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Abstract
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key
source of uncertainty in predicting carbon climate feedbacks. Machine learning models can help

in the identificationy of dominant environmental controllers and establishing their functional

relationships with SOC stocks. The resulting knowledge can be integramplemented in ESMs to
reduce uncertainty and better predict SOC dynamics over space and time. In this study, we used
a large number of SOC field observations (n = 54,000), geospatial datasets of environmental
factors (n = 46), and two machine learning approaches, namely {Random Forest (RF) and
Generalized Additive Modeling (GAM);} to: (1) identify dominant environmental controllers of
global and biome-specific SOC stocks, (2) derive functional relationships between
environmental controllers and SOC stocks, and (3) compare the identified environmental
controllers and predictive relationships with those in Coupled Model Intercomparison Project
phase six (CMIP6) models. Our results showed that diurnal temperature, drought index, cation
exchange capacity, and precipitation were important ebserved environmental predictocentreters

of- global SOC stocks. While the RF model identified 14 environmental factors that describes

climatic, vegetation and edaphic conditions being important predictors of global SOC stocks

predictions-of global-scale-SOC stocks-wererelatively-aceurate (R? = 0.61, RMSE = 0.46 kg m-

2), current ESMs over simplified relationships between the environmental factors and SOC,

with —-contrast; precipitation, temperature, and net primary productivity explaininged >96% of

the variability in ESM-modeled SOC stocks-vartabihity. Further, our study revealed notable

disparities in the We-also-found-very-different functional relationships between environmental

factors and SOC stocks simulated by ESMs compared to observations-H-ebservations-and-ESMs.

To enhance SOC representationpredictions in ESMSs, it is imperative to incorporate may-be
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improved-significanthy-by-tneluding additional environmental controls such as{e-g- cation

exchange capacity,) and refinepresenting the functional relationships to align more closely -ef

environmental-controlers-consistent with observations.

Keywords: Environmental controllers, Earth system models, soil organic carbon, net primary

productivity, machine learning, model benchmarking

1. Introduction

Soil is the largest actively cycling carbon pool in terrestrial ecosystems and stores almost twice
the amount of carbon as in the current atmosphere (Lal, 2016). Even Aa small change in soil
carbon stocks can lead to large changes in the atmospheric CO2 concentration, influencing
theand future climate change trajectories. Additionally, Ssoils also play a crucial role in

captuseguestering atmospheric COz through the storage ofas soil organic carbon (SOC) (Hinge et

al., 2018). Thereforeus, the sequestration, protection, and sustainable management of SOC stocks
can be a promising climate mitigation strategy (Lal, 2020). The Aaccurate representation of
global SOC storage and its environmental controllers isare essential for predicting realistic SOC

changes-of-SOC under different land use and climate change scenarios. However¥et, there is

currently no consensus-exists among current Earth system models (ESMSs) in representing the
spatial distributions of global SOC storage and its fate under future climate change scenarios
(Friedlingstein et al., 2014.; Arora et al., 2020).

Multiple environmental variables, including climatic and topographic factors, land use history,
and edaphic properties, have been identified as possible controllers of SOC storage (Georgiou et

al., 2021; Mishra et al., 2022). Current ESMs, however, use the effects of only a limited number
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of environmental factors in representing SOC storage and dynamics. A recent study that
compared SOC stocks from multiple ESMs against observations indicated a large knowledge gap
in both ESMs and observations (Georgiou et al., 2021). Therefore, it is important to compare
ESM simulations against global SOC observational datasets to evaluate model performance and
identify key environmental controllers of global SOC storage.

Benchmarking ESM simulations with observed data is a common approach for model evaluation
(Luo et al., 2012;Fodd-Brown-et-al;-2013; Collier et al., 2018). Through comparing model
simulations with observations, model strengths, deficiencies, and needed improvements can be
identified. The resulting understanding from SOC benchmarking could lead to new ESM land
model structures (by identifying key processes) and new parameterizations (by quantifying key
relationships between SOC and environmental variables). Thus, benchmarking analysis of ESMs
is an effective tool to reduce uncertainties in predicting SOC dynamics and can provide more
realistic information for managing SOC under changing climate conditions (Lauer et al., 2017).
Currently ESMs predict SOC stocks primarily with model representations that depend on soil
temperature, moisture, and belowground net primary production (Todd-Brown et al., 2013).
ESMs capture the positive correlation between NPP and precipitation, resulting in high SOC
stocks for areas with high NPP in moist regions (Sun et al., 2016). Higher temperature increases
soil respiration, which, in the short-term, reduces SOC storage. In the longer-term, increased soil
respiration can release nutrients, leading to increased plant growth, belowground carbon inputs,
and thereby SOC stocks; the balance of these factors can take centuries to manifest (Mekonnen
et al., 2022). Soil respiration temperature sensitivity is often defined based on Q1o or Arrhenius
equations in ESMs (Wynn et al., 2006), although low- and high-temperature modifications to

these relationships are likely needed (Jiang et al., 2013; Azizi-Rad et al., 2022).
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Among environmental factors, soil moisture plays a crucial role in plant growth, microbial

activity, carbon inputs, litter and SOC decomposition. Global soil carbon stocks correlate with

mean annual precipitation, emphasizing the significance of water availability in SOC dynamics.

The relationship between soil moisture and microbial activity follows a curve, reaching a

maximum at optimal moisture content. Variations in soil moisture can either hinder or enhance

microbial activity, impacting SOC decomposition rates and carbon cycling (Moyano et al., 2013;

Wieder et al., 2018; Davidson et al., 2012; Moyano et al., 2018). This non-linear soil moisture

function is crucial for predicting SOC turnover, though its specific form varies among models

(Sierra et al., 2015). Diverse measures of soil moisture are vital for comprehending water

availability across different scales, serving as indicators for soil-water relationships and

ecosystem functioning. Previous studies suggest various functional forms, such as linear,

guadratic, or asymptotic, to capture the impact of moisture on soil microbial activity, with

relative water saturation being a reliable predictor across diverse soil types (Moyano et al.,

2013). The temperature function in soil carbon models represents the sensitivity of SOC

decomposition to temperature and the availability of soluble substrates that drive carbon

substrate decomposition (Davidson et al., 2012). Based on the Q10 equation, a 10°C temperature

increase roughly doubles the rate of soil respiration, reflecting increased microbial activity,

leading to increased organic matter decomposition and higher CO» emissions from the soil.

Recent research emphasizes the variability in temperature sensitivity to SOC decomposition is

linked to microbial community composition. A comprehensive understanding of the temperature

function requires accounting for microbial community dynamics in soil carbon models. This

consideration is crucial due to the multifaceted interaction with temperature, involving

accelerated microbial activity and faster O, depletion, influencing soil oxygen dynamics. The
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empirical relationship between soil respiration and temperature, represented in the Q10

relationship remains essential for predicting the impact of temperature change on soil carbon

dynamics and understanding its global implications for carbon cycling (Lloyd and Taylor, 1994).

In a previous U.S. continental-scale study, we derived empirical non-linear relationships between
SOC and environmental factors that produced comparable prediction accuracy to a random forest
(RF) machine learning approach (Mishra et al., 2022). We apply a similar approach in this study
in both global field observations and ESMs to (1) identify key observed environmental controllers
of, and functional relationships with, global SOC stocks and (2) evaluate ESMs with these
observational benchmarks. Simulated SOC stocks from three CMIP6 ESMs (i.e., Community
Earth System Model (CESM, Hurrell et al., 2013); U.K. Earth System Model (UKESM, Sellar et
al., 2019); Beijing Climate Center model (BCC, Xiao-Ge et al., 2019) were benchmarked with
over 50,000 SOC profile observations across the globe. We used a machine learning (i.e., random
forest) approach with 46 environmental factors to identify the key environmental controllers of
SOC stocks at the global scale. We then applied a generalized additive model (GAM) to derive the
predictive relationships between these key environmental factors and SOC stocks in observations

and ESM simulatiened SOC stockss. Specific objectives of this study were to: (1) identify

dominant environmental controllers of SOC stocks in field observations and CMIP6 ESM
simulationss, (2) derive observed and ESM-modeled functional relationships between
environmental factors and SOC stocks, and (3) analyze these functional relationships to inform
needed improvements in ESM representations of SOC dynamics.

2. Materials and Methods

2.1 Soil organic carbon stock observations
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We used two datasets of SOC stocks for the upper 30 cm (i.e., 0 — 30 cm) and upper meter of soil

(i.e., 0 100 cm)topsoil layer (i.e., 0 — 30 cm) and the whole soil profile (i.e., 0 — 100 cm). We

note that limiting our analysis to these depth intervals we may not be accounting for the total SOC

stocks as in some soils (e.q., peatlands) large SOC stocks can be found to much deeper depths.

The World Soil Information Service (WoSIS) compiled SOC profiles across the globe after quality
assessment. The 2019 snapshot of the WoSIS dataset contained 111,380 soil profiles with SOC
content information (unit: g C g-soil™?) at different soil depths (Batjes et al., 2020). We estimated

the SOC stock (g C m) at different soil layers using:

SOC Stock = SOC Content X (1 - i) X BD X D (1)

100

where G is the coarse fragment fraction (%); BD is the bulk density of soil (g m=); and D is the
soil layer depth (m).

When the measured bulk density value was absent from the dataset, we used a pedo-transfer
function (Yigini et al., 2018) to estimate the soil bulk density:

BD = a+ B X exp(—y X OM) (2)

Where OM is organic matter, equivalent to SOCx1.724, with SOC content in percent (%); a, £,
and y are fitting parameters. We found a.=0.32, 8 = 1.30, and y = 0.0089 after fitting WoSIS data
to this equation.

Another dataset we used in this study was compiled from Mishra et al. (2021). This dataset
contained 2,546 soil profiles with SOC stock (g C m™®) information from permafrost regions in
North America, northern Eurasia, and the Qinghai-Tibet Plateau. In total, we used 113,926 soil
profile observations from these two data sources. SOC stocks of different soil layers were then
summed to SOC stocks in 0 — 30 cm and 0 — 100 cm depth intervals. Because not all these soil

profiles covered the whole 0 — 30 cm or 0 — 100 cm intervals, we used a total of 54,000 soil profiles
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that included SOC stock information for both depth intervals. The geographical distributions of
soil profiles used in this study are shown in Figure 1. Because SOC stock values across the globe

were highly skewed, we used a natural logarithm transformation in this study.

2.2 Environmental predictors of SOC stocks
The storage and cycling of SOC are controlled by multiple environmental factors. In this study,
we used observations of 46 environmental variables, which represented major soil forming factors
(McBratney et al., 2003.). Twenty-one of the 46 environmental variables were climatic variables,
including annual average temperature, precipitation, evapotranspiration, drought severity index,
and statistics for different temporal scales (e.g., during the wettest and driest quarter in a year).
Thirteen of the 46 variables described soil properties (e.g., clay content, sand content, silt content,
soil texture, pH, and cation exchange capacity). Six variables represented topographic factors (e.g.,
elevation and soil depth). Six variables represented land use and land cover types. All the
categorical variables were converted to integer variables and the environmental variables were
resampled to a common 1 km resolution. The environmental factors, their original spatial

resolution, and data sources are provided in the supporting information (Table S1).

2.3 Selection of dominant environmental controllers of SOC stocks
We used RF to select dominant environmental predictors of SOC stocks within biomes and at
global scale in both observations and ESMs. RF is an ensemble learning method, which is an
extension of the classical Classification and Regression Trees (CART). Building a collection of
uncorrelated CARTSs through bootstrapping the samples and applying the random subspace method
at each branch of the trees, RF improves the prediction performance (Breiman, 2001; Wiesmeier

et al., 2011; Mishra et al., 2020). RF is well known for its strength in modeling highly nonlinear
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relationships between the predictors and is robust to overfitting (Chagas et al., 2016). Moreover,
RF is not very sensitive to the choice of the hyperparameters, which makes RF one of the most
popular off-the-shelf model for many classification and regression problems.

In this study, we trained the RF model using SOC content as a response variable and environmental
factors as predictors. The model performance was evaluated using -the coefficient of determination
(R?) and root mean square error (RMSE). A 10-fold cross-validation was used to compute R? and
RMSE. Biome-specific analyses were conducted on a subset of the global dataset. For biome
classification, we used the IGBP land classes (Loveland and Belward, 1997). The “Random-
Forest” package in R was used to train a RF model using all the observed environmental factors in
the dataset and to identify dominant environmental controllers of SOC stocks. Prior to fitting into
the final model, we performed a potential collinearity test among the environmental variables by
calculating pairwise correlations and variance influence factors. Predictors showing a variance
influence factor (VIF) value greater than 10 were omitted, leaving 14 uncorrelated environmental

predictors of SOC stocks in the observations.

2.4 Generalized additive model

Generalized additive model (GAM) is an extension of generalized linear models, which employs
spline functions to model nonlinear relationships between predictor and response variables (Arnold
et al., 2013). In GAM, the relationship between predictor and response variable can be modeled as

(Hastie and Tibshirani, 1987):

Y=C+X_, fi(X) (3)

Here, Y is the response variable (SOC), C is a constant, X; are the environmental controller

variables, fiis a spline function for Xi, and p is the total number of environmental controllers. We
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used the “mgcv” package in R to build nonlinear relationships between environmental factors and

SOC stocks using GAMs for both the SOC field observations as well as CMIP6 ESMs simulated

SOC data (Arnold et al., 2013). The performance of GAMs was evaluated by using R? and RMSE.

2.5 Earth system model outputs
We downloaded and aggregated the SOC and environmental controller data from three ESMs that
participated in CMIP6: Community Earth System Model (Hurrell et al., 2013.), U.K. Earth System
Model (Sellar et al., 2019), and Beijing Climate Center model (Xiao-Ge et al., 2019). These ESMs
included most of the environmental factors used by CMIP6 ESMs. ESMs did not report depth-
dependent soil carbon projections, making direct comparison with depth-dependent SOC
observations difficult. The majority of land models used in ESMs were designed to simulate topsoil
carbon for topsoil depth; thus, we assumed that the simulated soil carbon is contained within 1 m

of soil profile to simplify comparison with observations.

3. Results
3.1  Descriptive statistics of SOC observations
The average global SOC stock within the 0 - 1 m depth interval was 13.5 kg C m, ranging from

0.14- 435.3 kg C m™. Our results indicate substantial variability in global scale SOC observations

as the standard deviation (18.2 kg C m™) was greater than the average SOC stocks. Summary

statistics of SOC stocks at global scale and within different biomes is presented in Table 1. Boreal

forests and Temperate forests exhibited higher SOC stocks compared to other biomes, while tundra

and tropical and subtropical broadleaf forests displayed lower and relatively similar average SOC

stocks. Tundra and tropical and subtropical grasslands and savannas exhibited similar and lower

standard deviations in SOC stock values. Fhe-standard-deviation-showed-a-similar-spreadr-SOC

10



P17

218

219

220

P21

P22

223

224
225
226
227
228
229

30

31
232
233
234
235
236
237
238
239

240

HoweverConversely,— boreal forests—(r=12164} and shrublands—{n=3769),; showed higherthe

standard deviation, indicating a broader range in SOC stock values.-was-higherindicating-a-large

range-i-SOC-steck-values: Distributions of total SOC stocks in different biomes are presented in

3.2 Dominant environmental controllers of SOC stocks in observations and ESMs

At the global scale, we found that diurnal temperature, drought severity index, annual
temperature, and cation exchange capacity are the dominant environmental controllers of SOC
stocks in observations (Figure 3). By including all the environmental controllers, the RF model
explained 61% of observed global spatial SOC variation. R? ranged from 483% in boreal
forestssavannas to 625% in croplands (Table 2) and the importance of key environmental
controllers varied between biomes (Figure 4). In croplands, precipitation, drought, diurnal
temperature, and cation exchange capacity were identified as the dominant controllers of SOC
stocks. In grasslands, annual temperature, cation exchange capacity, and sand content were the
dominant controllers. In forests, cation exchange capacity, precipitation, and temperature were
dominant controllers. In shrublands, annual temperature, soil pH, and cation exchange capacity
were the most important controllers. In savannas, soil related variables, temperature, and
precipitation were the most important controllers. Across all land cover types, we found that
cation exchange capacity and seasonal climatic variables were the dominant environmental

controllers of SOC stocks.

11
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In contrast, the RF model with 8 environmental variable predictors made near-perfect
predictions of ESM simulated SOC stocks (average R? = 0.95, R? values for UKESM, CESM,
and BCC model were 0.99, 0.89, and 0.98, respectively). In contrast to the results obtained from
the observed SOC stocks, the dominant controllers of ESM simulated SOC stocks were annual
temperature, net primary productivity (NPP), and annual precipitation (Figure 5). In particular,

NPP was by far the most dominant predictor of SOC stocks in the UKESM.

3.2 Predictive relationships between environmental factors and SOC stocks

Dominant environmental controllers of observed SOC stocks identified by the RF model
were used in GAM to derive predictive relationships. We retrieved explicit analytical
expressions by fitting the splines derived from GAM in the observation dataset. Notwithstanding
its role as the sole carbon source to soil, our results did not show NPP as a strong controller on
observed SOC stocks (Figure 6a). In contrast with field observations, all ESMs showed
significant dependence (exponential increase) of SOC stocks on NPP. Our results also showed
that observed SOC stocks increased almost linearly with observed annual precipitation (Figure
6b). In contrast, ESMs show different relationships between SOC and precipitation. We found a
nonlinearly increasing SOC with precipitation in CESM, an initial sharply increasing and then
decreasing relationship in UKESM, and a decreasing relationship in BCC ESM. On the
relationship between SOC storage and soil texture and elevation, ESMs do not capture the
observed relationships. Our results indicated that observed SOC stocks decreased with clay
content in the interval between 0 and 20%, and then increased with clay content above 20%
(Figure 6¢). Observed SOC stocks increased with silt content up to 55% and then decreased

(Figure 6d).
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SOC stock functional relationships differed between the three ESMs and in many cases
differed with the relationships we derived from observations. In terms of the effects of annual
temperature on modeled SOC storage, we found that SOC stocks decreased with annual
temperature and were most sensitive to temperature in the range between 0 and 10°C (Figure 6e).
However, while the three ESMs captured the general negative relationship between SOC storage
and temperature, none of them correctly described the varying sensitivity of SOC in different
temperature ranges (especially in extreme temperature ranges <0°C and >20°C). In representing
the control of elevation on SOC storage, only UKESM showed consistent patterns with
observations, where SOC storage remained stable when the elevation was lower than 2000 m and

decreased when the elevation was higher than 2000 m (Figure 6f).

Discussion

Previous studies have suggested that the spatial variation of SOC is dependent on multiple
environmental factors such as climatic and edaphic variables, geography, and vegetation. Here,
we found that climatic variables (i.e., temperature and precipitation) are the most important
controllers of global SOC stocks, followed by edaphic variables (i.e., cation exchange capacity),
topography (i.e., elevation), and vegetation (i.e., NPP). Using boosted regression trees, Luo et al.
(2021) studied edaphic and climatic controls on SOC dynamics at different soil depths and found
that soil type and climatic variables are the most important variables in explaining the SOC
stocks (Luo et al., 2021). In this study, we found that seasonal climatic variables such as diurnal
temperature range and precipitation seasonality are among the most important environmental
controllers in explaining the spatial variation of SOC stocks. This result indicates the critical role

of seasonal and interannual climatic variables in understanding SOC dynamics.

13
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The importance of climatic variables on global SOC storage emerges from close links
with processes that affect ecosystem productivity and soil microbial processes. Consistent with
our findings, Wiesmeier et al. (2014) reported climatic variables (temperature and precipitation)
as significant controllers of SOC stocks up to 1 m depth in German soils under oceanic climate
(Wiesmeieret-al;-2014). Sreenivas et al. (2014) used RF to predict the SOC variability across
semi-arid and humid areas of India in the top 30 cm of soil and found that the top three
environmental controllers were land cover, mean temperature of hottest months, and mean
annual precipitation{Sreenivas-et-ak—2016}. In our analysis, the overall relative importance of
climatic variables was significantly higher than other variables at the global and biome scales.

Soil properties were identified as the second most important controllers of global SOC
stocks. Soil properties impact various processes that govern soil carbon dynamics. For example,
soil properties impact microbial activity, porosity, and oxygen availability in the soil profile,
which directly or indirectly control soil water dynamics, plant growth, and SOC stocks.
Consistent with our findings, Luo et al. (2021) reported that sand content, silt content, and soil
pH were significant controllers of SOC stocks in all soil depths globally.

The Palmer drought severity index, which indicates low soil moisture availability, was a

dominant controller of global SOC stocks. Drought severity and duration play crucial roles in

influencing the extent of soil carbon losses through microbial respiration (Borken and Matzner,

2009). A decline in soil CO2 efflux is observed as precipitation events decrease in both quantity

and frequency (Harper et al., 2005). In the initial phases of drought, heightened soil CO2

emissions occur due to the rapid response of plants and microorganisms to environmental stress

(Ru et al., 2018). As drought intensifies, the overall CO2 emission diminishes due to reduced

root growth and microbial CO2 efflux caused by increasing soil dryness (Hasibeder et al., 2015).
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Similar to the impact of drought duration, intensification of drought results in a decrease in total

CO2 emission by suppressing soil microbial activity and associated soil CO2 fluxes (Harper et

al., 2005; Hu et al., 2020).

Cation exchange capacity is a soil property that indicates the active soil surface to which

SOC may be adsorbed, and polyvalent metal cations can play a significant role in SOC
stabilization by binding organic compounds to mineral surfaces (O’Brien et al., 2015; Solly et
al., 2020). O’Brien et al., (2015) found that exchangeable soil Ca?" is a significant predictor of
SOC stocks. This relationship is supported by the mechanism that Ca?* and Mg?* promote clay
flocculation and bind organic matter to clay surfaces. Solly et al. (2020) reported that SOC and
cation exchange capacity are significantly related in both topsoil and subsoil with strong positive
relationship.

After climatic factors and cation exchange capacity, topography and vegetation (NPP)
were important controllers of observed global SOC stocks. Effects of NPP on observed SOC
stocks was found to be small (~6% in 0-100 cm soil depth). Similar to our findings, Luo et al.
(2021) reported NPP explaining about 10% of the variation of SOC stocks. NPP delivers the
primary inputs of carbon to soil and NPP generally increases with moisture, temperature, and

CO2 up to a certain limit (Todd-Brown et al., 2013). NPP also depends on the availability of soil
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nutrients. Most ESMs overestimate the increase in SOC pools in response to NPP increases
(Todd-Brown et al., 2013). The effects of NPP on SOC also depend on biome type and soil
depths (Luo et al., 2021; Georgiou et al., 2021). The contribution of NPP on SOC stocks mostly
depends on how much NPP ends up in the soil and how it is translocated to different soil depths.
Georgiou et al. (2021) reported a saturating relationship of SOC stocks with increasing NPP in a
global observational dataset. However, Chen et al., (2018) reported high SOC stocks with
increasing productivity and soil water holding capacity (Chen et al., 2018).

The three CMIP6 ESMs we analyzed predicted SOC stocks mostly as a function of
temperature, precipitation, and NPP. These ESMs simulated positive correlations between SOC
stocks and NPP (Figure 65a), resulting in high SOC stocks in areas with high NPP in most
regions (Shi et al., 2013; Sun et al., 2016). In these ESMs, effects of temperature and
precipitation on SOC stocks are driven by soil respiration. Most current ESMs simulate the
response of soil respiration to temperature using either a Q1o or Arrhenius equation (Wynn et al.,
2006), such that a higher temperature causes more soil respiration, and, all else equal, eventually
reduces SOC stocks (Figure 6e5b). Our results showed diverse control of precipitation on SOC
stocks in different ESMs. Todd-Brown et al. (2013) showed that ESM soil respiration either
increases monotonically with precipitation, or first increases to a plateau under optimal
precipitation and then decreases with further increasing precipitation. Consistent with those
results, the ESMs we analyzed in this study showed different dependence of SOC storage on

annual precipitation_(Figure 6b).

In this study, we found that, while current ESMs consider key environmental controllers

such as soil temperature and moisture in requlating SOC storage, they show large inter-model

variations in representing the functional relationships between these factors and SOC at the
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global scale. Meanwhile, none of the three ESMs investigated in this study show agreement with

in-comparison-te the patterns that emerged from observations,-ESMs-have-distinctively-different

. These results

cewldsignify potential -either-result-from unrealistic parameterization or missing critical

processes in model representation. Moreover, Qour results highlight the importance of including

other environmental factors in simulating global SOC storage. The observed shew-that-ebserved

global SOC stocks are formed beyond the processes currently considered in ESMs such as

controled-not-enly-by temperature, precipitation, and NPP. Effects of other environmental

factors, such as drought severity index and cation exchange capacity should also be considered in

future representations of SOC dynamics in ESMs. H-is-also-imperative-to-compareOur results

showed the critical role of observational data in benchmarkingand ESM simulations te

#mpreveand informing model structures and parameterization. While our findings can not

directly be used to develop model parameterizations, they can: (1) point to categories of

functional forms for controllers; (2) inform where effort may best apply to improve model

functional forms (e.q., to the dominant controllers); and (3) inform modelers of where their

model may have very different functional forms for emergent relationships than exist in the

observations.

We note that though not represented in current generation of ESMs use of ecosystem

specific (for example croplands or forests) environmental factors such as presence or absence of

certain species (for e.q., earthworms or termites) or indicators of anthropogenic management of

land (for e.q., use of fertilizers or conservation agriculture practices) may improve the SOC stock

prediction accuracy in observations.
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5. Conclusion
Our results document disagreement between environmental controllers of SOC stocks in

observations and CMIP6 ESM simulations-tand-medels. Specifically, while the global SOC

observations indicate N

n-medeled-SOC-stecks—tn-centrast-diurnal temperature, drought index, annual temperature,
cation exchange capacity, and other soil related variables are critical in the-deminant

controllingers-ef-ebserved SOC stocks at the global scale, ESMs overstate the role of NPP,

annual temperature, and annual precipitation in simulating SOC stocks. Moreover, —Using-field

functional relationships between keythe environmental factors and SOC stocks showed huge

uncertainty among ESMs and no agreement with those emerged from observationsia

observations-and-ESM-models-alse-show-discrepaneies. Optimizing current model

parameterizations and developing new model structures that consider more processes in soil

carbon cycle to better simulate global SOC storage are critical for future ESMs development.

Our results highlight the importance of benchmarking ESMs with observations to improve the

mechanistic understanding of soil carbon cycle at the global scale.
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Figure 1. Spatial and statistical distributions of 54,000 soil organic carbon profiles used
in this study.
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Figure 2: Boxplot of soil organic carbon (SOC) stock for each biome analyzed in this
study. The horizontal line in the middle of the boxes is the median while their lower and
upper limits correspond to the first and third quartiles. TS is tropical/subtropical.
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Figure 3: Importance of different environmental factors to predict the global soil organic
carbon stocks in observations.
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Figure 6: Predictive relationships between environmental factors and soil organic carbon
stocks in observations (black line) and CMIP6 earth system models (different colors).
Red circles are computed from fitted curves. The shade around the solid line indicates

95% confidence interval.
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Table 1: Descriptive statistics of global soil organic carbon stocks at 0-100 cm depth
interval.

Location Minimum Maximum Mean Median Standard
Deviation
(kgCm? (kgCm? (kgCm?) (kgCm?) (kgC m?)
Global 0.14 435.30 13.50 9.50 18.20
TS broadleaf forest 0.19 314.40 10.89 8.10 14.02
Temperate broadleaf ) /- 31214 1620  12.39 17.28
and mixed forest
Temperate grassland 0.56 315.85 12.1 8.65 16.78
Boreal forest 0.16 311.80 23.50 14.18 33.55
Cropland 0.14 435.29 12.75 9.54 16.00
Shrubland 0.19 312.54 13.59 7.59 25.63
Tundra 0.30 106.86 10.34 6.06 14.81
TS grasslands and 0.32 309.13 12.60 9.16 15.17

Savannas

T/S is tropical subtropical.
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Table 2: Prediction accuracies of Random Forest models across biomes and at global
scale in predicting SOC stocks.

Biomes R square RMSE
-(Random forest) (kaC m?)

Global 0.61 0.46
TS broadleaf forest 0.54 0.46
Temperate broadleaf and 0.50 0.53
mixed forest

Boreal forest 0.43 0.69
Shrubland 0.58 0.61
Cropland 0.62 0.53
Temperate grassland 0.56 0.48
Tundra 0.69 0.54
TS grasslands and savannas 0.47 0.53

T/S is tropical subtropical; RMSE is root mean square error.
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