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Abstract. Ecosystem manipulative experiments are one of the most powerful tools to understand terrestrial ecosystem 

responses to global change because they measure real responses in real ecosystems. However, their scope is limited in space 

and time due to cost and labour intensity. This makes generalising results from such experiments difficult, which creates a 

conceptual gap between local scale process understanding and global scale future predictions. Recent efforts have seen results 15 

from such experiments used in combination with dynamic global vegetation models, most commonly to evaluate model 

predictions under global change drivers. However, there is much more potential in combining models and experiments. Here, 

we discuss the value and potential of a workflow for using ecosystem experiments together with process-based models to 

enhance the potential of both. We suggest that models can be used prior to the start of an experiment to generate hypotheses, 

identify data needs and in general guide experimental design. Models, when adequately constrained with observations, can 20 

also predict variables which are difficult to measure frequently or at all, and together with the data can provide a more complete 

picture of ecosystem states. Finally, models can be used to help generalise the experimental results in space and time, by 

providing a framework in which process understanding derived from site-level experiments can be incorporated. We also 

discuss the potential for using manipulative experiments together with models in formalised model-data integration 

frameworks for parameter estimation and model selection, a path made possible by the increasing number of ecosystem 25 

experiments and diverse observation streams.  The ideas presented here can provide a roadmap to future experiment - model 

studies. 
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1 Introduction 30 

In the face of a changing climate, understanding how ecosystems will respond to conditions unprecedented in the observational 

record is one of the biggest challenges in earth system science. To meet this challenge, we must employ all tools available to 

us - observations, experiments and meta-analyses, and process- and data-based models. All these different tools have strengths 

and weaknesses in terms of spatial and temporal scales, generality and predictive capacity. Therefore, not only using these 

tools, but using them in combination, is essential for bridging the gap between process understanding and scalability.  35 

 

Over the last few decades, there have been great advancements in the type and quantity of available ecosystem data, including 

large databases of field observations (Kattge et al., 2020); continuous ecosystem monitoring (Baldocchi, 2020) remotely sensed 

Earth observations (Xiao et al., 2019); spatial datasets with global coverage for climate (Fick & Hijmans, 2017; Harris et al., 

2020; Karger et al., 2020), soil (Food and Agriculture Organization & Food and Agriculture Organization of the United 40 

Nations, 2008; Hengl et al., 2017),  and other spatially upscaled global ecosystem data products (Jung et al., 2020; Poggio et 

al., 2021). In and of themselves, such observational datasets provide a comprehensive picture of ecosystem properties and 

structure, carbon and water fluxes. However, the mounting data richness in ecosystem science has not led to a reduction in 

projection uncertainties of global biogeochemical cycles in a future climate (Arora et al., 2013; Friedlingstein et al., 2014). 

Ecological and physiological process understanding - key for predicting outside the domain of observed conditions - often 45 

remains weakly constrained in spite of the large volume of  available ecosystem data collected over recent decades. In this 

context, ecosystem manipulation experiments (EMEs) have a unique and particularly valuable role to play (Stocker et al., 

2016; Wieder et al., 2019). 

 

EMEs are outdoor experimental setups in which one or multiple driving factors (e.g., water availability, temperature, nutrient 50 

inputs, atmospheric CO2 concentration, perturbations, species composition), or a combination of factors, are controlled to study 

their separate or interactive effects on ecosystem processes as well as subunits within ecosystems such as plants or microbes. 

They are a useful tool because they contain ecosystem process responses defined by treatments and hypotheses, while 

minimising confounding factors, and scaling biases and experimental artefacts from smaller and more limited lab or 

mesocosm-based experiments (Dalling et al., 2013). EMEs provide a unique window into the responses of ecosystems to a 55 

potential future environment and can reveal complex responses at the level of plants, communities, and ecosystems, shaped by 

feedbacks between soil and vegetation. While extremely valuable for understanding ecosystem responses to future conditions, 

due to their realistic scale and multidimensionality of observations, EMEs generate small data - in contrast to, e.g., Earth 

observation. Therefore, it remains challenging to generalise from a relatively small set of local observations to future global 

predictions. EMEs are usually operated at spatial scales on the order of 1-100 m, and are limited in time to typically 1-10 years 60 

due to high operating costs and laborious measurements. Thus, it can be difficult to scale the conclusions from experiments 

with confidence, both in time and in space. Here, we propose and discuss approaches for aiding generalisations from EME 

observations in combination with process-based models as a potential solution to overcome this scalability challenge. 
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Process-based ecosystem models are mathematical representations of how plant traits, and soil characteristics determine water, 65 

energy, and biogeochemical fluxes, and the accumulation of organic matter in a cascade of ecosystem pools, given a set of 

environmental boundary conditions. Depending on the scale and processes represented, such models are termed terrestrial 

biosphere models, dynamic vegetation models, mechanistic ecosystem models, or land surface models, and are implemented 

as coupled components in Earth System Models (Prentice et al., 2007). Irrespective of what we call them, all such models face 

similar challenges, in that they need to balance realism, robustness, and reliability (Prentice et al., 2015)  to achieve sound 70 

predictions for ecosystem fluxes and pools across the globe and across decades into the future. To achieve this such models 

need to be confronted with diverse data to leverage complementary constraints. Recent efforts have been made in using large 

observational datasets for validating and benchmarking these models (Collier et al., 2018; Seiler et al., 2022). However, as 

outlined above, model projections remain divergent ((Arora et al., 2013; Friedlingstein et al., 2014)), pointing to remaining 

gaps in critical process understanding from such datasets and extrapolating observations from past climate conditions to the 75 

future often comes with increased uncertainty. 

 

EMEs have been used to parameterise, validate and test models, ranging from drought (McDowell et al., 2013; Powell et al., 

2013), warming (Ma et al., 2022; Parton et al., 2007; Zaehle et al., 2010), fertilisation (Meyerholt & Zaehle, 2015; Thomas et 

al., 2013), or decomposition (Bonan et al., 2013) experiments. A step change came about with the FACE Model Data Synthesis 80 

(MDS) project (De Kauwe et al., 2014; Medlyn et al., 2015; Walker et al., 2014; Zaehle et al., 2014) which synthesised data 

from two temperate forest Free Air Carbon Dioxide Enrichment EMEs. The project asked not only if the models match the 

data but why the models match the data, making full use of manipulative experiments and being able to plot a path to model 

improvement. This approach led to the identification of both key processes that need to be included in models to correctly 

capture responses to elevated CO2 (e.g., flexible but realistic tissue stoichiometry, flexible biomass allocation, flexible leaf 85 

mass per area, organic N uptake) alongside areas where more data is needed to identify realistic and reliable process 

representation (e.g. water limitation effects on photosynthesis and transpiration, wood turnover, detailed photosynthesis 

information, N losses). Other studies are now following up on these results to further improve models (Caldararu et al., 2020). 

Since then, there have been several other MDS studies following the same philosophy, including other FACE experiments 

(Fleischer et al., 2019; Medlyn et al., 2016) and FACE plus warming experiments (De Kauwe et al., 2017). A few such 90 

modelling studies were performed prior to the start of the actual experiment (Fleischer et al., 2019; Medlyn et al., 2016; Parton 

et al., 2007) with the aim of informing experimental design and in the case of (Parton et al., 2007). Their model predictions 

were later tested against experimental results (Dijkstra et al., 2010), showcasing the power of such a study. 

 

There has been an increase in the number of EMEs globally, as well as in the amount of open data and efforts to synthesise 95 

and bring together existing experiments (Cleland et al., 2019; Liang et al., 2020; Van Sundert et al., 2023). The present issue 

includes some examples of new experiments including a large-scale drought and fertilisation experiment (Vargas G. et al., 
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2022) and EME-model integration, including studies looking at new nutrient models (Cornut, Delpierre, et al., 2022; Cornut, 

le Maire, et al., 2022; Eastman et al., 2023; Li et al., 2022), the effects of root distribution of water availability response 

(Kulmatiski et al., 2023), carbon storage in grasslands (Wilcox et al., 2022) and extreme events (Holm et al., 2022). 100 

Global observations, ecosystem experiments, and process-based models all have their strengths and weaknesses in terms of 

scalability and process understanding (Figure 1). To advance ecosystem science an integration of complementary sources of 

observations and models is needed to achieve the full predictive potential of the tools available. The majority of EME-model 

integration studies have focused on constraining or evaluating models with experimental data, however, there is a large 

untapped potential to use models and EMEs bidirectionally, as they can bridge the process understanding - scalability gap.  105 

While models are capable of making global scale predictions on long timescales, they also include a detailed process 

representation which can be a reflection of the insight gained from EMEs. In this paper we set out a roadmap to using models 

together with EMEs not only as a one-way street for validating models but as an integrated workflow for improving 

experimental design and generalising experimental conclusions.  

2 Not a one sided relationship: what can models do for experiments? 110 

In past studies, the focus has been on integrating conclusions from EMEs into models and evaluating such models against 

experimental data to improve model process representation (Medlyn et al., 2015; Norby et al., 2016). However, this relationship 

can easily be turned around. Models can be used as digital twins or sandboxes to explore different possibilities for experimental 

design, set realistic and practical treatment levels and formulate quantitative, defensible hypotheses. Models can also be used 

to integrate observations gained from one or more experiments for generalising in time and space 115 

2.1 Hypothesis generation and experimental design 

Ecosystem manipulation experiments are designed around testable research questions and hypotheses, following established 

theory. Hypotheses are generally of a qualitative and first-order nature, i.e., ‘if higher A then B’, for example nutrient addition 

leads to increased growth and photosynthesis or drought reduces growth. However, ecosystem responses are affected by 

multiple feedbacks, operating at diverse time scales. Responses can be non-linear, even threshold-like, and interactive, and can 120 

be affected by plant adaptations, species-specific responses, and plant-soil interactions. Certain processes saturate at higher 

levels reached over time, such as nutrient addition or elevated CO2, where continued application or the treatment does not lead 

to a further ecosystem response, as systems become limited by other factors. In the case of edaphic factors, such as nutrient 

availability, spatial factors, such as underlying fertility and history of deposition interact with future loading. Ecosystem 

responses have also been shown to vary with the intensity and duration of the treatment (Niu et al., 2022). This means that it 125 

is often difficult to (explicitly) generate hypotheses that reflect multiple known individual processes and their (unknown) 

interactive effects. Using a model, or multiple models, or multiple process representations within one modelling framework 

can aid the hypothesis generation.  
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As many responses to environmental drivers are non-linear, it can be uncertain when designing an experiment what and how 

many treatment levels are necessary, especially if choosing a response surface rather than a replicated approach (Kreyling et 130 

al., 2018) This is particularly important as ecosystem-level experiments are technically challenging and expensive, especially 

those on the scale of FACE experiments. There are financial, logistical, and practical  constraints on how many treatment 

levels can be considered. Models can easily be run with multiple treatment levels, which would allow identification of  key 

nonlinearities and a defined response surface which can be used as a basis for choosing experimental treatments. 

Models can also potentially be used to define a sampling strategy. Initial model simulations can help identify which variables 135 

are likely to respond to the experimental treatment and at what time scales treatment responses are likely to be detected. If 

using multiple models or a model with multiple alternative process representations, this can also help identify variables that 

would help test the proposed hypotheses, by looking at model variables that respond differently for different model 

formulations. We propose a workflow (Figure 2) in which one or multiple models are run with local site conditions with 

multiple treatment levels. This then allows us to identify hypotheses based on predicted responses, ideal treatment levels and 140 

key variables to measure. This can be done multiple times to explore different experimental setups and ideas.  

There is often a gap between the optimum sampling strategy and what is actually feasible in field experiments - variables often 

not be measured with a sufficient temporal or spatial frequency due to either costs or technical difficulties. While we as a 

community have come a very long way in automating certain measurements - carbon and water fluxes, spectral properties, soil 

moisture - many remain time and labour intensive, such as direct measurements of biomass above and below- ground or plant 145 

and soil chemical composition. Even more, other quantities which might be useful to know are not possible to measure, that is 

they are latent or conceptual variables such as plant nutrient demand. Such variables are often key in explaining the observed 

responses, but can usually only be guessed at. 

In contrast, models produce all variables consistently at daily or sub daily intervals and predictions, including conceptual or 

latent quantities which can be expressed mathematically can therefore be used alongside experimental results to explain 150 

observed responses. For example, the issue of nutrient limitation under elevated CO2 involves many plant and soil processes, 

many of which cannot be monitored easily but are included in nutrient-enabled models (Caldararu et al., 2022). One potential 

issue here is that models need to be able to accurately represent ecosystem processes at a given particular experimental site. 

Before being used in such a scenario, models should be evaluated or even calibrated for the site to make sure of the model 

performance. 155 

2.2 Generalising in time and space 

Most manipulative ecosystem experiments are commonly performed at the plot level and are only maintained for a short time 

period (1- 5 years), with a few exceptional experiments lasting in the range of ten years or more (Eastman et al., 2021; Magill 

et al., 2004). While a particular experiment can tell us a lot about the mechanistic process involved, it remains an open question 

how scalable they are in time and space. While there are increasing efforts to standardise experimental treatments through 160 

initiatives such as the Nutrient Network (Borer et al., 2014), only a small and inevitably imperfectly distributed area of the 
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Earth’s vegetated surface can ever be covered by experimental treatments. However, models can be run over relatively long 

periods of time and globally, helping to test the generality of the process understanding informed by EMEs. .  

The problem of spatial scaling is obvious. Can the particular ecosystem studied represent other ecosystems of the same type 

and can plant or soil processes inferred from observed response be generalised? Such upscaling has been previously performed 165 

by accounting for moderating factors of the response, such as climate or soil conditions (Terrer et al., 2021). However, such 

approaches lack the mechanistic and dynamic underpinning provided by a process-based model and could thus miss important 

feedbacks.  

A particular challenge is posed by the step shape of imposed environmental change in EMEs, which contrasts with the gradual 

decadal-scale environmental change to which ecosystems are exposed. Several processes make the responses to a continuous 170 

change potentially different from those to a step change. Plants acclimate to the new conditions over time (Reich et al., 2018), 

a process that has been primarily studied for changes in temperature but is likely to occur for most environmental drivers (see 

Section 5). Species composition is likely to change under different environmental conditions, but it can likely only be observed 

during the duration of the experiment in systems with high species turnover such as grasslands (Avolio et al., 2014). Although 

ecosystem responses in observable quantities can often not be assumed to be time-invariant, particularly if slow plant-soil 175 

feedbacks are involved and even if conditions were held constant after a step-change, underlying processes often can. 

Mechanistic models that simulate responses to step changes, and that are constrained by data from step-change experiments 

are thus a device for translating empirical insights gained from step-change experiments into predictions that respect a priori 

knowledge of slow processes and their role in shaping decadal-scale ecosystem dynamics.  

A challenge for model-enabled temporal upscaling are slow processes that are not represented in models or insufficiently 180 

constrained by relatively short-term observations (1-10 years in EMEs), but can modify ecosystem responses at the longer 

term. Acclimation of photosynthesis and respiration to changes temperature and CO2 (Prentice et al., 2014; Way & Yamori, 

2014) and plasticity in allocation in response to carbon-nutrient balance changes (Poorter et al., 2012; Zaehle et al., 2014) 

largely lack reliable representations in models, and may have a strong influence on decadal to centennial carbon, nitrogen, and 

phosphorous supply and demand, and ecosystem dynamics. On even longer timescales, genetic adaptation through selection 185 

under new environmental pressures and changes in species compositions may emerge as strong drivers of ecosystem responses. 

Some experiments on shorter-lived, herbaceous species have shown shifts in species composition in response to elevated CO2 

(Reich et al., 2018), similar changes in longer-lived organisms are harder to observe in EMEs. These types of responses and 

their lack of representation in ecosystem models imply limits for data-constrained and model-based temporal up-scaling. In 

terms of short-term plasticity or acclimation, recent advances in using eco-evolutionary optimality in models (Harrison et al., 190 

2021) can represent plastic plant responses, and have successfully been used together with EMEs (Caldararu et al., 2020; Sabot 

et al., 2022). However, current ecosystem models are not well suited for dealing with changes in species composition, 

demography, and competition processes. However, trait-based, individual or cohort-based models (Fisher et al., 2015). 

Particularly for evaluating simulated acclimation and other phenotypic plasticity that operate at time scales of months to years, 

it will be important to make targeted use of insights gained from EMEs. Since this is a knowledge gap in both EMEs and 195 
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models, it is an opportunity for both communities to work side by side, rather than sequentially, to advance our knowledge of 

plant adaptation. 

 

In recent years, there has been a global effort to overcome the limitations of the different approaches, and try to solve the need 

of standardised controlled experiments on wide temporal and spatial scales. (Fraser et al., 2013) coined the term “coordinated 200 

distributed experiments” (CDEs) to describe a global network of standardised experiments distributed across a wide range of 

ecosystems and climate zones to account for issues of spatial and temporal scales. While initial CDEs were limited in their 

spatial coverage to Europe or North America, recent ones are striving to be truly global. Examples of global CDEs include the 

International Drought Experiment (Knapp et al., 2017) that studies the sensitivity of ecosystems to extreme drought events, 

the Nutrient Network (Borer et al., 2014) which addresses how grasslands are affected by eutrophication and grazing or the 205 

Tree Diversity Network (Paquette et al., 2018) which includes a global collection of tree biodiversity experiments. Coordinated 

EME networks with standardised protocols and homogenised compilations of published EME data (Van Sundert et al., 2023) 

can drastically facilitate model-data integration studies, performed for an extended set of sites and experiments. Multi-

experiment modelling may be essential for powerful generalisability tests and uncertainty quantification of model predictions, 

e.g., by a leave-experiment-out cross-validation (see also Section 3). Thus, using experiment networks and compilations 210 

together with models would increase confidence in the generality of model predictions and partially deal with the upscaling 

issues discussed in Section 3.3. The use of CDE results could also help to improve the parametrization of process-based models 

in ecosystems that are underrepresented, but this would require better coordination between response variables measured in 

the field and those processes included in the models (N. G. Smith et al., 2014).  

3 Model-data integration 215 

Data assimilation (DA) and model data integration (MDI) are broad umbrella terms for a variety of statistical methods that fit 

process based models parameters to observations. The methods are well established and widely used with remote sensing 

(Exbrayat et al., 2019; W. K. Smith et al., 2020) and eddy covariance data (Fox et al., 2009; Kuppel et al., 2012), at both site 

and global scales. There are now a number of DA methods available to the community (Anderson et al., 2009; Fer et al., 2021; 

Huang et al., 2019), which significantly lowers the barrier to entry for those who want to use such tools. 220 

One of the main issues with using DA methods is that the data used to constrain models are observations in present or past 

conditions, raising questions about the capacity of resulting models to predict ecosystem responses under future conditions. 

Therefore, using data from manipulative experiments can be extremely valuable in providing information of yet unobserved 

conditions. One other common issue with using remote sensing data to parameterise models, is that the observations used in 

DA need to be variables that are actually represented in models (MacBean et al., 2022), so that most remote sensing indices 225 

need to be processed further before they can be used. In contrast, experimental observations provide information that can easily 

be mapped to model variables - biomass, ecosystem fluxes, soil pools, etc.  
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MDI provides a formalised approach to make best use of naturally sparse EME observations and combine them with a priori 

understanding embodied in model structures. Integrating diverse ecosystem data can help estimating the system state, given 

physical constraints that are built into the model (e.g., mass conservation) (Jiang et al., 2020). MDI can also provide an 230 

approach to formalised model selection (Mark et al., 2018) and a systematic treatment for trading off model complexity and 

fit to the data.. EMEs, in contrast with observational data commonly used in MDI studies, often have a particularly strong 

leverage in discriminating between predictions of alternative models, which other data types often lack. Only if an ecosystem’s 

slow biogeochemical cycling is “hit hard” in an experimental setup, underlying processes are revealed. Thus, EMEs provide 

key information that is required for robust model selection - the discrimination of alternatively formulated model structures 235 

that reflect alternative hypotheses of how ecosystem processes work. 

 

However, typical models used for global biogeochemical cycle and climate change impact simulations are often complex and 

contain a large number of weakly constrained parameters. In view of the sparsity of EME data, this poses a risk of overfitting. 

Over-fitting may be mitigated using a “leave-experiment-out cross-validation” approach where one experiment is 240 

systematically left out of the model fitting procedure and used as an out-of-sample test. This may be a way to handle the 

overfitting risk, enable a more robust calibration of model parameters, and provide a more reliable estimate of the spatial 

generalisation error. However, the environmental space currently covered by EMEs and their available data is limited and gaps 

remain particularly in the tropics and for CO2 experiments in all biomes except temperate forests and grasslands (Van Sundert 

et al., 2023). 245 

4 New data for EME-model synthesis 

Despite the potential for model-informed ecosystem experiments discussed above, data availability still defines model use 

because without data, models are impossible to constrain. Advances in measurement techniques and data processing offer an 

opportunity to increase the types and frequency of measurement that can be gathered at EMEs. EMEs are one of the best 

locations to develop new data streams because they are typically already well parameterised, offering established data in 250 

addition to that from novel sources and potentially benefiting from frequent site visits necessary for non-standard instrument 

development. Thus in addition to the direct feedback with individual EMEs, models can set the agenda for data development 

through transparent discussion of the uncertainty and parameter sensitivity. 

Perhaps the most straightforward, EME experiments can be equipped with proximal sensing devices such as phenocams 

(Brown et al., 2016) or sun induced fluorescence (SIF) sensors (Yang et al., 2015). These provide continuous regular 255 

measurements of (generally) canopy properties. While these types of measurements are available from spaceborne sensors, 

local measurements provide more spatial detail and often the possibility of measuring each individual plot separately, thus  

identifying treatment effects in smaller scale EMEs. Unlike spaceborne instruments, proximal sensors usually require 

calibrating sensors between different treatments  but on the other hand provide regular, location specific information. Such 
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continuous measurements are extremely useful for model evaluation and development as they are often done at a temporal 260 

frequency similar to that of a model timestep and can provide information on short-term changes in vegetation responses. 

Additionally, such data can also be used in DA contexts (Section 3) much more easily than irregular, spot measurements. One 

application of note on the horizon is capturing patterns of functional diversity, which can be validated in the field (Pacheco-

Labrador et al., 2022) and through EME explore causative mechanisms behind changes in environment, changes in function 

and changes in species or functional diversity. As models move more towards representing species diversity (Kauwe et al., 265 

2015) and new traits based demographic models become more widespread (Xu & Trugman, 2021), such measurements in the 

context of EMEs can provide an invaluable source of process understanding.  

Given widespread coverage, data captured from proximal sensing devices or field measurements may also potentially be 

upscaled via wide networks (which do not necessarily rely on EMEs). Many modern approaches to this problem rely on 

machine learning (ML) methods to reach from regional or global scales (Lapeyre et al., 2020; Poggio et al., 2021)). But in 270 

EMEs and similar contexts, ML also offers another complementary tool: data streams which are either difficult to capture or 

process (Nair et al., 2023) can be gap filled or interpreted with higher confidence and representativeness. Further development 

of techniques currently only possible at laboratory or homogenous agricultural scale may allow dynamic sub annual time series 

of difficult to measure parameters such as photosynthetic capacity (Heckmann et al., 2017), nutrient pools both in biomass and 

available in soil (Tan et al., 2022), or phenological dynamics beyond leaves, especially those belowground (Wang et al., 2022). 275 

This is particularly relevant belowground, where data are particularly sparse. However technical and logistical limitations 

remain and  on-site instrumentation is considerably more challenging than laboratory studies. A key challenge here is capturing 

both spatial and temporal dynamics at the same time. In many cases many sensor nodes are preferable because ecosystem 

properties in general and belowground properties in particular are very heterogeneous. However, when such technologies are 

fully deployable in the field and an EME context, they can provide datastreams for models which were not previously available, 280 

reducing uncertainty in difficult to measure processes. 

  

Eddy covariance (EC) data are one of the most frequently used datastreams for model evaluation, parameterization and data 

assimilation. The advantage of using EC data is its high temporal frequency and the large number of globally distributed sites 

where such data is available. However, as detailed above (Fig. 1), they are purely observational measurements and lack the 285 

specific advantages of an EME.  A small number of EC sites do use a treatment, albeit on an unreplicated treatment scale (El-

Madany et al., 2021; Zhao et al., 2022). EC experiments are laborious to construct and expensive to operate in tall stature 

ecosystems, and even in shorter ecosystems the footprint of an EC tower is a challenge for application of many global change 

relevant treatments. Indeed, only a small number of manipulations can be conducted effectively on this scale and thus far are 

limited to nutrient treatments. These designs also necessitate a well-supported baseline of major ecosystem parameters before 290 

treatments to partially substitute for replication. This is a necessary compromise versus the scale and unprecedented realism 

which can be achieved.  
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A key aspect of several modern designs is dispensing of replication. While this is controversial in the classic model of the 

scientific methods, as we highlighted with the EC measurements example this offers advantages in this case for realism which 

could not reasonably be captured in other fashions. Similarly, quantitative gradients allow parameterisation of response 295 

surfaces (as opposed to step changes in standard EMEs) but limit possible replication (Kreyling et al., 2018; Piepho et al., 

2017). In a model-EME context, this allows the models to be evaluated at multiple treatment levels, circumventing the step 

change issues. Large, full ecosystem level experiments with sometimes groundbreaking treatments such as the TEMPEST 

flooding experiment (Hopple et al., 2023), are also not replicated but provide invaluable insights into ecosystem functioning. 

An alternative example is the unique Biosphere2 setup, which allowed a fully traceable experiment on a ‘whole ecosystem’, 300 

albeit without replication (Werner et al., 2021). This would allow intensive tracing of treatment effects in models through a 

process-by-process validation, rather than the usual validation against end results such as biomass responses. 

5 Conclusions and outlook 

Ecosystem manipulative experiments and process-based models are both powerful tools of understanding how terrestrial 

ecosystems are going to respond to future global change. However, on their own, they each suffer from their own particular 305 

short-comings, including lack of generality in time and space in the case of experiments and lack of process realism in the case 

of models. We propose that used in combination, these two tools can achieve their full potential. Going beyond a one-sided 

process where data from experiments is used to inform models, we lay out a roadmap (Figure 2) for using experiments and 

models alongside each other, and longside new types of measurements and techniques, as complementary sources of 

information. This approach will further our understanding of how terrestrial ecosystems work and increase our predictive 310 

capability of the future of terrestrial ecosystems. 
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Figure 1 - Strengths and weaknesses of ecosystem manipulation experiments, observations and process based models. Green areas with 605 

large circles represent areas that a particular tool is strong at, orange with medium circles areas of medium strength and red with small 

circles areas where each tool is weak.   
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Figure 2 - Classic workflow (A) contrasted with proposed workflow (B) for using models together with ecosystem manipulative 

experiments for experimental design and hypothesis generation. Through iterative synthesis of models and experiments in B) and tuning of 610 

experimental parameters based on modelled feedback, stronger predictions are generated.  
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