicke, L., Steinbrecher, R., Tuovinen, J. P., Vesala, T., Wohlfahrt, G., and Franz, D.: ICOS eddy covariance flux-station site setup: a review, Int Agrophys, 32, 471-+, doi:10.1515/intag-2017-0044, 2018.

  Schober, R.: Ausbauchungsreihen, Grundner, F., Schwappach, A, 1952.
- Seibt, U., Brand, W. A., Heimann, M., Lloyd, J., Severinghaus, J. P., and Wingate, L.: Observations of O<sub>2</sub>:CO<sub>2</sub> exchange ratios during ecosystem gas exchange, Global Biogeochem Cy, 18, doi:10.1029/2004GB002242, 2004.
- Severinghaus, J.: Studies of the Terrestrial O2 and Carbon Cycles in Sand Dune Gases and in Biosphere 2, doi:10.2172/477735, 1995. Stephens, B. B., Keeling, R. F., and Paplawsky, W. J.: Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique, Tellus B: Chemical and Physical Meteorology, 55, 857-878, doi:10.3402/tellusb.v55i4.16386, 2003.
- Tamrakar, R., Rayment, M. B., Moyano, F., Mund, M., and Knohl, A.: Implications of structural diversity for seasonal and annual carbon dioxide fluxes in two temperate deciduous forests, Agricultural and Forest Meteorology, 263, 465-476, doi:10.1016/j.agrformet.2018.08.027, 2018
  - Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, doi:10.1137/1.9780898717921, 2004.
- Tcherkez, G., Nogues, S., Bleton, J., Cornic, G., Badeck, F., and Ghashghaie, J.: Metabolic origin of carbon isotope composition of leaf dark-respired CO<sub>2</sub> in French bean, Plant Physiol, 131, 237-244, doi:10.1104/pp.013078, 2003.
  - Tohjima, Y., Mukai, H., Machida, T., Hoshina, Y., and Nakaoka, S. I.: Global carbon budgets estimated from atmospheric O-2/N-2 and CO2 observations in the western Pacific region over a 15-year period, Atmos Chem Phys, 19, 9269-9285, 2019.
  - Van Oijen, M., Rougier, J., and Smith, R.: Bayesian calibration of process-based forest models: bridging the gap between models and data, Tree Physiology, 25, 915-927, doi:10.1093/treephys/25.7.915, 2005.
- Wehr, R. and Saleska, S. R.: An improved isotopic method for partitioning net ecosystem-atmosphere CO<sub>2</sub> exchange, Agricultural and Forest Meteorology, 214, 515-531, doi:10.1016/j.agrformet.2015.09.009, 2015.
  - Wilson, J.: Turbulent transport within the plant canopy, 1989.
  - Worrall, F., Clay, G. D., Masiello, C. A., and Mynheer, G.: Estimating the oxidative ratio of the global terrestrial biosphere carbon, Biogeochemistry, 115, 23-32, doi:10.1007/s10533-013-9877-6, 2013.
- Yakir, D. and Wang, X. F.: Fluxes of CO<sub>2</sub> and water between terrestrial vegetation and the atmosphere estimated from isotope measurements, Nature, 380, 515-517, doi:10.1038/380515a0, 1996.
  - Zobitz, J. M., Burns, S. P., Ogee, J., Reichstein, M., and Bowling, R.: Partitioning net ecosystem exchange of CO<sub>2</sub>: A comparison of a Bayesian/isotope approach to environmental regression methods, J Geophys Res-Biogeo, 112, doi:10.1029/2006JG000282, 2007.