Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary

Gesa Schulz^{1,2}, Tina Sanders², Yoana G. Voynova², Hermann W. Bange³, and Kirstin Dähnke²

7 ²Institute of Carbon Cycles, Helmholtz Centre Hereon, Geesthacht, 21502, Germany

- ³Marine Biogeochemistry Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105,
 Germany
- 9 Germany
- 10 Correspondence to: Gesa Schulz (Gesa.Schulz@hereon.de)

11 Abstract

12 Nitrous oxide (N₂O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. 13 Estuaries can be sources of N₂O, but their emission estimates have significant uncertainties due to limited data 14 availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved 15 N₂O and its emissions along the Elbe Estuary (Germany), a well-mixed temperate estuary with high nutrient 16 loading from agriculture. During nine research cruises performed between 2017 and 2022, we measured dissolved 17 N₂O concentrations, as well as dissolved nutrients and oxygen concentrations along the estuary and calculated 18 N₂O saturations, flux densities and emissions. We found that the estuary was a year-round source of N₂O, with 19 highest emissions in winter when dissolved inorganic nitrogen (DIN) loads and wind speeds are high. However, 20 in spring and summer, N₂O saturations and emissions did not decrease alongside lower riverine nitrogen loads, 21 suggesting that estuarine in-situ N_2O production is an important source of N_2O . We identified two hot-spots areas 22 of N₂O production: the Port of Hamburg, a major port region, and the mesohaline estuary near the maximum 23 turbidity zone (MTZ). N₂O production was enhanced by warmer temperatures and was fueled by decomposition 24 of riverine organic matter in the Hamburg Port and by marine organic matter in the MTZ. A comparison with 25 previous measurements in the Elbe Estuary revealed that N₂O saturation did not decrease alongside with the 26 decrease in DIN concentrations after a significant improvement of water quality in the 1990s that allowed for 27 phytoplankton growth to reestablish in the river and estuary. Theis effect-overarching control of phytoplankton 28 growth and the overarching control of on organic matter on and, subsequently, on N₂O production, highlights the

29 \underline{fact} that eutrophication and <u>elevated</u> agricultural nutrient input can increase N₂O emissions in estuaries.

30 1 Introduction

- Nitrous oxide (N₂O) is an important atmospheric trace gas that contributes to global warming and stratospheric
 ozone depletion (WMO, 2018; IPCC, 2021). Estuaries are important regions of nitrogen turnover (Middelburg and
 Nieuwenhuize, 2000; Crossland et al., 2005; Bouwman et al., 2013), and a potential source of N₂O (Bange, 2006;
 Barnes and Upstill-Goddard, 2011; Murray et al., 2015). Together with coastal wetlands, estuaries contribute
- between 0.17 and 0.95 Tg N₂O-N of the annual global budget of 16.9 Tg N₂O-N (Murray et al., 2015; Tian et al.,
- 36 2020). N₂O emission estimates from estuaries are associated with significant uncertainties due to limited data
- availability and high spatiotemporal variability (e.g. Bange, 2006; Barnes and Upstill-Goddard, 2011; Maavara et
- al., 2019), presenting a big challenge for the global N_2O emission estimates.

 ¹Institute of Geology, Center for Earth System Research and Sustainability (CEN), University Hamburg, Hamburg,
 20146, Germany

- 39 Nitrification and denitrification are the most important N₂O production pathways in estuaries. Under oxic
- 40 conditions, N₂O is produced as a side product during the first step of nitrification, the oxidation of ammonia to
- 41 nitrite (e.g. Wrage et al., 2001; Barnes and Upstill-Goddard, 2011). At low oxygen (but not anoxic) conditions,
- 42 nitrifier-denitrification may occur, during which nitrifiers reduce nitrite to N₂O (e.g. Wrage et al., 2001; Bange,
- 43 2008). Denitrification takes place under anoxic conditions and mostly acts as a source of N_2O , but can also reduce
- 44 N_2O to N_2 (e.g. Knowles, 1982; Bange, 2008). In estuaries, denitrification can occur in anoxic sediments, the
- 45 anoxic water column or anoxic microsites of particles, whereas nitrification and nitrifier-denitrification take place
- 46 in the oxygenated water column (Beaulieu et al., 2010; Murray et al., 2015; Ji et al., 2018; Tang et al., 2022).
- $47 \qquad \text{In estuaries, the most important factors controlling N_2O emissions are considered to be oxygen availability and} \\$
- dissolved inorganic nitrogen loads (Murray et al., 2015). Since N₂O measurements in estuaries are scarce, global
 N₂O emissions can be estimated by using emission factors and considering dissolved inorganic nitrogen (DIN) or
- 49 N₂O emissions can be estimated by using emission factors and considering dissolved inorganic nitrogen (DIN) or

50 total nitrogen (TN) loads, where it is assumed that higher <u>nitrogen</u> loads lead to higher N_2O emissions (Kroeze et

- al., 2005, 2010; Ivens et al., 2011; Hu et al., 2016). However, several studies instead reported no obvious
- $\label{eq:second} 52 \qquad \mbox{relationship between nitrogen concentrations and N_2O emissions (Borges et al., 2015; Marzadri et al., 2017; Wells \end{tabular}$
- et al., 2018), highlighting the need to understand the causes for variability <u>inof</u> the relationship between nitrogen
 loads and N₂O emissions (Wells et al., 2018).
- 55 The Elbe Estuary is a heavily managed estuary with high agricultural nitrogen inputs that hosts the third largest
- 56 port in Europe (e.g. Radach and Pätsch, 2007; Bergemann and Gaumert, 2008; Pätsch et al., 2010; Quiel et al.,
- 57 2011). It has been identified as a N_2O source, with a hotspot of N_2O production in the Port of Hamburg (Hanke
- and Knauth, 1990; Brase et al., 2017). We aimed to investigate drivers for N_2O emissions along the estuary,
- 59 specifically the N₂O and DIN ratio (N₂O:DIN). To do so, we (1) looked for potential long-term changes in N₂O
- 60 saturations, (2) investigated potential production hotspots, as well as the spatial and temporal distribution of N₂O
- 61 saturations, and (3) used the N₂O:DIN ratio for a comparison with other estuaries that receive similar high
- 62 agricultural nutrient inputs.

63 2 Methods

64 **2.1** Study site

- The Elbe River stretches over 1094 km from the Giant Mountains (Czech Republic) to the North Sea (Cuxhaven, Germany). The catchment of the Elbe River is 140 268 km² (Boehlich and Strotmann, 2019), with 74 % urban and agricultural land-use (Johannsen et al., 2008). The Elbe is the second largest German river discharging into the North Sea, as well as the largest source of dissolved nitrogen for the German Bright, which is heavily affected by
- 69 eutrophication (van Beusekom et al., 2019).
- 70 The Elbe Estuary is a well-mixed temperate estuary, which begins at stream kilometer 586 at a weir in Geesthacht
- 71 and stretches through the Port of Hamburg, entering the North Sea near Cuxhaven at stream kilometer 727 (Fig.
- 1). Estuaries are commonly structured along their salinity gradient into an oligonaline (salinity: 0.5 5.0), a
- mesohaline (salinity: 5.0 18.0) and <u>a polyhaline (salinity > 18.0) region</u> (US EPA, 2006). The Elbe Estuary has
- ⁷⁴ a length of 142 km (Boehlich and Strotmann, 2019) and a mean annual discharge of 712 m³ s⁻¹ (measured at gauge
- 75 Neu Darchau at stream kilometer 536; HPA and Freie und Hansestadt Hamburg, 2017). The average water
- residence time is \sim 32 days, ranging from \sim 72 days during times of low discharge (300 m³ s⁻¹) to \sim 10 days during
- times of high discharge (2000 m³ s⁻¹; Boehlich and Strotmann, 2008). The <u>Elbe E</u>estuary has an annual nitrogen

- 10ad of 84 Gg-N (FGG Elbe, 2018), and Ppoint sources along the estuary provide only a small part of the total
- 79 nitrogen input to the Elbe Estuary (Hofmann et al., 2005; IKSE, 2018). Oxygen concentrations in the Elbe Estuary
- 80 vary seasonally, with oxygen depletion during the summer months and oxygen minimum zones regularly
- $81 \qquad \text{experiencing concentrations below 94 } \mu \text{mol } O_2 \ L^{-1} \ (\text{Schroeder}, 1997; \text{Gaumert and Bergemann}, 2007; \text{Schöl et al.}, 1997;$
- 82 2014).
- 83 The Elbe Estuary is dredged year-round to maintain a water depth of 15 20 m and to grant access for large
- 84 container ships to the Port of Hamburg (Boehlich and Strotmann, 2019; Hein et al., 2021). Construction work for
- 85 further deepening of the fairway was carried out during our study period, from 2019 to early 2022. Upstream of
- 86 the Port of Hamburg water depth is less than 10 m (Hein et al., 2021).

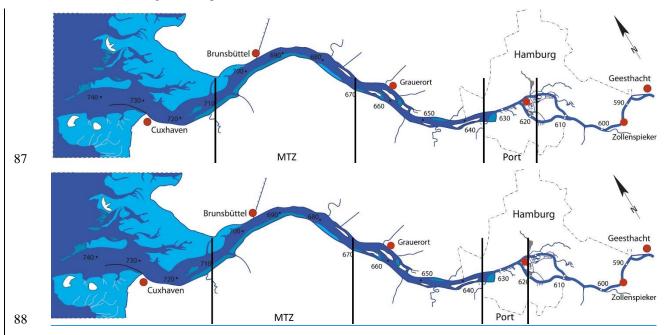


Figure 1: Map of the Elbe Estuary sampled during our research cruises with stream kilometers (graphic courtesy of
 FGG Elbe, modified after (Amann et al., 2012)). The light blue color indicates Wadden Sea areas that are exposed at
 low tide. The vertical black lines indicate the Hamburg Port region and a typical position for the maximum turbidity
 zone (MTZ, Bergemann, 2004).

93 2.2 Transect sampling and measurements

We performed nine sampling campaigns along the estuary with the research vessel *Ludwig Prandtl* (Table 1). Most cruises took place during spring and summer, with water temperatures > 10 °C (May to September)_{2.7} \pm Two cruises were conducted- during winter (early March, water temperature < 6 °C; Table 1). Transects started in the German Bright, and continued along the salinity gradient, through the Port of Hamburg to Oortkaten (stream kilometer 609). To ensure comparable current and mixing conditions, transect sampling was always done after high-tide, with the ship travelling upstream against the tide. For comparison to previous measurements, we included summer data from a previous study in 2015 (Brase et al., 2017). 101Table 1: Campaign dates with the sampled Elbe Estuary sections shown via stream kilometers, average discharge102during each cruise measured at the Neu Darchau gauging station, averages and standard deviations for water103temperature, wind speed at 10 m height, dissolved inorganic nitrogen (DIN) concentrations for each campaign.

Campaign Dates	Stream	Water	Wind speed	Average	Average
	kilometers	temperature	10 m	discharge	DIN load
	(km)	(°C)	(m s ⁻¹)	(m ³ s ⁻¹)	concentrations
					$(\mu mol L^{-1})$
2829.04.2015	627 - 741	12.3 ± 1.0	7.4 ± 2.3	595	191.0 ± 45.0
0204.06.2015	609 - 739	17.4 ± 1.7	5.0 ± 1.3	276	105.9 ± 36.2
0102.08.2017	621 - 749	20.9 ± 0.7	3.6 ± 1.5	607	79.2 + 30.2
0405.06.2019	610 - 750	18.7 ± 2.2	4.0 ± 1.7	423	108.3 ± 35.9
30.0701.08.2019	609 - 752	22.6 ± 1.0	4.2 ± 1.4	171	60.8 ± 38.6
1920.06.2020	609 - 747	19.8 ± 1.4	5.8 ± 1.2	331	74.6 ± 33.8
0911.09.2020	607 - 745	18.9 ± 0.6	5.9 ± 2.8	305	93.1 ± 32.7
1012.03.2021	609 - 748	5.4 ± 0.5	9.3 ± 2.6	862	324.4 ± 83.8
0405.05.2021	610 - 751	10.5 ± 0.8	11.0 ± 3.1	411	85.7 ± 36.6
2728.07.2021	621 - 751	22.2 ± 0.7	5.2 ± 1.3	721	139.8 ± 58.4
0102.03.2022	610 - 752	5.6 ± 0.2	2.9 ± 1.0	1282	238.0 ± 74.7

104 An onboard membrane pump continuously provided water at 1.2 m depth to an on-line in-situ FerryBox system

and to an equilibrator used for the measurements of N_2O dry mole fraction (Section 2.4). The FerryBox system continuously measured water temperature, salinity, oxygen concentrations, pH and turbidity. We corrected the salinity corrected optode measurements using comparisons to Winkler titrations of <u>distinct-discrete</u> samples. See

108 Table S1 for further details.

Discrete water samples (30-40 samples for each cruise) were collected every 20 min from a bypass of the FerryBox
system. For nutrient analysis, water samples were filtered immediately through combusted, pre-weighted GF/F
Filters (4 h, 450 °C), and were frozen in acid washed PE-bottles until analysis. The filters were also stored frozen

- 112 (-20 °C) and subsequently analyzed for suspended particulate matter (SPM), particulate nitrogen (PN), particulate
- 113 carbon (PC) and C/N ratios (Fig. S1).

114 2.3 Nutrient measurements

115 Filtered water samples were measured in triplicates with a continuous flow auto analyzer (AA3, SEAL Analytics)

using standard colorimetric and fluorometric methods (Hansen and Koroleff, 1999) for dissolved nitrate (NO₃⁻),

- 117 nitrite (NO₂⁻) and ammonium (NH₄⁺) concentrations. Detection limits were 0.05 μ mol L⁻¹, 0.05 μ mol L⁻¹, and
- 118 $0.07 \mu \text{mol } \text{L}^{-1}$ for nitrate, nitrite and ammonium, respectively.

119 2.4 Equilibrator based N₂O measurements and calculations

120 Equilibrated dry mole fractions of N₂O were measured by an N₂O analyzer based on off-axis integrated cavity

- 121 output (OA-ICOS) absorption spectroscopy (Model 914-0022, Los Gatos Res. Inc., San Jose, CA, USA), which
- 122 was coupled with a sea-water/gas equilibrator using off-axis cavity output spectroscopy. Brase et al. (2017)
- described the set-up and instrument precision in detail. Twice a day, two standard gas mixtures of N₂O in synthetic

- air (500.5 ppb ± 5 % and 321.2 ppb ± 3 %) were analyzed to validate our measurements. No drift was detected
 during our cruises.
- We calculated the dissolved N_2O concentrations in water with the Bunsen solubility function of Weiss and Price (1980), using 1 min averages of the measured N_2O dry mole fraction (ppb). Temperature differences between the
- 12. (1966), using I min averages of the measured 1720 ary more nacion (ppo). Temperature anterenees between the
- 128 sample inlet and the equilibrator were taken into account for the calculation of the final N_2O concentrations Rhee
- 129 et al. (2009). N_2O saturation were-was calculated based on N_2O concentrations in water (N_2O_{cw}) and the
- 130 atmospheric equilibration concentrations (N_2O_{eq} ; Eq. 1). Atmospheric N_2O dry mole fractions were measured
- before and after each transect cruises using an air duct from the deck of the research vessel.

$$s = 100 \times \frac{N_2 O_{cw}}{N_2 O_{eq}} \tag{1}$$

132 The gas transfer coefficients (k) were determined based on Borges et al. (2004, Eq. 3), Nightingale et al. (2000), 133 Wanninkhof (1992) and Clark et al. (1995), using the Schmidt number (Sc) and wind speeds (u_{10}) measured at 134 10 m height (Eq. 2). The Schmidt number was calculated as ratio of the kinematic viscosity in water (Siedler and Peters, 1986) to the N₂O diffusivity in water (Rhee, 2000). Cruise wind speeds (Table 1) varied significantly from 135 136 average annual wind speeds of the two federal states, in which the Elbe Estuary is located (4.7 m s⁻¹, Schleswig-137 Holstein u. Hamburg: Mittlere Windgeschwindigkeit (1986-2015)* | Norddeutscher Klimamonitor, 2023), and 138 also compared to seasonal average wind speeds determined for the stations Cuxhaven and Hamburg (Rosenhagen 139 et al., 2011). Thus, to estimate uncertainties due to varying wind conditions during our cruises, we used 1) the 140 in-situ wind speeds measured on board the R/V Ludwig Prandtl at 10 m height by a MaxiMet GMX600 (Gill 141 Instruments Limited, Hampshire, UK), 2) the average annual wind speed (Schleswig-Holstein u. Hamburg: Mittlere Windgeschwindigkeit (1986-2015)* | Norddeutscher Klimamonitor, 2023), and 3) the seasonally 142 143 averaged wind speeds (Rosenhagen et al., 2011). The flux densities in the main text were calculated using Eq. 3 144 and the wind speeds measured on board the vessel. Results of the other calculations are listed in the supplementary 145 material (Table S2).

$$k = 0.24 \times (4.045 + 2.58u_{10}) \times \left(\frac{Sc}{600}\right)^{-0.5}$$
(2)

$$f = k \times (N_2 O_{cw} - N_2 O_{air}) \tag{3}$$

146 To estimate N_2O emissions, we separated the Elbe Estuary into five regions: limnic (stream kilometer 585 to 615), 147 Port of Hamburg (stream kilometer 615 to 632), oligohaline (stream kilometer 632 to 704), mesohaline (stream 148 kilometer 704 – 727) and polyhaline (stream kilometer 727 to 750), see Table S3. Respective areas were provided 149 by the German Federal Waterways Engineering and Research Institute (BAW, pers. Comm., Oritz, 2023) and 150 Geerts et al. (2012). In order to account for seasonality, cruises were defined as: winter (March), spring (April and 151 May), summer (June and July) and late summer/autumn (August and September). We then calculated daily N₂O 152 emissions per section and season. For upscaling, we used the calculated monthly emissions to estimate annual 153 emissions (winter: November to March, spring: April to May, summer: June to July and late summer/autumn: 154 August to October). To address uncertainties, we calculated N₂O emissions based on different parametrizations 155 and wind speeds as described above.

156 2.5 Excess N₂O and apparent oxygen utilization

157 The correlation between excess $N_2O(N_2O_{xs})$ and apparent oxygen utilization (*AOU*) can provide insights into N_2O

production (Nevison et al., 2003; Walter et al., 2004). We calculated N_2O_{xs} as the difference between the N_2O

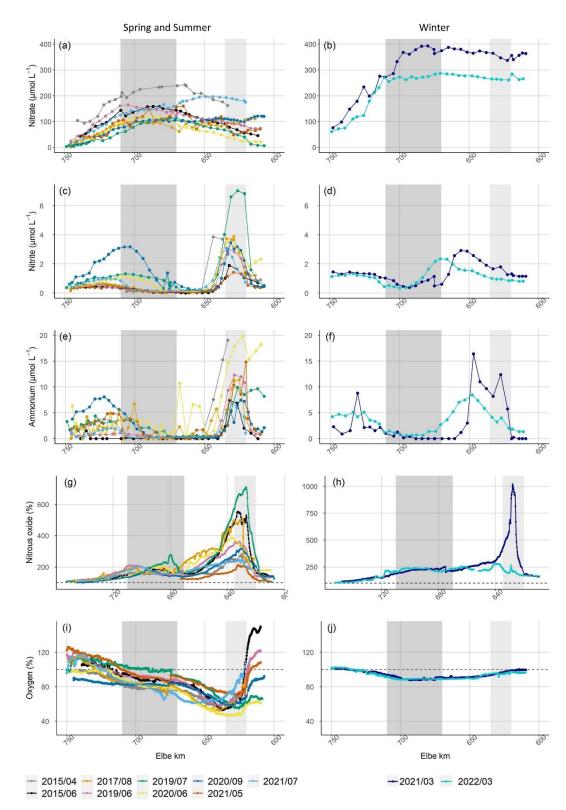
- 159 concentration in water $(N_2 \Theta_w)$ and the theoretical equilibrium concentration $(N_2 O_{eq})$ (Eq. 4). AOU was determined
- 160 using Eq. 5, where O_2 is the measured dissolved oxygen concentration, and O_2' is the theoretical equilibrium
- 161 concentration between water and atmosphere calculated according to Weiss (1970).

$$N_2 O_{xs} = N_2 O_{cw} - N_2 O_{eq}$$
 (4)

$$AOU = O_2' - O_2 \tag{5}$$

162 A linear relationship between AOU and N_2O_{xs} is usually an indicator for <u>N_2O</u> production from nitrification 163 (Nevison et al., 2003; Walter et al., 2004).

164 2.6 Statistical analysis


All statistical analyses were done using R packages. The packages ggpubr v.0.6.0 (Kassambara, 2023) and stats v.4.0.2 (The R Stats Package, Version 4.0.2, 2021) were used to calculate Pearson correlations (*R*) and *p*-values.

167 3 Results

168 **3.1 Hydrographic properties and DIN distribution**

Discharge ranged between 171 m³ s⁻¹ and 1282 m³ s⁻¹ during our cruises (ZDM, 2022), with higher discharge in winter and lower discharge in summer (Table 1). Average water temperature over the entire estuary ranged from 5.4 ± 0.5 °C in March 2021 to 22.6 ± 1.0 °C in August 2017 (Table 1). For further evaluation, March 2021 and 2022 cruises were regarded as winter cruises (water temperature < 6°C), whereas all cruises with higher water temperature were jointly regarded as spring and summer conditions.

- 174 Nitrate was the major form of dissolved inorganic nitrogen (DIN) during all cruises. In winter, high nitrogen 175 concentrations entered the estuary from the river. Towards summer, the riverine input of nitrate (stream kilometer
- 176 < 620) decreased, but along the estuary nitrate concentrations increased up to ~stream kilometer 700, then
- 177 decreased towards the North Sea. Nitrate concentrations were highest during both March cruises with averages of
- 178 319.0 \pm 85.7 µmol L⁻¹ and 230.9 \pm 76.2 µmol L⁻¹ in 2021 and 2022, respectively. During summer, nitrate
- concentrations were lower, with averages between $151.0 \pm 58.1 \ \mu mol \ L^{-1}$ in May 2021 and $63.3 \pm 38.8 \ \mu mol \ L^{-1}$ in July 2019 (Fig. 2a and b).
- 181 Nitrite and ammonium concentrations were usually low (< $1 \mu mol L^{-1}$) throughout the Elbe Estuary, but peaked
- 182 in the Hamburg Port region and around stream kilometer 720 (Fig. 2c and 2e). We measured pronounced variations
- 183 in nitrite concentrations during most of our cruises, ranging from > 6.0 μ mol L⁻¹ (July 2019) to concentrations
- below the detection limit (Fig. 2c and d). The highest ammonium concentration was measured in March 2021 at
- 185 23.5 μ mol L⁻¹ (Fig. 2e and f).

186

187 Figure 2: Nitrate concentration along the Elbe Estuary (a) in spring/summer, (b) in winter. Nitrite concentration along 188 the Elbe Estuary (c) in spring/summer and (d) in winter. Ammonium concentration along the Elbe Estuary (e) in 189 spring/summer and (f) in winter. N₂O in % saturation along the Elbe Estuary (g) in spring/summer, (h) in winter. 190 Dissolved oxygen in % saturation along the Elbe Estuary (i) in spring/summer and (j) in winter. All variables are plotted 191 against Elbe stream kilometers (Elbe km). Light grey shading denotes the Hamburg Port region, dark grey shading the 192 typical position of the maximum turbidity zone (MTZ, Bergemann, 2004). Note the difference in Y-axis scales for the 193 plots of (g) and (h). The dashed black lines in (g) and (h), as well as (i) and (j) indicate saturation of 100 % for nitrous 194 oxide and dissolved oxygen, respectively.

195 3.2 Atmospheric N₂O and N₂O saturation

The average atmospheric N₂O dry mole fractions ranged from 325 ppb in June 2015 to 336 ppb in July 2022 (Table 196

- 197 2). The differences between our measurements and the mean monthly N_2O mole fraction measured at the Mace
- 198 Head atmospheric monitoring station (Ireland; Dlugokencky et al., 2022) were always less than 1.5 %, indicating
- 199 a good agreement with the monitoring data.
- 200 During all cruises, the Elbe Estuary was supersaturated in N₂O in the freshwater region (Fig. 2g, h). The average
- 201 N₂O saturation over the entire transect ranged between 146 % and 243 % with an overall average of 197 % for all
- 202 cruises. Highest N₂O occurred in the Hamburg Port region in spring and summer with an average N₂O peak of
- 203 402 % saturation and a maximum supersaturation of 710 % in July 2019. The distributions of N₂O during winter cruises were significantly different: In March 2022, highest N₂O (280 % saturation) occurred at stream kilometer
- 205 640. In contrast, in March 2021, we found an extraordinarily high peak with a saturation of 1018 % at stream
- kilometer 627. Between stream kilometer 680 and 720, a supersaturation of up to 277 % occurred in spring and 206
- summer. Further towards the North Sea, N₂O decreased, approaching equilibrium with the atmosphere. 207

208 3.3 N₂O flux densities and N₂O emissions

209 For N₂O flux densities, we in the following present calculated values after Borges et al. (2004, Table 2), but also

210 include results using other parametrizations in-See Table S2 and Fig. S2 for results of other parametrizations. The

 N_2O flux densities were usually highest in the Hamburg Port area, with an average of $95.0 \pm 97.9 \ \mu mol \ m^{-2} \ d^{-1}$ and 211

- lowest towards the North Sea, with an average of $3.9 \pm 3.0 \,\mu$ mol m⁻¹ d⁻¹ (Elbe stream kilometers > 735). The 212
- average N₂O flux density of all cruises was $39.9 \pm 46.9 \,\mu$ mol m⁻² d⁻¹ (calculated with *in-situ* wind speeds measured 213
- during the cruises). 214

204

215 Table 2: Calculated average N₂O saturation, sea-to-air fluxes calculated following Borges et al. (2004) and atmospheric 216 N₂O dry mole fractions during our cruises in the Elbe Estuary

Campaign Dates	Average	N ₂ O Flux	Average		
	saturation	In-situ	Annual	Seasonal	atmospheric dry
	(%)	wind	wind	wind	mole fraction (ppb)
2829.04.15	160.8 ± 37.9	33.1 ± 21.0	23.1 ± 14.7	25.4 ± 16.1	331 ± 0.5
0204.06.15	203.8 ± 112.7	39.0 ± 42.7	37.2 ± 40.7	37.8 ± 41.4	325 ± 0.8
0102.08.17	221.0 ± 106.5	35.6 ± 31.8	43.2 ± 38.5	44.1 ± 39.3	331 ± 1.2
0405.06.19	192.6 ± 66.0	29.7 ± 21.5	33.5 ± 24.2	34.0 ± 24.6	332 ± 0.2
30.0701.08.19	232.5 ± 155.3	42.0 ± 50.1	45.7 ± 54.5	47.4 ± 56.4	327 ± 1.0
1920.06.20	193.9 ± 74.1	39.2 ± 31.6	33.3 ± 26.9	33.9 ± 27.3	330 ± 0.6
0911.09.20	160.5 ± 53.6	26.0 ± 23.5	21.8 ± 19.7	24.5 ± 22.1	331 ± 0.7
1012.03.21	242.5 ± 141.6	100.7 ± 101.2	58.1 ± 58.4	71.0 ± 71.4	331 ± 1.3
0405.05.21	145.6 ± 28.8	35.6 ± 22.5	17.8 ± 11.2	18.5 ± 11.7	331 ± 0.8
2728.07.21	172.6 ± 37.2	28.0 ± 14.6	25.9 ± 13.6	26.9 ± 14.1	334 ± 3.8
0102.03.22	196.5 ± 47.0	27.8 ± 13.9	39.0 ± 19.5	47.7 ± 23.8	333 ± 0.7

²¹⁷

calculated emissions twice: 1) including (w 03/2021) and 2) deliberately excluding (w/o 03/2021) the N2O peak 219

220 saturation measured in the Port of Hamburg in March 2021, using a-linearly interpolated concentrations, in the

²¹⁸ N₂O emission estimates varied significantly depending on the used parametrization and wind speeds. Note that we

- 221 respectiverespectively. Highest emissions were calculated following methods by Borges et al. (2004) and using
- *in-situ* wind speeds, resulting in emissions of 0.25 ± 0.16 Gg-N₂O yr⁻¹ and 0.23 ± 0.12 Gg-N₂O yr⁻¹ with and
- 223 without the N_2O peak in March 2021, respectively. Lowest emissions of 0.08 Gg- N_2O yr^1 arose with
- parametrization of Nightingale et al. (2000) and Wanninkhof (1992), and using annual wind speeds (Table 3).
- 225 Table 3: Annual N₂O emission estimates in Gg-N₂O yr⁻¹ calculated with different parametrizations and wind speeds

		Emissions in Gg-N ₂ O yr ⁻¹							
		Borges et al.	Nightingale et al.	Wanninkhof	Clark et al.				
		(2004)	(2000)	(1992)	(1995)				
W	In-situ wind	0.25 ± 0.16	0.14 ± 0.12	0.17 ± 0.15	0.16 ± 0.12				
03/2021	Annual wind	0.21 ± 0.11	0.08 ± 0.04	0.09 ± 0.05	0.09 ± 0.05				
	Seasonal wind	0.24 ± 0.12	0.11 ± 0.06	0.13 ± 0.06	0.12 ± 0.06				
w/o	In-situ wind	0.23 ± 0.12	0.13 ± 0.09	0.15 ± 0.11	0.14 ± 0.09				
03/2021	Annual wind	0.20 ± 0.08	0.08 ± 0.03	0.08 ± 0.03	0.09 ± 0.04				
	Seasonal wind	0.22 ± 0.09	0.11 ± 0.04	0.12 ± 0.04	0.12 ± 0.04				

226 3.4 Dissolved oxygen saturation

227 Average oxygen varied between 76 and 95 in % saturation with an oxygen minimum in the Hamburg Port area. Winter cruises varied little, with oxygen remaining relatively constant along the estuary (> 88 % saturation). 228 229 During most spring and summer cruises, water from the river coming into the estuary was supersaturated in oxygen 230 (> 100 % saturation). In the Hamburg Port region, oxygen saturation generally decreased. Lowest values occurred in June 2020 with 47 % saturation. The along-estuary oxygen minimum in summer months (June to August) was 231 232 always below 61 % saturation. In spring and summer, oxygen increased towards the North Sea and reached 233 100 % saturation (Fig. 2i and j). 234 Plots of excess N_2O (N_2O_{xs}) and apparent oxygen utilization (AOU) revealed excess N_2O along the entire estuary 235 (Fig. 3). During all cruises, elevated riverine N_2O_{xs} entered the estuary (stream kilometer < 620). A linear positive relationship between N_2O_{xs} and AOU suggested nitrification as main production pathway in large sections of the 236 237 estuary (Nevison et al., 2003; Walter et al., 2004). However, in summer, a change of slope in the Port of Hamburg

- as well as in the mesohaline section of the estuary suggested either increased in-situ N₂O production or external
- 239 N₂O input. In winter, we found an increasing slope in the Hamburg Port region and in the oligohaline part of the
- Elbe Estuary (Fig. 3h, k).

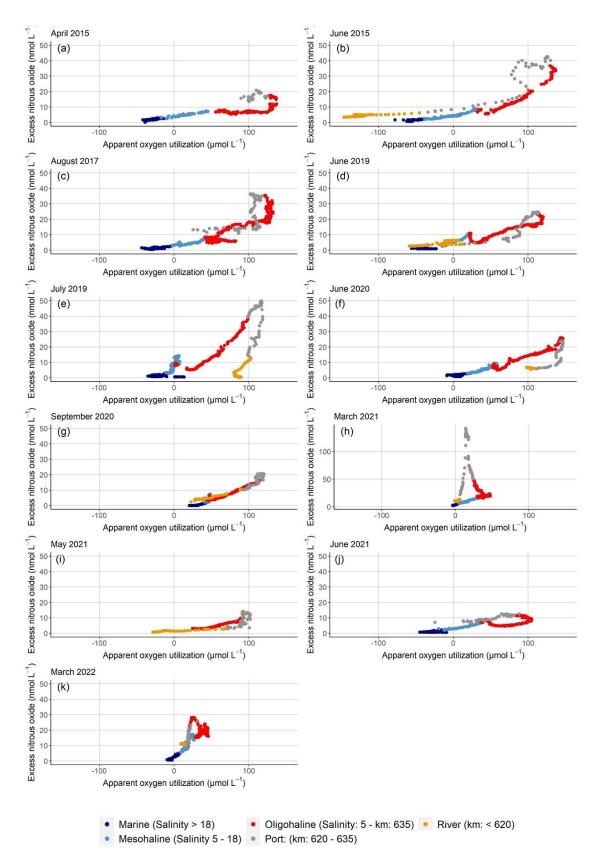


Figure 3: Plots of N₂O_{xs} vs AOU for (a) April 2015, (b) June 2015, (c) August 2017, (d) June 2019, (e) July 2019, (f) June 2020, (g) September 2020, (h) March 2021, (i) May 2021, (j) June 2021 and (k) March 2022. The values are colored to distinguish between different regions of the estuary. Y-axis scale differ for Fig. 3h.

245 **3.5 Statistical analysis**

246 We performed α -statistical analyses to identify potential N₂O production pathways and controlling factors. Table 4

summarizes the results for the entire data set with further separation into spring and summer cruises (sp/su), as

248 well as separation according to <u>the</u> presence of a salinity gradient (salinity > 1) or <u>of</u> freshwater regions (salinity

249 < 1). Further<u>more</u>, we performed corresponding analysis to assess the significance of correlations between for

average values of different parameters for each cruise (Table 5). <u>N₂O saturation showed significant negative</u>

- 251 correlation with oxygen (Table 4) as well as a consistent negative correlation with pH (Table 4 and 5). Furthermore,
- 252 <u>nitrite concentrations positively correlated with N₂O saturation in the freshwater section of the estuary</u> (Table 4
- 253 and 5).

254Table 4: Pearson correlation coefficients (R) for N2O saturation (%) with temperature (T in °C), pH value, oxygen (O2255in % saturation), ammonium concentrations (NH4+ in µmol L-1), nitrite concentrations (NO2- in µmol L-1), nitrate256concentrations (NO3- in µmol L-1), SPM concentrations (SPM in mg L-1), C/N values, particulate carbon fraction (PC in257%) and particulate nitrogen fraction (PN in %) for the entire data set, spring and summer cruises (sp/su), data with258salinity > 1, spring and summer cruises with salinity > 1, data with salinity < 1 and spring and summer cruises with</td>259salinity < 1. The significance is shown as ** for p-value < 0.001, * for p-values < 0.01 and + for p-values < 0.05.</td>

N_2O	Т	pН	O_2	$\mathrm{NH_4^+}$	NO_2^-	NO ₃ -	SPM	C/N	PC	PN
saturation %	°C		%	μM	μΜ	μΜ	mg		%	%
Entire data	0.06	-0.47**	-0.56**	0.27^{**}	0.48^{**}	0.23	0.10	0.60	-0.05	-0.13+
sp/su	0.33*	-0.59**	-0.65**	0.23**	0.53**	0.09	0.02	0.24**	-0.09	-0.13+
Sal>1	0.03	-0.40**	-0.53**	-0.32**	-0.05	0.71**	0.32**	0.11^{*}	-0.24	-0.39**
Sal<1,	0.01	-0.41**	-0.42**	0.28^{**}	0.51**	-0.00	-0.08	0.15	-0.25*	-0.24*
Sal>1, sp/su	-0.10	-0.21+	-0.52**	-0.28**	0.01	0.62^{**}	0.02	0.39**	-0.31**	-0.41**
Sal<1, sp/su	0.30**	-0.60**	-0.57**	0.21+	0.58^{**}	-0.23*	-0.16	0.11	-0.30*	-0.27*

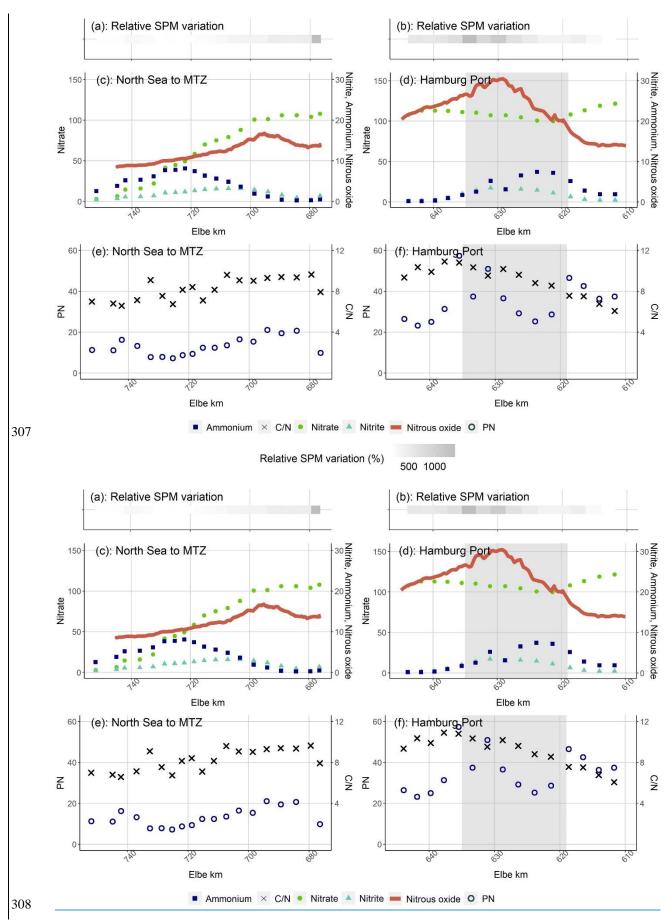
260

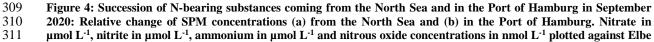
261Table 5: Pearson correlation coefficients (R) for average N2O saturation (%) with average discharge (Q in m³ s⁻¹)262temperature (T in °C), pH value, oxygen (O2 in % saturation), ammonium concentrations (NH4⁺ in µmol L⁻¹), nitrite263concentrations (NO2⁻ in µmol L⁻¹), nitrate concentrations (NO3⁻ in µmol L⁻¹), SPM concentrations (SPM in mg L⁻¹), C/N264values, particulate carbon fraction (PC in %) and particulate nitrogen fraction (PN in %) for the entire data set, spring265and summer cruises (sp/su), data with salinity > 1, spring and summer cruises with salinity > 1, data with salinity < 1</td>266and spring and summer cruises with salinity < 1. The significance is shown as ** for p-value < 0.001, * for p-values <</td>2670.01 and + for p-values < 0.05.</td>

N ₂ O	Q	Т	pН	O ₂	$\mathrm{NH_4^+}$	NO_2^-	NO ₃ -	SPM	C/N	PC	PN
saturation %	m^3s^{-1}	°C		%	μM	μM	μΜ	mg		%	%
Entire data	0.13	0.06	-0.65	-0.39	0.02	0.48	0.27	-0.31	0.53	0.12	-0.16
sp/su	-0.26	0.76^{+}	-0.82+	-0.32	0.01	0.35	-0.40	-0.92*	0.15	0.18	0.31
Sal>1	-0.07	-0.14	-0.38	-0.43	-0.18	0.23	0.52	-0.19	0.46	-0.18	-0.38
Sal<1,	-0.21	0.29	-0.59	-0.39	0.26	0.76^{*}	-0.11	-0.57	0.12	0.61	0.47
Sal>1, sp/su	-0.07	-0.70^{+}	-0.41	-0.26	-0.42	0.03	0.05	-0.81+	-0.04	-0.10	0.14
Sal<1, sp/su	-0.48	0.72+	-0.80	-0.46	0.29	0.77+	-0.58	-0.87^{+}	-0.17	0.69	0.67

268 4 Discussion

280


269 4.1 N₂O saturation and flux densities of the Elbe Estuary


The average N₂O saturation and flux density were 197 % and $39.9 \pm 46.9 \,\mu$ mol m⁻² d⁻¹, respectively. The N₂O flux densities from the Elbe Estuary were in the mid-range of flux densities of other European estuaries ranging from

- 272 $2.9 \,\mu$ mol m⁻² d⁻¹ to 96.5 μ mol m⁻² d⁻¹ (Garnier et al., 2006; Gonçalves et al., 2010; Murray et al., 2015) and average
- 273 N₂O saturations fitted to values determined by Reading et al. (2020) for highly modified urban systems. The
- relationship of N_2O_{xs} and AOU (Fig. 3), with changing slopes in the Port of Hamburg and mesohaline estuary, was determined by either initial riverine N_2O production, or in-situ production along the estuary. During spring and
- summer, we found increasing N_2O concentrations in the Hamburg Port region (see also Brase et al. (2017)), and
- in the salinity gradient (stream kilometer 680 700, salinity ~5). Both N₂O peaks varied in magnitude and spatial
- extension, suggesting in-situ biological production (Fig. 2g). This matches earlier research linking estuarine N_2O

Previous measurements of N₂O saturation and flux densities in the Elbe Estuary between the 1980s and 2015

- fluxes to in-situ generation (e.g. Bange, 2006; Barnes and Upstill-Goddard, 2011; Murray et al., 2015).
- (Hanke and Knauth, 1990; Barnes and Upstill-Goddard, 2011; Brase et al., 2017) showed a significant reduction 281 282 of N₂O saturation due to the reduced riverine nutrient load and higher dissolved oxygen concentrations (Brase et 283 al., 2017). However, since the BIOGEST study in 1997 (Barnes and Upstill-Goddard, 2011), N₂O remained 284 relatively stable at ~ 200 % saturation despite a concurrent decrease in TN concentration from ~400 μ mol L⁻¹ to 285 around 200 µmol L⁻¹ (Fig. S2S3; Hanke and Knauth, 1990; Barnes and Upstill-Goddard, 2011; Brase et al., 2017; 286 Das Fachinfomrationssystem (FIS) der FGG Elbe, 2022). Since As N₂O saturation did not decrease in scale with 287 riverine nitrogen input, this suggests that- the yield of N₂O production increased along the estuary. in situ N₂O production along the estuary is important. Dähnke et al. (2008) showed a shift from dominating denitrification 288
- 289 towards significant nitrification in the Elbe Estuary due to the significant improvement of water quality after the 290 reunification of Germany in 1990, and this could influence N_2O distributions in the estuary. In the following
- sections, we investigate the biogeochemical controls of this in-situ N_2O production. For this purpose, we discuss
- the two zones of intense N₂O production separately and also distinguish between cruises in spring and summer (water temperature > 10 °C) and in winter (water temperature < 6 °C).
- 294 **4.2** N₂O production in spring and summer in the mesohaline estuary
- 295 The N₂O peak in the transition between oligohaline and mesohaline estuary was accompanied by a sudden change 296 in the slope of the AOU vs N₂O_{xs} plots, (Fig. 3), pointing towards N₂O production in the oxic water column. Peaks 297 of nitrite and ammonium concentrations coincided with the elevated nitrous oxide saturations between Elbe km 298 680-700, with an ammonium peak around stream kilometer ~720, and a nitrite peak at ~700 (Fig. 4a). Highest 299 N₂O concentrations were usually measured between the nitrite peak and the region with highest turbidity (Fig. 4a, 300 September 2020, and Fig. \$3\$4-\$13\$14). This co-occurrence of nitrite accumulation and increased N₂O saturation 301 has been interpreted as signs for N_2O production via denitrification (e.g. Wertz et al., 2018; Sharma et al., 2022). 302 However, denitrification does not seem likely in this oxic water column. Such a succession of nitrite and 303 ammonium peaks is also typical for remineralization and nitrification, and the slight decrease of oxygen 304 concentrations around the higher N₂O saturation (Fig. 2g and i) suggests oxygen consumption, possibly caused by 305 these two processes. Sanders et al. (2018) measured small but detectable nitrification rates $(1 - 2 \mu mol L^{-1} d^{-1})$ for 306 this region of the Elbe Estuary, suggesting that N_2O may be a side product of nitrification.

312stream kilometers (c) from the North Sea and (d) in the Port of Hamburg. Particulate nitrogen concentrations in313 μ mol L⁻¹ and C/N values plotted against stream kilometers (e) from the North Sea and (f) in the Port of Hamburg. The314grey area in (fd) and (f) shows the position of the Port of Hamburg.

315 This succession of N-bearing substances (Fig. 4, Fig. S4-S14) suggests input of particulate matter from the North Sea and upstream particle transport towards the maximum turbidity zone of the estuary (MTZ). This transport 316 317 mechanism is in line with Wolfstein and Kies (1999), who explained organic matter contents and chlorophyll a 318 concentrations in the polyhaline part of the Elbe Estuary by input of freshly produced particulate matter of marine 319 origin. Generally, maximum turbidity zones are generated by the balance between river-induced flushing and 320 upstream transport of marine SPM, as a function of estuarine geomorphology, gravitational circulation and tidal flow, trapping the particles in the MTZ (Bianchi, 2007; Sommerfield and Wong, 2011; Winterwerp and Wang, 321 322 2013). Other studies detected N₂O production from water column nitrification in estuarine MTZs (e.g. Barnes and 323 Owens, 1999; de Wilde and de Bie, 2000; Bange, 2006; Barnes and Upstill-Goddard, 2011; Harley et al., 2015), 324 caused by high bacterial numbers, particulate nitrogen availability and long residence times (Murray et al., 2015). 325 For the selected dataset, we calculated a negative correlation between average SPM concentrations and N_2O 326 saturation (R = -0.81, Table 5), and found that the N₂O peak was located downstream of the MTZ, and upstream 327 of increasing nitrite and ammonium concentrations (Fig. 4a). This suggests that (1) the mere concentration of SPM 328 is not the driving factor of nitrification as a source of N_2O , but that organic matter quality is key to biological 329 turnover (Dähnke et al. 2022), and (2) the material transport from the North Sea upstream towards the MTZ 330 (Kappenberg and Fanger, 2007; Schoer, 1990) is a main mechanism for N₂O generation. We find organic matter 331 with low C/N ratios, and with relatively high PN and PC contents in the outermost samples (ranging from 5.9 in 332 June 2020 to 8.8 August 2017), indicating fresh and easily degradable organic matter (Fig. S1, e.g. Redfield et al. 1963; Fraga et al. 1998; Middelburg and Herman 2007). Towards the MTZ, C/N values, PN and PC contents 333 334 decreased, indicating remineralization in the water column. This remineralization and subsequent nitrification can 335 then cause the observed succession of ammonium, nitrite and N_2O peaks (Fig. 4a), contributing to the high nitrate 336 concentrations in the MTZ, where high C/N values (9 - 11/16) indicate low organic matter quality (e.g. Hedges and Keil 1995; Middelburg and Herman 2007). Overall, we conclude that remineralization of marine organic 337 338 matter, followed by nitrification, produced the N₂O peak in the salinity gradient of the Elbe Estuary. This 339 production was mainly fueled by fresh organic matter entering the estuary from the North Sea.

340 4.3 Hamburg Port: N₂O production in spring and summer

341 During all cruises, we measured highest N₂O saturation in the Port of Hamburg. These peaks can be caused by 342 input from a waste water treatment plant, by deepening and dredging operations, enhanced benthic production or 343 by in-situ production in the water column.

- Point sources generally play a minor role in the Elbe Estuary (Hofmann et al., 2005; IKSE, 2018). We estimated the wastewater discharge fraction of stream flow according to Büttner et al. (2020) for the waste water treatment plant (WWTP) Köhlbrandhöft, which treats the waste water from the Hamburg metropolitan region, with less than 5 % even under low fresh water inflow. Thus, point sources seemed not to be the cause for the elevated N₂O concentrations. However, discharge of WWTPs can potentially be important sources of N₂O (Beaulieu et al., 2010;
- 349 Chun et al., 2020; Brown et al., 2022), and the effect of wastewater input on N_2O concentrations and emissions
- 350 may change with altered river discharge, water temperature and riverine nitrogen loads in the future.
- 351 Dredging can be a potential source of N₂O in the water column. The estuary is continuously deepened and dredged
- 352 to grant access for large container ships, which stirs up bottom sediments. Ammonium concentrations in the

- sediment pore water are high (Zander et al., 2020, 2022) and N₂O can be produced by nitrifier-denitrification in the sediments (Deek et al., 2013). However, we found no correlation of high SPM concentrations and N₂O saturation, indicating no major influence on N₂O dynamics from channel dredging and deepening.
- 356 Several studies identified the Hamburg Port region as a hotspot of biogeochemical turnover: Deek et al. (2013)
- showed denitrification, where Sanders et al. (2018) measured intense nitrification. Norbisrath et al. (2022)
- determined intense total alkalinity generation, and Dähnke et al. (2022) found that nitrogen turnover was driven
- by high particulate organic matter in this region. Brase et al. (2017) identified the Hamburg port region as a hotspot
- 360 of N₂O production and hypothesized that simultaneous nitrification and sediment denitrification were responsible.
- 361 We use our expanded dataset to further evaluate this hypothesis and to identify drivers for N_2O production in the 362 port region.
- During all cruises in spring and summer, we measured ammonium and nitrite peaks in the Hamburg Port region (Fig. 2c and <u>2</u>e, exemplary for September 2020 in Fig. 4b). Several researchers did address the nitrogen turnover and this accumulation of nitrite and ammonium assuming that the sudden increase of water depth in the Port leads to a light limitation and decomposition of riverine organic material (Schroeder, 1997; Schöl et al., 2014). This in turn raises ammonium and nitrite concentrations and fosters nitrification in the port region (Sanders et al., 2018; Dähnke et al., 2022).
- High nitrite concentrations are favorable for N_2O production by <u>nitrification and</u>_nitrifier-denitrification (Quick et al., 2019), while low-oxygen conditions facilitate N_2O production from both nitrification and denitrification. We
- found that N_2O saturation increased with decreasing discharge (R = -0.48, Table 5) during spring and summer.
- 372 This further points towards in-situ N_2O production, because denitrification and nitrification are more intense during
- 373 longer residence times lead to a possible accumulation of N₂O from either nitrification or denitrification (e.g.
- Nixon et al. 1996; Pind et al. 1997; Silvennoinen et al. 2007; Gonçalves et al. 2010). Overall, our data showed the
- succession of ammonium, nitrite and N₂O production (Fig. 4b and supplementary material <u>S3S4-S13S14</u>) as well
- as a breakup of the linear relation between AOU and N₂O_{xs} in the Port region (Fig. 3). In combination with previous
- 377 <u>nitrogen process studies performed in the Elbe Estuary (Deek et al., 2013; Sanders et al., 2018; Dähnke et al.,</u>
- 378 <u>2022</u>), this supports simultaneous sedimentary denitrification and nitrification in the water column <u>as</u> responsible
- 379 pathways for N₂O production in the Port of Hamburg (Brase et al. 2017).
- $\label{eq:states} 380 \qquad \text{In spring and summer, we found no linear relationship between N_2O_{xs} and AOU in the Hamburg Port (Fig. 3). This}$
- 381 may result from combined N₂O production by nitrification and denitrification. However, oxygen saturation and
- N_2O saturation were inversely correlated in Hamburg Port (Table 4 and 5), suggesting that N_2O production was
- controlled by oxygen concentrations, and thus was related to oxygen consumption in the port region. Most (75 %)
- of this oxygen consumption is caused by respiration whereas the remaining 25 % stem from nitrification (Schöl et
- al., 2014; Sanders et al., 2018). This respiration in turn is determined by remineralization of algal material from
- the upstream river that is transported to and respired within the port region (Schroeder, 1997; Kerner, 2000; Schöl
- et al., 2014), linking estuarine N_2O production to river eutrophication. Fabisik et al. (2023) showed that algae could
- $\label{eq:stability} additionally \ contribute \ to \ N_2O \ production. \ In the \ Elbe, \ fresh \ organic \ matter \ from \ the \ river \ with \ low \ C/N \ values \ as$
- 389 well as high PN and PC contents entered the estuary. This organic material was rapidly degraded in the Hamburg
- 390 Port region (Fig. S1). Dähnke et al. (2022) found that labile organic matter fueled nitrification but also
- denitrification in the fresh water part of the Elbe Estuary, which, as shown in our study, results in high N_2O
- 392 production in the Hamburg Port, leading to the reported negative correlations of PC and PN content with N₂O
- 393 saturation.

- 394 Overall, oxygen conditions mainly controlled N₂O production in the Hamburg Port region in spring and summer.
- $\label{eq:sincerespiration} Since respiration of organic matter dominates oxygen drawdown in the port region, we deduce that N_2O production$
- 396 there is linked to the decomposition of phytoplankton produced in the upstream Elbe River regions.

397 4.4 Hamburg Port: N₂O production in winter

In winter, low water temperature (< 6 °C) should hamper biological production (Koch et al., 1992; Halling-Sorensen and Jorgensen, 1993). Indeed, we did not detect a N₂O peak in the MTZ in winter, but we find high N₂O concentrations in the port region. For March 2022, we found a linear increase of N₂O_{xs} and AOU along with oxygen consumption and increasing ammonium, nitrite and PN concentrations indicating nitrification in the Hamburg Port producing N₂O. Unlike in summer, N₂O concentrations showed a flat increase extending far into the oligohaline section of the estuary (Fig. 2, -Fig. S1).

 $404 \qquad \text{However, in March 2021, we found a sharp and sudden increase in N_2O, with a peak concentration that by far}$

405 exceeded internal biological sources in summer (Fig. 2h). An ammonium peak in the water column coincided with 406 the N₂O maximum (Fig. 2f and Fig. $\frac{S+4S+2}{2}$). If microbial activity is mostly temperature-inhibited, a local source 407 of N₂O in the port seems the most likely cause.

- 408 We considered intensified deepening operations in the Port of Hamburg <u>as</u> one potential source of elevated N_2O
- 409 saturation. Deepening and dredging work occurred in the Hamburg Port region in 2021 (HPA, pers. Comm.,
- 410 Karrasch 2022), but, this also applied to 2022, when we saw no sharp N₂O peak (Fig. 2h). Furthermore, the regions
- 411 of deepening and dredging did not match the region of high N_2O concentrations, and turbidity at the time of
- 412 sampling did not change significantly compared to other cruises. Jointly, this suggests that channel dredging and
- 413 deepening was not the primary cause for the 2021 winter N_2O peak.
- 414 Another possible source of N₂O is the WWTP outflow in the Southern Elbe that joins the -main estuary at stream 415 kilometer 626 (Fig. 1), matching the N₂O peak at stream kilometer 627 (Fig. 2h). As explained above (section 4.3), 416 the effect of this WWTP on N₂O saturations under normal conditions should be negligible. This peak can be the 417 result of an extraordinary event during our sampling. We indeed found that an extreme rain event occurred on March 11th 2021 (HAMBURG WASSER, pers. Comm., Laurich 2022) with a statistical recurrence probability of 418 419 one to five years (https://sri.hamburgwasser.de/, last access: 04.04.2023). This rare event caused_a temperature 420 drop in the WWTP due to high inflows of cold rainwater leading to aggravated operation conditions in the WWTP 421 at the time of sampling. While the operators could still meet the limits for the effluent levels of nitrate and
- 422 ammonium, higher than usual ammonium loads exited the treatment plant at this time. We assume-hypothesize
- 423 that these elevated ammonium WWTP loads, were rapidly converted to N_2O as the warmer and biologically active
- 424 waste water entered the Elbe Estuary in March 2021._An important factor for aggravated conditions was a
- 425 temperature drop in the WWTP caused by cold rain water (HAMBURG WASSER, pers. Comm., Laurich 2022),
- 426 we <u>therefore</u> hypothesize that a similar rain event in warmer months would not <u>lead to comparable N₂O peakshave</u> 427 <u>the same effect</u>.
- Therefore, we argue that our March 2021 cruise likely represents an exception due to an extreme weather situation,
- $\label{eq:22} 429 \qquad \text{whereas normal winter conditions in the estuary comply with the N_2O production, like in March 2022.}$

430 4.5 Seasonally varying N₂O:DIN dynamic

431 We calculated annual N₂O emissions of the Elbe Estuary ranging from 0.08 ± 0.03 Gg-N₂O yr⁻¹ to 432 0.25 ± 0.16 Gg-N₂O yr⁻¹, which varied from recent N₂O summer emission estimate of 0.18 ± 0.01 Gg-N₂O yr⁻¹ by

- 433 Brase et al. (2017). Estuarine N₂O emissions are affected by tides, diel variations and currents (Barnes et al., 2006;
- 434 Baulch et al., 2012; Gonçalves et al., 2015), all of which we did not address in our study. Range of possible
- 435 parametrizations of gas transfer coefficients further complicates a direct comparison of fluxes between studies
- 436 (Hall Jr. and Ulseth, 2020; Rosentreter et al., 2021), which were was reflected in the big differences of our emission
- 437 estimates (Table 2). Therefore, a direct comparison to other studies is difficult.
- $438 \qquad \text{In a more general approach, the relationship between N_2O and DIN (N_2O:DIN$) is used for global estimates of N_2O and DIN (N_2O:DIN$) is used for N_2O and DIN (N_2O and DIN (N_2O and DIN (N_2O and$
- 439 emissions (Kroeze et al., 2005, 2010; Ivens et al., 2011; Hu et al., 2016). Using publicly available data (Table S4
- 440 and S5), we calculated the amount of the annual nitrogen load released as N₂O. Depending on the parametrization
- 441 used for the gas transfer coefficients, 0.14 % to 0.67 % of the annual DIN loads of the Elbe Estuary were released
- 442 as N_2O (0.11 % to 0.57 % for TN loads). This is significantly less than the 1 % predicted by Kroeze et al. (2005),
- 443 but matches results from other estuaries with high agricultural input, e.g. Wells et al. (2018) with 0.3 % to 0.7 %
- (0.1 % for TN loads) and Robinson et al. (1998) with 0.5 % (0.3 % for TN loads) as well as the 0.11 % to 0.37 %
 estimated by Maavara et al. (2019), who used TN loads to predict global estuarine emissions. In general, N₂O:DIN
- ratios vary widely (e.g., Baulch et al., 2012; Maavara et al., 2019; Smith and Böhlke, 2019). (Wells et al., 2018)

447 even found a range from -25 % to 7 % of DIN was emitted as N₂O in estuaries with low land-use intensity.

- At our site, highest emissions were estimated in winter (Fig. 5b) along with highest DIN loads (Fig. 5c). In spring, summer and late summer, N₂O emissions reduced along with DIN loads (Fig. 5b, c). However, N₂O release did not scale with the seasonal change of DIN. In winter, 0.10 % to 0.32 % of DIN were released as N₂O, whereas during the other seasons, up to 1.26 % were emitted. Thus, our results corroborate that there is a <u>deviating-varying</u>
- 452 relationship between DIN and N_2O (Borges et al., 2015; Marzadri et al., 2017; Wells et al., 2018) showing that
- this relationship even varies seasonally on site due to changing drivers for N₂O production and emissions, e.g.,
 temperature (Murray et al., 2015; Quick et al., 2019) and oxygen levels (de Bie et al., 2002; Rosamond et al., 2012;
- 455 Yevenes et al., 2017)...
- 456 Next to DIN loads, we find that organic matter is an important driver for N_2O production by providing substrate 457 for nitrification. Furthermore, the comparison of <u>our</u> -results with previous measurements in the Elbe Estuary 458 revealed that N_2O saturation stopped to scale with DIN input after the 1990s (section 4.1). The significant regime
- 459 change after the 1990s enabled phytoplankton growth to reestablish in the river<u>that had previously been inhibited</u>
- 460 <u>by high pollutant levels and low light availability</u> -(Kerner, 2000; Amann et al., 2012; Hillebrand et al., 2018;
- Rewrie et al., submitted)<u>.</u> and led to h<u>The prevailing h</u>igh nitrification rates in the estuary (Dähnke et al., 2008;
- 462 Sanders et al., 2018) <u>support</u>, <u>supporting the an</u> overarching control of organic matter on N₂O production and
- 463 emissions along the Elbe Estuary.

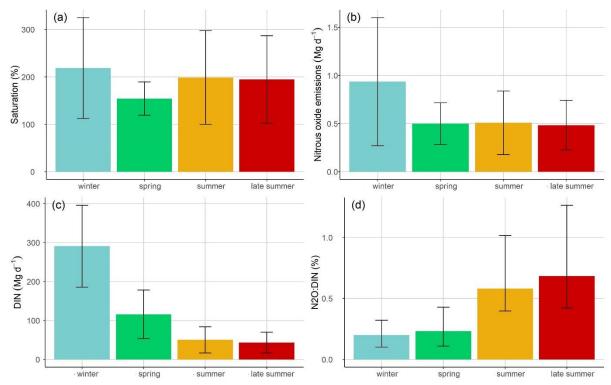


Figure 5: (a) Average nitrous oxide saturation for each season, (b) average nitrous oxide emissions for each season calculated after Borges et al. (2004), (c) average DIN loads for each season and (d) ratio of nitrous oxide emissions and DIN loads (N₂O:DIN) for each season. The error bars represent the standard deviations for (a), (b) and (c). The N₂O:DIN ratios is shown as average values calculated for each parametrization and wind speeds with error bars representing their variability.

470 **5** Conclusions

464

471 Overall, the Elbe is a year-round source of N₂O to the atmosphere, with highest emissions occurring in winter, 472 along with high DIN loads and high wind speeds. However, summer N₂O saturation and emissions did not decrease 473 with lower riverine nitrogen input, suggesting variable relations of DIN and N₂O (Borges et al., 2004; Marzadri et 474 al., 2017; Wells et al., 2018), and seasonal variability of this ratio caused by changing drivers for N₂O production 475 and emissions. Two hot-spots of N₂O production were found in the Elbe Estuary: the Port of Hamburg and the 476 mesohaline estuary near the estuarine turbidity maximum. Biological N₂O production was enhanced by warmer 477 temperatures and fueled by riverine organic matter in the Hamburg Port or marine organic matter in the MTZ. A comparison with historical N₂O measurements in the Elbe Estuary revealed that N₂O saturation did not decrease 478 479 with DIN input after the 1990s. The improvement of water quality in the Elbe Estuary allowed phytoplankton 480 growth after the reunification of Germany in 1990s (Kerner, 2000; Amann et al., 2012; Hillebrand et al., 2018; 481 Rewrie et al., submitted) and led to a switch from dominant denitrification to high nitrification (Dähnke et al., 482 2008; Sanders et al., 2018), supporting the overarching control of organic matter on N_2O production along the 483 Elbe Estuary. Thus, our findings indicate that DIN availability is not the sole control of N₂O production in estuaries 484 with high agricultural input. 485 High organic matter availability due to phytoplankton blooms driven by river eutrophication fuels nitrification and 486 subsequent N₂O emissions, causing a decoupling of the N₂O:DIN ratio. Therefore, N₂O emissions in heavily 487 managed estuaries with high agricultural loads are clearly linked to eutrophication. A reduced nitrogen input would

- 488 reduce phytoplankton growth and thus also N₂O emissions. However, the development of phytoplankton blooms
- 489 is not solely controlled by nutrient inputs, but also by e.g., temperature, residence time, water depth and grazing.

- 490 Thus, complex biological and chemical processes control phytoplankton dynamics (Scharfe et al., 2009; Dijkstra
- 491 <u>et al., 2019; Kamjunke et al., 2021), which will change significantly in the future due to the effects of climate</u>
- 492 <u>change (IPCC, 2022). A holistic approach to water quality mitigation and climate change adaptation is needed to</u>
- 493 prevent high N₂O emissions. High organic matter availability due to phytoplankton blooms driven by river
- 494 eutrophication fuels nitrification and subsequent N_2O emissions, causing a decoupling of the N_2O :DIN ratio.
- 495 Therefore, N_2O emissions in heavily managed estuaries with high agricultural loads are clearly linked to 496 eutrophication. Consequently, reducing nitrogen input alone is not sufficient to minimize N_2O emissions from
- 497 estuaries. Further measures are needed to prevent the developments of intense phytoplankton blooms in rivers and
- 498 estuaries. Especially considering climate change projections of more frequent and extensive draughts and warmer
- 499 temperatures (IPCC, 2022), which potentially fuel phytoplankton growth.
- 500

501 Data availability

502 The dataset generated and/or analyzed in this study are currently available upon request from the corresponding 503 author and will be made publicly available under coastMap Geoportal (<u>www.coastmap.org</u>) connecting to 504 PANGAEA. (https://www.pangaea.de/) with DOI availability in the near future.

505 Authors contribution

- GS, TS and KD designed this study. GS did the sampling and measurements for cruises from 2020 to 2022 as well as the data interpretation and evaluation. TS was responsible for the sampling and measurements for cruises done in 2017 and 2019. YGV provided the oxygen data correction from the FerryBox data. KD, HWB, YGV and TS contributed with scientific and editorial recommendations. GS prepared the manuscript with contributions of all
- 510 co-authors.

511 **Competing interest**

512 The authors declare that they have no conflict of interest.

513 Acknowledgments

514 This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under

- 515 Germany's Excellence Strategy EXC 2037 "CLICCS Climate, Climatic Change, and Society" Project
- 516 Number: 390683824, contribution to the Center for Earth System Research and Sustainability (CEN) of Universität
- 517 Hamburg. Parts of the study were done in the framework of the cross-topic activity MOSES (Modular Observation
- 518 Solutions for Earth Systems) within the Helmholtz program Changing Earth (Topic 4.1). We thank the crew of
- 519 R/V Ludwig Prandtl for the great support during the cruises. Thanks to Leon Schmidt and the entire working group
- 520 "Aquatic nutrients cycles" for measuring nutrients and the support during the campaigns. We are thankful for the
- 521 Hereon FerryBox Team for providing the FerryBox data. Thanks to the working group of Biogeochemistry at the
- 522 Institute for Geology of the University Hamburg for measuring C/N ratios, PC and PN fractions. We thank Frank
- 523 Laurich (HAMBURG WASSER) and Dr. Maja Karrasch (Hamburg Port Authority) for their interest in our N₂O

- 524 measurements and their willingness to provide information. Thanks to Victoria Oritz (Federal Waterways and
- 525 Engineering and Research Insitute) for providing the respective areas of the Elbe Estuary. Thanks to the NOAA
- 526 ESRL GML CCGG Group for providing high quality, readily accessible atmospheric N₂O data.

527 References

- Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality, Estuar. Coast. Shelf Sci., 107, 112–121,
- 530 https://doi.org/10.1016/j.ecss.2012.05.012, 2012.
- Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuar. Coast. Shelf Sci., 70, 361–374,
 https://doi.org/10.1016/j.ecss.2006.05.042, 2006.
- Bange, H. W.: Chapter 2 Gaseous Nitrogen Compounds (NO, N₂O, N₂, NH₃) in the Ocean, Nitrogen Mar. Environ. Second Ed., 51-94, https://doi.org/10.1016/B978-0-12-372522-6.00002-5, 2008.
- Barnes, J. and Owens, N. J. P.: Denitrification and Nitrous Oxide Concentrations in the Humber Estuary, UK, and
 Adjacent Coastal Zones, Mar. Pollut. Bull., 37, 247–260, https://doi.org/10.1016/S0025-326X(99)00079-X, 1999.
- Barnes, J. and Upstill-Goddard, R. C.: N₂O seasonal distributions and air-sea exchange in UK estuaries:
 Implications for the tropospheric N₂O source from European coastal waters, J. Geophys. Res. Biogeosciences,
 116, https://doi.org/10.1029/2009JG001156, 2011.
- Barnes, J., Ramesh, R., Purvaja, R., Nirmal Rajkumar, A., Senthil Kumar, B., Krithika, K., Ravichandran, K.,
 Uher, G., and Upstill-Goddard, R.: Tidal dynamics and rainfall control N₂O and CH₄ emissions from a pristine
 mangrove creek, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026829, 2006.
- Baulch, H. M., Dillon, P. J., Maranger, R., Venkiteswaran, J. J., Wilson, H. F., and Schiff, S. L.: Night and day:
 short-term variation in nitrogen chemistry and nitrous oxide emissions from streams, Freshw. Biol., 57, 509–525,
 https://doi.org/10.1111/j.1365-2427.2011.02720.x, 2012.
- 546 BAW Oritz, V.: pers. Comm.: Flächen des Elbe Ästuars, 2023.
- Beaulieu, J. J., Shuster, W. D., and Rebholz, J. A.: Nitrous Oxide Emissions from a Large, Impounded River: The
 Ohio River, Environ. Sci. Technol., 44, 7527–7533, https://doi.org/10.1021/es1016735, 2010.
- Bergemann, M.: Die Trübungszone in der Tideelbe Beschreibung der räumlichen und zeitlichen Entwicklung,
 Wassergütestelle Elbe, 2004.
- Bergemann, M. and Gaumert, T.: Elbebericht 2008: Ergebnisse des nationalen Überwachungsprogramms Elbe der
 Bundesländerüber den ökologischen und chemischen Zustand der Elbe nach EG-WRRLsowie der
 Trendentwicklung von Stoffen und Schadstoffgruppen, Flussgebietsgemeinschaft Elbe (FGG Elbe), Hamburg,
 2008.
- van Beusekom, J. E. E., Carstensen, J., Dolch, T., Grage, A., Hofmeister, R., Lenhart, H., Kerimoglu, O., Kolbe,
 K., Pätsch, J., Rick, J., Rönn, L., and Ruiter, H.: Wadden Sea Eutrophication: Long-Term Trends and Regional
- 557 Differences, Front. Mar. Sci., 6, 370, https://doi.org/10.3389/fmars.2019.00370, 2019.
- 558 Bianchi, T. S.: Biogeochemistry of Estuaries, Oxford University Press, New York, 706 pp., 559 https://doi.org/10.1093/oso/9780195160826.001.0001, 2007.
- de Bie, M. J. M., Middelburg, J. J., Starink, M., and Laanbroek, H. J.: Factors controlling nitrous oxide at the
 microbial community and estuarine scale, Mar. Ecol. Prog. Ser., 240, 1–9, https://doi.org/10.3354/meps240001,
 2002.
- 563 Boehlich, M. J. and Strotmann, T.: The Elbe Estuary, Küste, 74, 288–306, 2008.

- Boehlich, M. J. and Strotmann, T.: Das Elbeästuar, Küste, 87, Kuratorium für Forschung im Küsteningenieurwesen
 (KFKI), https://doi.org/10.18171/1.087106, 2019.
- Borges, A., Vanderborght, J.-P., Schiettecatte, L.-S., Gazeau, F., Ferrón-Smith, S., Delille, B., and Frankignoulle,
 M.: Variability of gas transfer velocity of CO₂ in a macrotidal estuary (The Scheldt), Estuaries, 27, 593–603,
 https://doi.org/10.1007/BF02907647, 2004.
- Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O.,
 Guérin, F., Lambert, T., Morana, C., Okuku, E., and Bouillon, S.: Globally significant greenhouse-gas emissions
 from African inland waters, Nat. Geosci., 8, 637–642, https://doi.org/10.1038/ngeo2486, 2015.
- 572 Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., and Slomp,
- 573 C. P.: Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards
- 574 integration of ecological and biogeochemical models, Biogeosciences, 10, 1–23, https://doi.org/10.5194/bg-10-1-
- 575 2013, 2013.
- Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High Resolution Measurements of Nitrous Oxide
 (N₂O) in the Elbe Estuary, Front. Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
- 578 Brown, A. M., Bass, A. M., and Pickard, A. E.: Anthropogenic-estuarine interactions cause disproportionate 579 greenhouse gas production: A review of the evidence base, Mar. Pollut. Bull., 174, 113240, 580 https://doi.org/10.1016/j.marpolbul.2021.113240, 2022.
- Büttner, O., Jawitz, J. W., and Borchardt, D.: Ecological status of river networks: stream order-dependent impacts
 of agricultural and urban pressures across ecoregions, Environ. Res. Lett., 15, 1040b3,
 https://doi.org/10.1088/1748-9326/abb62e, 2020.
- Chun, Y., Kim, D., Hattori, S., Toyoda, S., Yoshida, N., Huh, J., Lim, J.-H., and Park, J.-H.: Temperature control
 on wastewater and downstream nitrous oxide emissions in an urbanized river system, Water Res., 187, 116417,
 https://doi.org/10.1016/j.watres.2020.116417, 2020.
- Clark, J. F., Schlosser, P., Simpson, H. J., Stute, M., Wanninkhof, R., and Ho, D. T.: Relationship between gas
 transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique, in: AirWater Gas Transfer, edited by: Jähne, B. and Monahan, E. C., AEON Verlag, Hanau, 785–800, 1995.
- 590 Crossland, C. J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R. W., Dennison, W. C., Maxwell, B.
- 591 A., Smith, S. V., and Swaney, D. P.: The Coastal Zone a Domain of Global Interactions, in: Coastal Fluxes in
- the Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme, edited by: Crossland, C. J., Kremer, H. H., Lindeboom, H. J., Marshall Crossland, J. I., and
- Biosphere Programme, edited by: Crossland, C. J., Kremer, H. H., Lindeboom, H. J., Marshall Crossland, J. I., and
 Tissier, M. D. A., Springer, Berlin, Heidelberg, 1–37, https://doi.org/10.1007/3-540-27851-6_1, 2005.
- Dähnke, K., Bahlmann, E., and Emeis, K.-C.: A nitrate sink in estuaries? An assessment by means of stable nitrate
 isotopes in the Elbe estuary, Limnol. Oceanogr., 53, 1504–1511, https://doi.org/10.4319/lo.2008.53.4.1504, 2008.
- Dähnke, K., Sanders, T., Voynova, Y., and Wankel, S. D.: Nitrogen isotopes reveal a particulate-matter-driven
 biogeochemical reactor in a temperate estuary, Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-195879-2022, 2022.
- Deek, A., Dähnke, K., van Beusekom, J., Meyer, S., Voss, M., and Emeis, K.-C.: N₂ fluxes in sediments of the
 Elbe Estuary and adjacent coastal zones, Mar. Ecol. Prog. Ser., 493, 9–21, https://doi.org/10.3354/meps10514,
 2013.
- 603 Dijkstra, Y. M., Chant, R. J., and Reinfelder, J. R.: Factors Controlling Seasonal Phytoplankton Dynamics in the 604 Delaware River Estuary: an Idealized Model Study, Estuaries Coasts, 42, 1839–1857, 605 https://doi.org/10.1007/s12237-019-00612-3, 2019.
- Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J., and Thoning, K. W.: Earth System Research
 Laboratory Carbon Cycle and Greenhouse Gases Group Flask-Air Sample Measurements of N₂O at Global and
 Regional Background Sites, 1967-Present [Data set], https://doi.org/10.15138/53G1-X417, 2022.

- Fabisik, F., Guieysse, B., Procter, J., and Plouviez, M.: Nitrous oxide (N₂O) synthesis by the freshwater
 cyanobacterium Microcystis aeruginosa, Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023,
 2023.
- FGG Elbe: Naehrstoffminderungsstrategie für die Flussgebietsgemeinschaft Elbe, Flussgebietsgemeinschaft Elbe
 (FGG Elbe), Magdeburg, 2018.
- Das Fachinfomrationssystem (FIS) der FGG Elbe: https://www.elbedatenportal.de/FisFggElbe/content/start/ZurStartseite.action;jsessionid=A37EDCF5B5EC1ECB15091447E64EC
 538, last access: 21 November 2022.
- Fraga, F., Ríos, A. F., Pérez, F. F., and Figueiras, F. G.: Theoretical limits of oxygen:carbon and oxygen:nitrogen
 ratios during photosynthesis and mineralisation of organic matter in the sea, Sci. Mar., 62, 161–168,
 https://doi.org/10.3989/scimar.1998.62n1-2161, 1998.
- Garnier, J., Cébron, A., Tallec, G., Billen, G., Sebilo, M., and Martinez, A.: Nitrogen Behaviour and Nitrous Oxide
 Emission in the Tidal Seine River Estuary (France) as Influenced by Human Activities in the Upstream Watershed,
 Biogeochemistry, 77, 305–326, https://doi.org/10.1007/s10533-005-0544-4, 2006.
- Gaumert, T. and Bergemann, M.: Sauerstoffgehalt der Tideelbe Entwicklung der kritischen Sauerstoffgehalte im
 Jahr 2007 und in den Vorjahren, Erörterung möglicher Ursachen und Handlungsoptionen,
 Flussgebietsgemeinschaft Elbe, 2007.
- Geerts, L., Wolfstein, K., Jacobs, S., van Damme, S., and Vandenbruwaene, W.: Zonation of the TIDE estuaries,
 TIDE toolbox, 2012.
- Gonçalves, C., Brogueira, M. J., and Camões, M. F.: Seasonal and tidal influence on the variability of nitrous oxide
 in the Tagus estuary, Portugal, Sci. Mar., 74, 57–66, https://doi.org/10.3989/scimar.2010.74s1057, 2010.
- 630 Gonçalves, C., Brogueira, M. J., and Nogueira, M.: Tidal and spatial variability of nitrous oxide (N₂O) in Sado 631 estuary (Portugal), Estuar. Coast. Shelf Sci., 167, 466–474, https://doi.org/10.1016/j.ecss.2015.10.028, 2015.
- Hall Jr., R. O. and Ulseth, A. J.: Gas exchange in streams and rivers, WIREs Water, 7, e1391,
 https://doi.org/10.1002/wat2.1391, 2020.
- Halling-Sorensen, B. and Jorgensen, S. E. (Eds.): 3. Process Chemistry and Biochemistry of Nitrification, in:
 Studies in Environmental Science, vol. 54, Elsevier, 55–118, https://doi.org/10.1016/S0166-1116(08)70525-9,
 1993.
- 637 HAMBURG WASSER, Laurich, F.: pers. Comm.: N₂O in der Elbe, 2022.
- Hanke, V.-R. and Knauth, H.-D.: N₂O-Gehalte in Wasser-und Luftproben aus den Bereichen der Tideelbe und der
 Deutschen Bucht, GKSS-Forschungszentrum, Weinheim, 1990.
- Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, John Wiley & Sons,
 Ltd, 159–228, https://doi.org/10.1002/9783527613984.ch10, 1999.
- Harley, J. F., Carvalho, L., Dudley, B., Heal, K. V., Rees, R. M., and Skiba, U.: Spatial and seasonal fluxes of the
 greenhouse gases N₂O, CO₂ and CH₄ in a UK macrotidal estuary, Estuar. Coast. Shelf Sci., 153, 62–73,
 https://doi.org/10.1016/j.ecss.2014.12.004, 2015.
- Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis,
 Mar. Chem., 49, 81–115, https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
- Hein, S. S. V., Sohrt, V., Nehlsen, E., Strotmann, T., and Fröhle, P.: Tidal Oscillation and Resonance in SemiClosed Estuaries—Empirical Analyses from the Elbe Estuary, North Sea, Water, 13, 848,
 https://doi.org/10.3390/w13060848, 2021.
- 650 Schleswig-Holstein u. Hamburg: Mittlere Windgeschwindigkeit (1986-2015)* | Norddeutscher Klimamonitor:
- 651 https://www.norddeutscher-klimamonitor.de/klima/1986-2015/jahr/mittlere-windgeschwindigkeit/schleswig-
- holstein-hamburg/coastdat-1.html, last access: 27 April 2023.

- 653 Hillebrand, G., Hardenbicker, P., Fischer, H., Otto, W., and Vollmer, S.: Dynamics of total suspended matter and 654 phytoplankton loads in the river Elbe, J. Soils Sediments, 18, 3104-3113, https://doi.org/10.1007/s11368-018-1943-1, 2018. 655
- 656 Hofmann, J., Behrendt, H., Gilbert, A., Janssen, R., Kannen, A., Kappenberg, J., Lenhart, H., Lise, W., Nunneri,
- 657 C., and Windhorst, W.: Catchment-coastal zone interaction based upon scenario and model analysis: Elbe and the
- 658 German Bight case study, Reg. Environ. Change, 5, 54–81, https://doi.org/10.1007/s10113-004-0082-y, 2005.
- HPA and Freie und Hansestadt Hamburg: Deutsches Gewässerkundliches Jahrbuch Elbegebiet, Teil III, Untere 659 Elbe ab der Havelmündung - 2014, Hamburg, 2017. 660
- 661 HPA, Karrasch, M.: pers. Comm.: Anfrage wegen N₂O Peak - Baggerarbeiten Elbe März 2021 und März 2022, 662 2022.
- 663 Hu, M., Chen, D., and Dahlgren, R. A.: Modeling nitrous oxide emission from rivers: a global assessment, Glob. Change Biol., 22, 3566–3582, https://doi.org/10.1111/gcb.13351, 2016. 664
- IKSE: Strategie zur Minderung der Nährstoffeinträge in Gewässer in der internationalen Flussgebietsgemeinschaft 665 666 Elbe, Internationale Kommission zur Schutz der Elbe, Magdeburg, 2018.
- IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 667 Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., 668
- Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, 669 K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge 670 Press, United USA,
- 671 University Cambridge, Kingdom and New York, NY,
- 672 https://doi.org/10.1017/9781009157896, 2021.
- IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the 673
- Sixth Assessment Report of the Intergovernmental Panel on Climate Change., edited by: Pörtner, H.-O., Roberts, 674
- 675 D. C., Tignor, M. M. B., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 676
- 3056 pp., https://doi.org/10.1017/9781009325844, 2022. 677
- 678 Ivens, W. P. M. F., Tysmans, D. J. J., Kroeze, C., Löhr, A. J., and van Wijnen, J.: Modeling global N₂O emissions 679 from aquatic systems, Curr. Opin. Environ. Sustain., 3, 350-358, https://doi.org/10.1016/j.cosust.2011.07.007, 680 2011.
- 681 Ji, Q., Frey, C., Sun, X., Jackson, M., Lee, Y.-S., Jayakumar, A., Cornwell, J. C., and Ward, B. B.: Nitrogen and
- oxygen availabilities control water column nitrous oxide production during seasonal anoxia in the Chesapeake 682 Bay, Biogeosciences, 15, 6127-6138, https://doi.org/10.5194/bg-15-6127-2018, 2018. 683
- Johannsen, A., Dähnke, K., and Emeis, K.: Isotopic composition of nitrate in five German rivers discharging into 684 the North Sea, Org. Geochem., 39, 1678–1689, https://doi.org/10.1016/j.orggeochem.2008.03.004, 2008. 685
- 686 Kamjunke, N., Rode, M., Baborowski, M., Kunz, J., Zehner, J., Borchardt, D., and Weitere, M.: High irradiation 687 and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics, Limnol. Oceanogr., 688 66, https://doi.org/10.1002/lno.11778, 2021.
- Kappenberg, J. and Fanger, H.-U.: Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht 689 690 und in der Nordsee, GKSS-Forschungszentrum, Geesthacht, 2007.
- 691 Kassambara, A.: ggpubr: "ggplot2" Based Publication Ready Plots, 2023.
- 692 Kerner, M.: Interactions between local oxygen deficiencies and heterotrophic microbial processes in the elbe 693 estuary, Limnologica, 30, 137-143, https://doi.org/10.1016/S0075-9511(00)80008-0, 2000.
- 694 Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, https://doi.org/10.1128/mr.46.1.43-70.1982, 1982.
- Koch, M. S., Maltby, E., Oliver, G. A., and Bakker, S. A.: Factors controlling denitrification rates of tidal mudflats 695 696 and fringing salt marshes in south-west England, Estuar. Coast. Shelf Sci., 34, 471-485, 697 https://doi.org/10.1016/S0272-7714(05)80118-0, 1992.

- Kroeze, C., Dumont, E., and Seitzinger, S. P.: New estimates of global emissions of N₂O from rivers and estuaries,
 Environ. Sci., 2, 159–165, https://doi.org/10.1080/15693430500384671, 2005.
- Kroeze, C., Dumont, E., and Seitzinger, S.: Future trends in emissions of N₂O from rivers and estuaries, J. Integr.
 Environ. Sci., 7, 71–78, https://doi.org/10.1080/1943815X.2010.496789, 2010.

Maavara, T., Lauerwald, R., Laruelle, G. G., Akbarzadeh, Z., Bouskill, N. J., Van Cappellen, P., and Regnier, P.:
Nitrous oxide emissions from inland waters: Are IPCC estimates too high?, Glob. Change Biol., 25, 473–488, https://doi.org/10.1111/gcb.14504, 2019.

- Marzadri, A., Dee, M. M., Tonina, D., Bellin, A., and Tank, J. L.: Role of surface and subsurface processes in
 scaling N₂O emissions along riverine networks, Proc. Natl. Acad. Sci., 114, 4330–4335,
 https://doi.org/10.1073/pnas.1617454114, 2017.
- Middelburg, J. J. and Herman, P. M. J.: Organic matter processing in tidal estuaries, Mar. Chem., 106, 127–147,
 https://doi.org/10.1016/j.marchem.2006.02.007, 2007.
- Middelburg, J. J. and Nieuwenhuize, J.: Uptake of dissolved inorganic nitrogen in turbid, tidal estuaries, Mar.
 Ecol.-Prog. Ser., 192, 79–88, https://doi.org/10.3354/meps192079, 2000.
- Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments: response to global
 change, Glob. Change Biol., 21, 3219–3245, https://doi.org/10.1111/gcb.12923, 2015.
- Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of N_2O and the ΔN_2O -AOU yield in the subsurface ocean, Glob. Biogeochem. Cycles, 17, 1119, https://doi.org/10.1029/2003GB002068, 2003.
- 716 Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-
- Goddard, R. C.: In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile
 tracers, Glob. Biogeochem. Cycles, 14, 373–387, https://doi.org/10.1029/1999GB900091, 2000.
- 719 Nixon, S. W., Ammerman, J. W., Atkinson, L. P., Berounsky, V. M., Billen, G., Boicourt, W. C., Boynton, W. R.,
- 720 Church, T. M., Ditoro, D. M., Elmgren, R., Garber, J. H., Giblin, A. E., Jahnke, R. A., Owens, N. J. P., Pilson, M.
- E. Q., and Seitzinger, S. P.: The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic
- 722 Ocean, Biogeochemistry, 35, 141–180, https://doi.org/10.1007/BF02179826, 1996.
- Norbisrath, M., Pätsch, J., Dähnke, K., Sanders, T., Schulz, G., van Beusekom, J. E. E., and Thomas, H.: Metabolic
- alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage,
- 725 Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, 2022.
- Pätsch, J., Serna, A., Dähnke, K., Schlarbaum, T., Johannsen, A., and Emeis, K.-C.: Nitrogen cycling in the
 German Bight (SE North Sea) Clues from modelling stable nitrogen isotopes, Cont. Shelf Res., 30, 203–213,
 https://doi.org/10.1016/j.csr.2009.11.003, 2010.
- Pind, A., Risgaard-Petersen, N., and Revsbech, N. P.: Denitrification and microphytobenthic NO₃⁻ consumption
 in a Danish lowland stream: diurnal and seasonal variation, Aquat. Microb. Ecol., 12, 275–284,
 https://doi.org/10.3354/ame012275, 1997.
- Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G.: Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables, Earth-Sci. Rev., 191, 224– 262, https://doi.org/10.1016/j.earscirev.2019.02.021, 2019.
- Quiel, K., Becker, A., Kirchesch, V., Schöl, A., and Fischer, H.: Influence of global change on phytoplankton and
 nutrient cycling in the Elbe River, Reg. Environ. Change, 11, 405–421, https://doi.org/10.1007/s10113-010-01522, 2011.
- 738TheRStatsPackage,Version4.0.2:739https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp, last access: 29 January 2021.
- Radach, G. and Pätsch, J.: Variability of continental riverine freshwater and nutrient inputs into the North Sea for
- the years 1977–2000 and its consequences for the assessment of eutrophication, Estuaries Coasts, 30, 66–81,
- 742 https://doi.org/10.1007/BF02782968, 2007.

- Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Looman, A., Holloway, C., Shishaye, H. A., Barron, S.,
- and Santos, I. R.: Land use drives nitrous oxide dynamics in estuaries on regional and global scales, Limnol.
- 745 Oceanogr., 65, 1903–1920, https://doi.org/10.1002/lno.11426, 2020.
- Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of sea-water,
 Compos. Seawater Comp. Descr. Oceanogr. Sea Ideas Obs. Prog. Study Seas, 2, 26–77, 1963.
- 748 Rewrie, L. C. V., Voynova, Y. G., van Beusekom, J. E. E., Sanders, T., Körtzinger, A., Brix, H., Ollesch, G., and
- Baschek, B.: Significant shifts in inorganic carbon and ecosystem state in a temperate estuary (1985 2018),
 Limnol. Oceanogr., submitted.
- Rhee, T. S.: The process of air -water gas exchange and its application, Texas A&M University, College Station,
 2000.
- Rhee, T. S., Kettle, A. J., and Andreae, M. O.: Methane and nitrous oxide emissions from the ocean: A
 reassessment using basin-wide observations in the Atlantic, J. Geophys. Res. Atmospheres, 114, D12304,
 https://doi.org/10.1029/2008JD011662, 2009.
- Robinson, A. D., Nedwell, D. B., Harrison, R. M., and Ogilvie, B. G.: Hypernutrified estuaries as sources of N 2
 O emission to the atmosphere: the estuary of the River Colne, Essex, UK, Mar. Ecol. Prog. Ser., 164, 59–71, https://doi.org/10.3354/meps164059, 1998.
- Rosamond, M. S., Thuss, S. J., and Schiff, S. L.: Dependence of riverine nitrous oxide emissions on dissolved
 oxygen levels, Nat. Geosci., 5, 715–718, https://doi.org/10.1038/ngeo1556, 2012.
- 761 Rosenhagen, G., Schatzmann, M., and Schrön, A.: Das Klima der Metropolregion auf Grundlage meteorologischer
- Messungen und Beobachtungen, in: Klimabericht für die Metropolregion Hamburg, edited by: von Storch, H. and
 Claussen, M., Springer, Berlin, Heidelberg, 19–59, https://doi.org/10.1007/978-3-642-16035-6_2, 2011.
- Rosentreter, J. A., Wells, N. S., Ulseth, A. J., and Eyre, B. D.: Divergent Gas Transfer Velocities of CO₂, CH₄,
 and N₂O Over Spatial and Temporal Gradients in a Subtropical Estuary, J. Geophys. Res. Biogeosciences, 126,
 e2021JG006270, https://doi.org/10.1029/2021JG006270, 2021.
- Sanders, T., Schöl, A., and Dähnke, K.: Hot Spots of Nitrification in the Elbe Estuary and Their Impact on Nitrate
 Regeneration, Estuaries Coasts, 41, 128–138, https://doi.org/10.1007/s12237-017-0264-8, 2018.
- Scharfe, M., Callies, U., Blöcker, G., Petersen, W., and Schroeder, F.: A simple Lagrangian model to simulate 769 variability the Elbe River, Model., 770 temporal of algae in Ecol. 220, 2173-2186, 771 https://doi.org/10.1016/j.ecolmodel.2009.04.048, 2009.
- Schoer, J. H.: Determination of the origin of suspended matter and sediments in the Elbe estuary using natural
 tracers, Estuaries, 13, 161–172, https://doi.org/10.2307/1351585, 1990.
- Schöl, A., Hein, B., Wyrwa, J., and Kirchesch, V.: Modelling Water Quality in the Elbe and its Estuary Large
 Scale and Long Term Applications with Focus on the Oxygen Budget of the Estuary, Küste, 203–232, 2014.
- Schroeder, F.: Water quality in the Elbe estuary: Significance of different processes for the oxygen deficit at
 Hamburg, Environ. Model. Assess., 2, 73–82, https://doi.org/10.1023/A:1019032504922, 1997.
- Sharma, N., Flynn, E. D., Catalano, J. G., and Giammar, D. E.: Copper availability governs nitrous oxide
 accumulation in wetland soils and stream sediments, Geochim. Cosmochim. Acta, 327, 96–115,
 https://doi.org/10.1016/j.gca.2022.04.019, 2022.
- Siedler, G. and Peters, H.: Properties of sea water, Physical properties, in: Oceanography, vol. V/3a, edited by:
 Sündermann, J., Springer, Berlin, Germany, 233–264, 1986.
- Silvennoinen, H., Hietanen, S., Liikanen, A., Stange, C. F., Russow, R., Kuparinen, J., and Martikainen, P. J.:
 Denitrification in the River Estuaries of the Northern Baltic Sea, AMBIO J. Hum. Environ., 36, 134–140,
 https://doi.org/10.1570/0044.7447(2007)26(124.DJTPEO)2.0.60:2, 2007.
- 785 https://doi.org/10.1579/0044-7447(2007)36[134:DITREO]2.0.CO;2, 2007.

- Smith, R. L. and Böhlke, J. K.: Methane and nitrous oxide temporal and spatial variability in two midwestern USA
 streams containing high nitrate concentrations, Sci. Total Environ., 685, 574–588,
 https://doi.org/10.1016/j.scitotenv.2019.05.374, 2019.
- Sommerfield, C. K. and Wong, K.-C.: Mechanisms of sediment flux and turbidity maintenance in the Delaware
 Estuary, J. Geophys. Res. Oceans, 116, C01005, https://doi.org/10.1029/2010JC006462, 2011.
- Tang, W., Tracey, J. C., Carroll, J., Wallace, E., Lee, J. A., Nathan, L., Sun, X., Jayakumar, A., and Ward, B. B.:
 Nitrous oxide production in the Chesapeake Bay, Limnol. Oceanogr., 67, 2101–2116, https://doi.org/10.1002/lno.12191, 2022.
- 794 Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, 795 P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., 796 Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, 797 E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, 798 B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, 799 T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. 800 R., Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248-256, https://doi.org/10.1038/s41586-801 802 020-2780-0, 2020.
- US EPA: Volunteer Estuary Monitoring: A Methods Manual, United States Environmental Protection Agency
 (EPA), 2006.
- Walter, S., Bange, H. W., and Wallace, D. W. R.: Nitrous oxide in the surface layer of the tropical North Atlantic
 Ocean along a west to east transect, Geophys. Res. Lett., 31, L23S07, https://doi.org/10.1029/2004GL019937,
 2004.
- Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res. Oceans, 97,
 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
- Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and seawater, Deep Sea Res. Oceanogr. Abstr.,
 17, 721–735, https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
- Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359,
 https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
- Wells, N. S., Maher, D. T., Erler, D. V., Hipsey, M., Rosentreter, J. A., and Eyre, B. D.: Estuaries as Sources and
 Sinks of N₂O Across a Land Use Gradient in Subtropical Australia, Glob. Biogeochem. Cycles, 32, 877–894,
 https://doi.org/10.1029/2017GB005826, 2018.
- Wertz, S., Goyer, C., Burton, D. L., Zebarth, B. J., and Chantigny, M. H.: Processes contributing to nitrite
 accumulation and concomitant N2O emissions in frozen soils, Soil Biol. Biochem., 126, 31–39,
 https://doi.org/10.1016/j.soilbio.2018.08.001, 2018.
- de Wilde, H. P. and de Bie, M. J.: Nitrous oxide in the Schelde estuary: production by nitrification and emission
 to the atmosphere, Mar. Chem., 69, 203–216, https://doi.org/10.1016/S0304-4203(99)00106-1, 2000.
- Winterwerp, J. C. and Wang, Z. B.: Man-induced regime shifts in small estuaries—I: theory, Ocean Dyn., 63,
 1279–1292, https://doi.org/10.1007/s10236-013-0662-9, 2013.
- WMO: Scientific Assessment of Ozone Depletion: 2018, World Meteorological Organization, Geneva,
 Switzerland, 2018.
- Wolfstein, K. and Kies, L.: Composition of suspended participate matter in the Elbe estuary: Implications for
 biological and transportation processes, Dtsch. Hydrogr. Z., 51, 453–463, https://doi.org/10.1007/BF02764166,
 1999.
- 829 Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O.: The role of nitrifier denitrification in the
- production of nitrous oxide, Soil Biol. Biochem., 33, 1723–1732, https://doi.org/10.1016/S0038-0717(01)000967, 2001.

- 832 Yevenes, M. A., Bello, E., Sanhueza-Guevara, S., and Farías, L.: Spatial Distribution of Nitrous Oxide (N₂O) in
- the Reloncaví Estuary–Sound and Adjacent Sea (41°–43° S), Chilean Patagonia, Estuaries Coasts, 40, 807–821,
- 834 https://doi.org/10.1007/s12237-016-0184-z, 2017.
- Zander, F., Heimovaara, T., and Gebert, J.: Spatial variability of organic matter degradability in tidal Elbe
 sediments, J. Soils Sediments, 20, 2573–2587, https://doi.org/10.1007/s11368-020-02569-4, 2020.
- Zander, F., Groengroeft, A., Eschenbach, A., Heimovaara, T. J., and Gebert, J.: Organic matter pools in sediments
 of the tidal Elbe river, Limnologica, 96, 125997, https://doi.org/10.1016/j.limno.2022.125997, 2022.
- 839 ZDM: Abfluss Neu Darchau, edited by: Wasserstraßen- und Schifffahrtsamt Elbe, 2022.