Dear Reviewer,

We are grateful for your thoughtful and thorough evaluation of our manuscript. Below, we respond to each of your comments and concerns, identifying how we intend to address them in a revised version of the manuscript. Our responses are indicated with a blue font. We have endeavoured to address all of your comments following your recommendations. In some cases, however, we feel the recommended changes are unnecessary, and explain why we think so. We believe that our manuscript will be improved by addressing your comments and we thank you again for your time reviewing this document.

Sincerely,
R. Izett & co-authors.

General:
This manuscript aims to provide an overview of available estimates of gross primary production (GPP) and net community production (NCP) obtained from the analysis of BGC-Argo float data. The manuscript starts with a detailed description of the assumptions driving GPP and NCP measurements based on float data, intertwined with a description of some of the existing studies reporting such productivity estimates for different ocean regions (and globally). In the second part of this manuscript (section 3 onwards), the authors further review available NCP estimates for OSP, and conduct their own novel analysis to derive global GPP estimates. Overall, I believe there is a lot of useful information compiled in this work, but the different sections of the manuscript feel disconnected from one another. Moreover, regarding the review of NCP estimates, the authors omit several studies that have inferred respiration rates in the mesopelagic layer from float data and have been used to obtain NCP estimates in the Southern Ocean. My initial recommendation is to divide the present manuscript into two separate works, dealing with GPP and NCP, separately. At this stage, I find the work related on GPP to be potentially more robust than that on NCP.

Thank you for your assessment of our manuscript. We appreciate and value your feedback; however, we elect to not divide the manuscript into separate contributions for GPP and NCP. Our reasons are the following:

- GPP and NCP are important metrics, which have both benefitted from recent efforts to quantify them using float observations. While the methods to estimate both metrics are different, there are some consistencies, such as the requirement to interpret upper ocean biogeochemical budgets (albeit over different timescales) and in the variables used (O2, bbp, in particular). For these reasons, we feel it makes sense to streamline descriptions of their respective methods, as we have done in the opening paragraphs of section 2.

- Despite the recent attention to developing GPP and NCP methods, the approaches are still new, and not widely known or consistently applied. While promising, both sets of methods require continued attention to limit their uncertainties, and promote their uptake by the community. We feel that presenting GPP and NCP methods together is most appropriate for summarizing these shared challenges and efforts to address them.
NCP and GPP are rarely compared. However, our manuscript offers an early opportunity to do this using float data (as in Fig. 10). While our GPP vs NCP analysis is fairly simple, we feel that alongside the other GPP and NCP examples in the manuscript it offers an example of how the methods can be used as powerful tools - independently and together - to resolve PP over a range of scales.

Overall, our goal with this manuscript is to provide a single, comprehensive, and accessible reference on emerging float-based GPP and NCP methods. We are targeting a broad readership, including researchers who do not normally perform PP calculations, with the intention of summarizing the current state of GPP and NCP methods, and helping to familiarize the community-at-large with these new tools. Thus, we elected to describe both methods in a singular resource that serves as both an overview to people unfamiliar with float-based PP methods, and as a resource to those familiar with the methods who may wish to understand, at a higher level, the current main benefits and challenges. Ultimately, we hope that this resource facilitates broader uptake of the methods, as singular or combined tools, and promotes their continued development.

We will clarify this intention by modifying the following sections of text (revised text underlined).

We will add the following text to the end of the abstract: This paper is intended as a resource to the oceanographic community to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, and to promote their continued development.

We will add the following text to the end of the final introduction paragraph: This paper is intended as a resource for a broad readership — including researchers who do not normally perform PP calculations — that summarizes the current state of GPP and NCP methods and helps to familiarize the community-at-large with the current benefits, challenges and application of these new tools.

We will modify the second paragraph of the conclusions as follows:

As float-based techniques mature, the BGC-Argo fleet can be used to extend our current understanding of the marine GPP, NPP, NCP, and C-export, particularly at scales that have so far only been achieved through satellite-based algorithms (e.g., Behrenfeld and Falkowski, 1997; Laws et al., 2011). For example, by compiling the data discussed and derived in this paper, we can calculate independent, global estimates of the carbon export ratio (equivalent to ANCP divided by NPP, where NPP is derived from float-GOP; Figure 10). Notwithstanding the regional and temporal biases in current float-based PP estimates, these C-export ratio estimates are consistent with the commonly used satellite models of Laws et al. (2011) and Henson et al. (2012). Simultaneous estimates of GPP, NCP, and C-export are rarely made, let alone comparisons between them. Thus, the export ratio we derived here could be an important tool for improving our understanding of the ocean carbon cycle. Moving forward, the extent to which float-based PP calculations can be applied will depend, to a large degree, on the availability of float data (sect. 4.1.1), and our capacity to better constrain key sources of uncertainty in biogeochemical budget interpretations (sect. 4.1 and
4.2). Indeed, to increase the availability of float-based PP data, expansion of the Argo fleet should be prioritized, particularly in under-sampled ocean regions. Floats will need to be deployed with sampling intervals set to 5.2 or 10.2 days (rather than 5.0 or 10.0 days) to properly detect diurnal variability. Finally, fully exploiting floats for PP measurements will rely on the open availability of PP datasets, including processed data and relevant software.

Please also see below our responses to your specific comments regarding the omitted Southern Ocean literature. In brief, our intention in this manuscript was to highlight upper ocean (e.g., euphotic zone) processes. However, following your recommendations, we have included references to, and brief descriptions of, the sources that you provide.
Specific comments:
The introductory section is quite complete and provides a good description of the main productivity estimates that one can find in the literature (PP, GPP, NPP, NCP, etc.). For the most part, I like Figure 1, but I do not quite understand the second set of lines below the grey line indicating “autotrophic”. I would recommend simplifying panel (a) by removing the last three lines.

Thank you. In Figure 1, our intention was to illustrate a case where CR > GPP, giving rise to net heterotrophic (negative NCP) conditions. The lower part of the figure supports text in the secondary instruction paragraph (starting L45) describing units and notation for the PP fractions. Note that we will change the notation around the respiration terms (see comment below), such that AR, HR and CR have positive notation, and NPP = GPP-AR and NCP = GPP-CR. Accordingly, the text beginning on L45 will become “GPP, NPP and NCP are often expressed as volumetric equivalents of organic carbon or O2 production (e.g., mol C or O2 m\(^{-3}\) d\(^{-1}\)), and the respiration terms are expressed in terms of organic C or O2 consumption. Accordingly, GPP, NPP and CR can only have positive values, while NCP may assume positive or negative quantities”, and equations 1-3 will become:

\[
\frac{dT(t,z)}{dt} = GPP(t,z) - CR(t,z) \pm \text{other sources/sinks}(t,z) \quad (1) \\
\frac{dT(t,z)}{dt} \approx GPP(t,z) - CR(z) \quad (2) \\
NCP(t,z) = \frac{dT(t,z)}{dt} \pm \text{other sources/sinks}(t,z) \quad (3)
\]

While we appreciate your feedback, for the reasons described above, we will maintain the lower part of Figure 1, as is. We will, however, clarify in the figure caption what the second set of lines represent. A revised figure caption is as follows, with new text underlined.
Figure 1. A conceptual schematic of PP definitions. Panel (a) shows simplified reaction equations of organic matter production and respiration. The upper part of the figure represents a region of net autotrophic conditions (NCP > 0), while the lower part represents a region of net heterotrophic conditions (NCP < 0). Note that net heterotrophic conditions do not necessarily always occur deeper in the water column than net autotrophy. Panel (b) represents idealized PP and CR profiles, where PP declines with depth due to the light dependency of photosynthesis. The vertical axis represents water column depth, and the thin black line divides positive and negative rates.

Figure 2d does not make sense to me given the large deployment of floats and profiles made available through the SOCCOM program. Based on this panel, it seems as if the Southern Ocean is one of the least sampled regions in terms of BGC-Argo profiles, which is not the case. I have attached below a map from the GO-BGC website showing that the Southern Ocean is the region with the largest quantity of floats (and thus BGC profiles) (https://www.go-bgc.org/arraystatus#locations). Is Figure 2d perhaps yielding a misleading picture based on the way the data was binned? Furthermore, Figure 2d seems to be inconsistent with Figure 6a, where the largest number of profiles is indeed observed in the Southern Ocean.

Thanks for this. We agree Fig. 2d is somewhat misleading. As you suggest, this is mostly due to the way that the data were binned; and also due to the colour scale on the original figure. We have re-made Fig. 2d, binning the float profiles to 10x10 degree bins and normalizing the results by the surface area in each grid cell. We also adjusted the colour axis for that panel. Now, we believe that the large number of profiles from the Southern Ocean is better represented, as in Fig. 6a. Moreover, our heat map in Fig. 2d is consistent with a recent snapshot of BGC-Argo profile data obtained from the network status map (see below figure).
Revised Figure 2 and caption (revised text underlined):

Figure 2. Coverage of GPP and NCP datasets, and BGC-Argo profiles. The upper row represents archived GPP and NCP data obtained from ships or moorings, while panel (c) shows the locations and durations of float- or glider-based GPP and NCP studies. Panel (d) shows a heatmap of the distribution of BGC-Argo profiles collected from 2010 through 2022. Data in panels (a) and (b) were binned to a five-by-five-degree grid. Data in panel (d) were binned to a ten-by-ten degree grid, and normalized by the surface area in each grid cell. A list of archived data sources is provided in the appendix.

Network status map:
Near line 115 “…are driven by daytime net autotrophic production (GPP + CR)”. Net autotrophic production is NPP (GPP-AR).

Near line 125 “NCP (i.e., GPP + CR)”. Should be GPP – CR.

Section 2.1 is well documented and informative, but it has similar sign-problems in eq 5.3 (loss processes should be negative, as in eq. 5.1), and eq. 6 (again CR should be negative). This same correction applies for Figure 3, under assumptions, “GPP + CR” should be corrected to “GPP – CR”.

Thank you for these comments. As described above, we will change the notation around CR to being negative, so that NCP = GPP-CR, and NPP = GPP-AR. Equation 6 becomes:

\[T(t_1, z) = T(t_0, z) + GPP(z) \int E(t) / E_{dt} - CR(z)(t_1-t_0) \]

Near line 160 “…derived from particle backscatter (bbp) or beam attenuation (cp, typically at 660 nm) measurements (both m-1) using regional (e.g., Loisel et al., 2011; Cetinić et al., 2012) or global (e.g., Graff et al., 2015) algorithms.”. The Graff et al, 2015 algorithm is not global, it is based on samples from an Atlantic Meridional Transect (AMT-22) and a subsection of the Equatorial Pacific.

Thank you. We will clarify this statement to identify that the Graff et al. (2015) algorithm is based on a latitudinally-distributed dataset obtained from the Atlantic Meridional Transect and the equatorial Pacific.

Section 2.2 for NCP. As this manuscript aims to provide a complete overview of all float-based NCP estimates/methods available, it should also include those applied to the mesopelagic layer, mostly conducted in the Southern Ocean to infer respiration rates, and thereby NCP, from oxygen drawdown:

We appreciate this feedback. However, mesopelagic respiration is beyond the intended scope of our manuscript, which is meant to focus on float-based PP methods relating to autotrophic production in the upper / euphotic ocean. As we describe in the manuscript’s introduction, our intention is to describe the float-based PP methods that are seen as emerging alternatives to
traditional PP approaches which rely on ships or satellites. In this context, a description of processes occurring below the euphotic zone is out of scope for our manuscript.

We will, however, include some additional text in the introduction to identify that we are reviewing GPP/NCP methods for this specific purpose and noting that other recent literature (the references you provide) has presented float-based methods to evaluate NCP/respiration in the deeper water column. A modified final introductory paragraph is as follows, with revised text underlined.

The primary objective of this paper is to demonstrate the potential of autonomous platforms, exemplified by BGC-Argo floats, for expanding the spatial and temporal coverage of PP estimates in the upper ocean. This paper explores float-based approaches for estimating GPP and NCP, since those methods are more mature than emerging approaches for NPP quantification (Arteaga et al., 2022; Yang, 2021; Estapa et al., 2019; Long et al., 2021). While recent literature has presented float-based methods for quantifying PP metrics in the interior ocean (e.g., Martz et al., 2008; Hennon et al., 2016; Arteaga et al., 2019; Su et al., 2022), the focus of this manuscript is on methods that resolve processes occurring principally within the euphotic zone. To facilitate a full exploitation of these new opportunities, we take stock of the float-based tools currently available to researchers and identify their strengths and limitations. After providing an overview of the emerging float- and glider-based PP approaches, we present quantitative analyses to demonstrate the current application of these methods, as single or combined tools.

References for the NPP literature cited in the previous paragraph:

In response to this comment, and a subsequent one, we will also specifically include references to the Arteaga et al. (2019) and Su et al. (2022) papers in the description of published float-based NCP studies. Please see below.

Section 3 suggests that examples of GPP and NCP will be shown at local and global scales. However, a local/regional example is shown for only NCP, and a global example is shown for
only GPP. These GPP and NCP analyses seem therefore disconnected between them and from the previous sections of the manuscript.

Thank you for this evaluation. Around L410 and L474 we attempted to describe why analogous analyses are not yet feasible for both PP metrics. For example, on L409-412, we state that “To demonstrate the current capacity for float-based PP studies at local scales, we performed a case study analysis of float/glider NCP data from OSP. A similar analysis is not presently feasible for GPP, owing to the small number of localized studies using floats and gliders, and the currently insufficient number of profiles available to conduct GPP calculations from composite diurnal cycles”. Presently, there have not been enough float/glider PP studies in a single region to compile those data and perform an analysis similar to our local NCP analysis. We were also unable to perform our own GPP calculations at very fine spatial scales due to the high number of profiles required to make those calculations. We will clarify these point at the end of L412 by adding the following text:

Indeed, there have not been enough published float-based GPP studies to date in a single region to compile those data and perform an analysis similar to our local NCP analysis. Moreover, we could not perform our own local GPP calculations due to the high number of profiles required to make those calculations. These factors currently preclude an analogous analysis of GPP methods at localized scales.

In addition, a coarser NCP case study was not feasible because previous work evaluating NCP at basin scales is quite sparse and disparate - only a few studies (Johnson et al., 2017; Yang et al., 2019; Emerson and Yang, 2022, and the references you included on mesopelagic respiration/ANC) have used compiled float data to evaluate NCP on coarser scales. Unfortunately, the limited number of studies preclude inter-comparisons of their results. Also, performing new global or basin scale NCP calculations in this manuscript is beyond our scope. To address this apparent inconsistency in our analyses, we will add the follow text to the opening paragraph of section 3.2.1, L482 (new text underlined):

Building on recent work by Johnson and Bif (2021) and Stoer and Fennel (2022), we performed new global GOP and GCP calculations using the available BGC-Argo array. We summarize those calculations here and provide further details in the appendix. Presently, a similar analysis is not feasible for NCP, as global scale NCP calculations have not yet been attempted by the community, and only a small handful of studies have calculated NCP at basin scales (see section 3.1). As a result, intercomparisons of published results at these scales are not feasible, and new calculations of global NCP are beyond the scope of the present paper.

For our GPP calculations, we followed Stoer and Fennel (2022) by compiling all available high-quality BGC-Argo ΔO2 and bbp-POC data collected between January 2010 and December 2022.

Near line 400 “ Float-based NCP studies are somewhat more numerous than GPP studies (Table A2) but are similarly limited in their geographic extent. NCP has been well-studied around Ocean Station Papa (OSP; 50°N, 145°W) in the subarctic NE Pacific (sect. 3.1.1), and only a handful of localized studies have occurred elsewhere, such as in the S. China Sea (Huang et al., 2018) and the NW Atlantic (Alkire et al., 2014; Yang et al., 2021) (Fig. 2c)”. This is incorrect, as it omits the Southern Ocean studies mentioned above.
Thank you for this feedback. We will include some of the Southern Ocean citations that you provided by including the following text immediately after the quoted section:

“Several float-based studies have quantified ACNP in the Southern Ocean, however, that work has principally focused on processes occurring below the euphotic zone (e.g., Martz et al., 2008; Hennon et al., 2016; Arteaga et al., 2019; Su et al., 2022)”

Near line 475: “No studies to date have estimated global NCP from floats. Johnson et al. (2017) (Southern Ocean), Yang et al. (2019), and 475 Emerson and Yang (2022) (both Subtropical Ocean) have, however, provided extensive assessments of (A)NCP from a compilation of multiple floats. Johnson et al. (2017) used BGC-Argo data to characterize ANCP in the Southern Ocean by compiling NO3- data from 24 floats deployed between 2009 and 2016. Similarly, Yang et al. (2019) and Emerson et al. (2022) compiled O2 data from multiple floats to estimate ANCP in the North and South Hemisphere Subtropical Ocean.”

Again, the studies listed above also used a compilation of floats to infer NCP in large regions of the Southern Ocean and should be referenced here.

Thank you. We will include these references by modifying the referenced text as follows (revised text underlined):

No studies to date have estimated global NCP from floats. Johnson et al. (2017) (Southern Ocean), Yang et al. (2019), and Emerson and Yang (2022) (both Subtropical Ocean) have, however, provided extensive assessments of (A)NCP from a compilation of multiple floats. Johnson et al. (2017) used BGC-Argo data to characterize ANCP in the Southern Ocean by compiling NO3- data from 24 floats deployed between 2009 and 2016. Similarly, Yang et al. (2019) and Emerson et al. (2022) compiled O2 data from multiple floats to estimate ANCP in the North and South Hemisphere Subtropical Ocean. Lastly, some recent work (e.g., Martz et al., 2008; Hennon et al., 2016; Arteaga et al., 2019; Su et al., 2022) compiled data from subsets of the Southern Ocean BGC-Argo array to quantify ANCP and respiration below the euphotic zone. Those studies, however, are out of scope for the present manuscript in which we focus on reviewing methods resolving PP metrics primarily within the euphotic zone.

Section 3.1.1. I think this analysis would be better presented in a manuscript dedicated exclusively to NCP or productivity fluxes at OSP. This way, the methodology could be better explained and expanded in a section of its own.

Thank you. Please see our response to your suggestion to divide the manuscript into separate GPP and NCP papers above. We also feel that the details on the NCP case study provided in Appendix A are sufficient for explaining the methodology employed in that analysis.

Section 3.2. Again, this section hints at the presentation of global NCP and GPP estimates, but results are presented only for GPP. This type of inconsistency could be addressed by having separate manuscripts on GPP and NCP.

Thank you. Again, please see our response to this suggestion above. Please also note our comments above describing why global NCP analyses were not performed in this manuscript.
Near line 490 “Our calculations, we extend the work of ..”. This sentence needs correction.

Thanks for catching this error. We will change the sentence from “Our calculations, we extend the work of Johnson and Bif (2021) and Stoer and Fennel (2022)” to “Our calculations extend the work of Johnson and Bif (2021) and Stoer and Fennel (2022)”

Near line 505 “There is generally good agreement between float O2- and bbp-based GPP and between the float estimates and independent GOP estimates derived from bottle sampling (Fig. 6b,c)”. Also line 555 “Float-based GPP estimates have been shown to compare well with independent data, and well between O2- and POC-based estimates (see our global GPP case study, sect. 3.2, also Johnson and Bif, 2021; Stoer and Fennel, 2022).” I do not agree with these statements. On the contrary, I see a considerably disagreement between the zonally-averaged estimates presented in Figure 6b. From here on, most of the subsequent analyses are based on the premise of an agreement between independent GPP estimates, which is not supported by the presented analysis. The design and focus of the GPP and NCP analyses presented in section 3 do not seem to converge well together within one single manuscript. Therefore, I would strongly recommend having two different works for each topic. Overall, the review and novel analyses conducted with respect to GPP seem to be more mature than those for NCP. Perhaps the authors could consider approaching the topic of float-based GPP estimates first in a more concise manner.

Thank you for this feedback. Please note our response to your suggestion to divide the manuscript above.

We agree with your concerns about the comparison between O2 and bbp-based GPP estimates; there are important differences between these different metrics, particularly in the zonally-averaged estimates. To better address the apparent inconsistencies between O2 and bbp GPP estimates, we will revise the text starting on L555 as follows (revised text underlined):

Float-based GPP estimates have been shown to compare well with independent data, and O2 and bbp-based estimates generally correlate with one another (p-value < 0.05 and R² = 0.47 through paired data in upper 60 m; Fig. 7). With some exceptions (e.g., surface waters between 0-30°N) offsets between O2 and bbp-based estimates are often within the standard error of the diurnal cycle approach (Fig. 6, and see results from Johnson and Bif, 2021; Stoer and Fennel, 2022). However, when compared directly, the ratio between ΔO2-GOP and POC-GCP is not always consistent with the expected relationships based on documented PQ and PER variability (Fig. 7). For example, given an estimated range of ~18-47% DOC production during photosynthesis (median PER value of 32.5% ± 14.4% standard deviation calculated from Moran et al., 2022), and a PQ range of 1-1.45 (Laws, 1991), the ratio between ΔO2-GOP and POC-GCP uncorrected for PER should be between ~1.2 and 2.6 (shaded region in Fig. 7). Considering an even broader PER range of ~2-50% (global confidence interval from Baines and Pace, 1991) results in an expected GOP:GCP ratio of ~1-2.9. Yet, in our depth-resolved, global GPP dataset, we derived a median ratio of ~3.1 ± 0.2 (median ± confidence interval) for estimates derived in the upper 60 m. When considering all depths (up to 200 m), the median ratio is ~4.1 ± 0.6, reflecting the lower signal-to-noise ratio of diurnal O2 or bbp variability at depth. For comparison, Briggs et al. (2018) calculated a ratio of ~2.6 between mixed layer O2-GOP and c_p-GCP during a NW Atlantic spring bloom. These results imply higher PQ values and/or DOC production rates and may indicate
that these terms are non-uniform across the global ocean. Using static PQ or PER values in GPP calculations (as in Stoer and Fennel, 2022 and in our global GPP case study) likely contributes to the uncertainty in the resulting GPP datasets, and partially explains the offsets we observed O$_2$- and POC-based GPP estimates, and differences between the float- and bottle sample GPP values. Other sources of uncertainty and causes for potential and apparent offsets between O2- and POC-based estimates are discussed in the following paragraphs.

Please note that the remainder of section 4.1 describes a number of reasons for potential and apparent offsets between O2 and bpp based GPP estimates, including uncertainty in the bpp-to-POC relationship, diurnal variations in O2 or bpp not related to photosynthesis, and differences in the number and locations O2 and bpp profiles.