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Abstract 1 

Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key 2 

source of uncertainty in predicting carbon climate feedbacks. Machine learning models can help 3 

in the identificationy of dominant environmental controllers and establishing their functional 4 

relationships with SOC stocks. The resulting knowledge can be integramplemented in ESMs to 5 

reduce uncertainty and better predict SOC dynamics over space and time. In this study, we used 6 

a large number of SOC field observations (n = 54,000), geospatial datasets of environmental 7 

factors (n = 46), and two machine learning approaches, namely  (Random Forest (RF) and 8 

Generalized Additive Modeling (GAM)) to: (1) identify dominant environmental controllers of 9 

global and biome-specific SOC stocks, (2) derive functional relationships between 10 

environmental controllers and SOC stocks, and (3) compare the identified environmental 11 

controllers and predictive relationships with those in Coupled Model Intercomparison Project 12 

phase six (CMIP6) models. Our results showed that diurnal temperature, drought index, cation 13 

exchange capacity, and precipitation were important observed environmental predictocontrollers 14 

of  global SOC stocks. While the RF model identified 14 environmental factors that describes 15 

climatic, vegetation and edaphic conditions being important predictors of global SOC stocks 16 

predictions of global-scale SOC stocks were relatively accurate (R2 = 0.61, RMSE = 0.46 kg m-17 

2), current ESMs over simplified relationships between the environmental factors and SOC, 18 

with . In contrast, precipitation, temperature, and net primary productivity explaininged >96% of 19 

the variability in ESM-modeled SOC stocks variability. Further, our study revealed notable 20 

disparities in the We also found very different functional relationships between environmental 21 

factors and SOC stocks simulated by ESMs compared to observations in observations and ESMs. 22 

To enhance SOC representationpredictions in ESMs, it is imperative to incorporate may be 23 
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improved significantly by including additional environmental controls such as(e.g., cation 24 

exchange capacity,) and refinepresenting the functional relationships to align more closely  of 25 

environmental controllers consistent with observations. 26 

 27 

Keywords: Environmental controllers, Earth system models, soil organic carbon, net primary 28 

productivity, machine learning, model benchmarking 29 

 30 

1. Introduction 31 

Soil is the largest actively cycling carbon pool in terrestrial ecosystems and stores almost twice 32 

the amount of carbon as in the current atmosphere (Lal, 2016). Even Aa small change in soil 33 

carbon stocks can lead to large changes in the atmospheric CO2 concentration, influencing 34 

theand future climate change trajectories. Additionally, Ssoils also play a crucial role in 35 

captusequestering atmospheric CO2 through the storage ofas soil organic carbon (SOC) (Hinge et 36 

al., 2018). Thereforeus, the sequestration, protection, and sustainable management of SOC stocks 37 

can be a promising climate mitigation strategy (Lal, 2020). The Aaccurate representation of 38 

global SOC storage and its environmental controllers isare essential for predicting realistic SOC 39 

changes of SOC under different land use and climate change scenarios. HoweverYet, there is 40 

currently no consensus exists among current Earth system models (ESMs) in representing the 41 

spatial distributions of global SOC storage and its fate under future climate change scenarios 42 

(Friedlingstein et al., 2014.; Arora et al., 2020).  43 

Multiple environmental variables, including climatic and topographic factors, land use history, 44 

and edaphic properties, have been identified as possible controllers of SOC storage (Georgiou et 45 

al., 2021; Mishra et al., 2022). Current ESMs, however, use the effects of only a limited number 46 
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of environmental factors in representing SOC storage and dynamics. A recent study that 47 

compared SOC stocks from multiple ESMs against observations indicated a large knowledge gap 48 

in both ESMs and observations (Georgiou et al., 2021). Therefore, it is important to compare 49 

ESM simulations against global SOC observational datasets to evaluate model performance and 50 

identify key environmental controllers of global SOC storage.  51 

Benchmarking ESM simulations with observed data is a common approach for model evaluation 52 

(Luo et al., 2012; Todd-Brown et al., 2013; Collier et al., 2018). Through comparing model 53 

simulations with observations, model strengths, deficiencies, and needed improvements can be 54 

identified. The resulting understanding from SOC benchmarking could lead to new ESM land 55 

model structures (by identifying key processes) and new parameterizations (by quantifying key 56 

relationships between SOC and environmental variables). Thus, benchmarking analysis of ESMs 57 

is an effective tool to reduce uncertainties in predicting SOC dynamics and can provide more 58 

realistic information for managing SOC under changing climate conditions (Lauer et al., 2017).  59 

Currently ESMs predict SOC stocks primarily with model representations that depend on soil 60 

temperature, moisture, and belowground net primary production (Todd-Brown et al., 2013). 61 

ESMs capture the positive correlation between NPP and precipitation, resulting in high SOC 62 

stocks for areas with high NPP in moist regions (Sun et al., 2016). Higher temperature increases 63 

soil respiration, which, in the short-term, reduces SOC storage. In the longer-term, increased soil 64 

respiration can release nutrients, leading to increased plant growth, belowground carbon inputs, 65 

and thereby SOC stocks; the balance of these factors can take centuries to manifest (Mekonnen 66 

et al., 2022). Soil respiration temperature sensitivity is often defined based on Q10 or Arrhenius 67 

equations in ESMs (Wynn et al., 2006), although low- and high-temperature modifications to 68 

these relationships are likely needed (Jiang et al., 2013; Azizi-Rad et al., 2022).  69 
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Among environmental factors, soil moisture plays a crucial role in plant growth, microbial 70 

activity, carbon inputs, litter and SOC decomposition. Global soil carbon stocks correlate with 71 

mean annual precipitation, emphasizing the significance of water availability in SOC dynamics. 72 

The relationship between soil moisture and microbial activity follows a curve, reaching a 73 

maximum at optimal moisture content. Variations in soil moisture can either hinder or enhance 74 

microbial activity, impacting SOC decomposition rates and carbon cycling (Moyano et al., 2013; 75 

Wieder et al., 2018; Davidson et al., 2012; Moyano et al., 2018). This non-linear soil moisture 76 

function is crucial for predicting SOC turnover, though its specific form varies among models 77 

(Sierra et al., 2015). Diverse measures of soil moisture are vital for comprehending water 78 

availability across different scales, serving as indicators for soil-water relationships and 79 

ecosystem functioning. Previous studies suggest various functional forms, such as linear, 80 

quadratic, or asymptotic, to capture the impact of moisture on soil microbial activity, with 81 

relative water saturation being a reliable predictor across diverse soil types (Moyano et al., 82 

2013). The temperature function in soil carbon models represents the sensitivity of SOC 83 

decomposition to temperature and the availability of soluble substrates that drive carbon 84 

substrate decomposition (Davidson et al., 2012). Based on the Q10 equation, a 10oC temperature 85 

increase roughly doubles the rate of soil respiration, reflecting increased microbial activity, 86 

leading to increased organic matter decomposition and higher CO2 emissions from the soil. 87 

Recent research emphasizes the variability in temperature sensitivity to SOC decomposition is 88 

linked to microbial community composition. A comprehensive understanding of the temperature 89 

function requires accounting for microbial community dynamics in soil carbon models. This 90 

consideration is crucial due to the multifaceted interaction with temperature, involving 91 

accelerated microbial activity and faster O2 depletion, influencing soil oxygen dynamics. The 92 
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empirical relationship between soil respiration and temperature, represented in the Q10 93 

relationship remains essential for predicting the impact of temperature change on soil carbon 94 

dynamics and understanding its global implications for carbon cycling (Lloyd and Taylor, 1994). 95 

In a previous U.S. continental-scale study, we derived empirical non-linear relationships between 96 

SOC and environmental factors that produced comparable prediction accuracy to a random forest 97 

(RF) machine learning approach (Mishra et al., 2022). We apply a similar approach in this study 98 

in both global field observations and ESMs to (1) identify key observed environmental controllers 99 

of, and functional relationships with, global SOC stocks and (2) evaluate ESMs with these 100 

observational benchmarks. Simulated SOC stocks from three CMIP6 ESMs (i.e., Community 101 

Earth System Model (CESM, Hurrell et al., 2013); U.K. Earth System Model (UKESM, Sellar et 102 

al., 2019); Beijing Climate Center model (BCC, Xiao-Ge et al., 2019) were benchmarked with 103 

over 50,000 SOC profile observations across the globe. We used a machine learning (i.e., random 104 

forest) approach with 46 environmental factors to identify the key environmental controllers of 105 

SOC stocks at the global scale. We then applied a generalized additive model (GAM) to derive the 106 

predictive relationships between these key environmental factors and SOC stocks in observations 107 

and ESM simulationed SOC stockss.  Specific objectives of this study were to: (1) identify 108 

dominant environmental controllers of SOC stocks in field observations and CMIP6 ESM 109 

simulationss, (2) derive observed and ESM-modeled functional relationships between 110 

environmental factors and SOC stocks, and (3) analyze these functional relationships to inform 111 

needed improvements in ESM representations of SOC dynamics.  112 

2. Materials and Methods 113 

 114 

     2.1 Soil organic carbon stock observations 115 

 116 
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We used two datasets of SOC stocks for the upper 30 cm (i.e., 0 – 30 cm) and upper meter of soil 117 

(i.e., 0 – 100 cm)topsoil layer (i.e., 0 – 30 cm) and the whole soil profile (i.e., 0 – 100 cm). We 118 

note that limiting our analysis to these depth intervals we may not be accounting for the total SOC 119 

stocks as in some soils (e.g., peatlands) large SOC stocks can be found to much deeper depths.  120 

The World Soil Information Service (WoSIS) compiled SOC profiles across the globe after quality 121 

assessment. The 2019 snapshot of the WoSIS dataset contained 111,380 soil profiles with SOC 122 

content information (unit: g C g-soil-1) at different soil depths (Batjes et al., 2020). We estimated 123 

the SOC stock (g C m-2) at different soil layers using: 124 

 𝑆𝑂𝐶 𝑆𝑡𝑜𝑐𝑘 = 𝑆𝑂𝐶 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 × (1 −
𝐺

100
) × 𝐵𝐷 × 𝐷                                                                (1)                                                             125 

where G is the coarse fragment fraction (%); BD is the bulk density of soil (g m-3); and D is the 126 

soil layer depth (m).  127 

When the measured bulk density value was absent from the dataset, we used a pedo-transfer 128 

function (Yigini et al., 2018) to estimate the soil bulk density: 129 

 𝐵𝐷 = 𝛼 + 𝛽 × 𝑒𝑥𝑝 (−𝛾 × 𝑂𝑀)                                                                                                (2) 130 

Where OM is organic matter, equivalent to SOC×1.724, with SOC content in percent (%); α, 𝛽, 131 

and 𝛾 are fitting parameters. We found α = 0.32, 𝛽 = 1.30, and 𝛾 = 0.0089 after fitting WoSIS data 132 

to this equation.  133 

Another dataset we used in this study was compiled from Mishra et al. (2021). This dataset 134 

contained 2,546 soil profiles with SOC stock (g C m-3) information from permafrost regions in 135 

North America, northern Eurasia, and the Qinghai-Tibet Plateau. In total, we used 113,926 soil 136 

profile observations from these two data sources. SOC stocks of different soil layers were then 137 

summed to SOC stocks in 0 – 30 cm and 0 – 100 cm depth intervals. Because not all these soil 138 

profiles covered the whole 0 – 30 cm or 0 – 100 cm intervals, we used a total of 54,000 soil profiles 139 
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that included SOC stock information for both depth intervals. The geographical distributions of 140 

soil profiles used in this study are shown in Figure 1. Because SOC stock values across the globe 141 

were highly skewed, we used a natural logarithm transformation in this study.  142 

 143 

2.2 Environmental predictors of SOC stocks 144 

 145 

The storage and cycling of SOC are controlled by multiple environmental factors. In this study, 146 

we used observations of 46 environmental variables, which represented major soil forming factors 147 

(McBratney et al., 2003.). Twenty-one of the 46 environmental variables were climatic variables, 148 

including annual average temperature, precipitation, evapotranspiration, drought severity index, 149 

and statistics for different temporal scales (e.g., during the wettest and driest quarter in a year). 150 

Thirteen of the 46 variables described soil properties (e.g., clay content, sand content, silt content, 151 

soil texture, pH, and cation exchange capacity). Six variables represented topographic factors (e.g., 152 

elevation and soil depth). Six variables represented land use and land cover types. All the 153 

categorical variables were converted to integer variables and the environmental variables were 154 

resampled to a common 1 km resolution. The environmental factors, their original spatial 155 

resolution, and data sources are provided in the supporting information (Table S1). 156 

 157 

2.3 Selection of dominant environmental controllers of SOC stocks 158 

 159 

We used RF to select dominant environmental predictors of SOC stocks within biomes and at 160 

global scale in both observations and ESMs. RF is an ensemble learning method, which is an 161 

extension of the classical Classification and Regression Trees (CART). Building a collection of 162 

uncorrelated CARTs through bootstrapping the samples and applying the random subspace method 163 

at each branch of the trees, RF improves the prediction performance (Breiman, 2001; Wiesmeier 164 

et al., 2011; Mishra et al., 2020). RF is well known for its strength in modeling highly nonlinear 165 
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relationships between the predictors and is robust to overfitting (Chagas et al., 2016). Moreover, 166 

RF is not very sensitive to the choice of the hyperparameters, which makes RF one of the most 167 

popular off-the-shelf model for many classification and regression problems.  168 

In this study, we trained the RF model using SOC content as a response variable and environmental 169 

factors as predictors. The model performance was evaluated using  the coefficient of determination 170 

(R2) and root mean square error (RMSE). A 10-fold cross-validation was used to compute R2 and 171 

RMSE. Biome-specific analyses were conducted on a subset of the global dataset. For biome 172 

classification, we used the IGBP land classes (Loveland and Belward, 1997). The “Random-173 

Forest” package in R was used to train a RF model using all the observed environmental factors in 174 

the dataset and to identify dominant environmental controllers of SOC stocks. Prior to fitting into 175 

the final model, we performed a potential collinearity test among the environmental variables by 176 

calculating pairwise correlations and variance influence factors. Predictors showing a variance 177 

influence factor (VIF) value greater than 10 were omitted, leaving 14 uncorrelated environmental 178 

predictors of SOC stocks in the observations.  179 

 180 

2.4 Generalized additive model 181 

 182 

Generalized additive model (GAM) is an extension of generalized linear models, which employs 183 

spline functions to model nonlinear relationships between predictor and response variables (Arnold 184 

et al., 2013).  In GAM, the relationship between predictor and response variable can be modeled as 185 

(Hastie and Tibshirani, 1987): 186 

𝑌 = 𝐶 + ∑ 𝑓𝑖(𝑋𝑖)
𝑝
𝑖=1                                                                                                                     (3)                                                        187 

Here, Y is the response variable (SOC), 𝐶 is a constant, Xi are the environmental controller 188 

variables, fi is a spline function for Xi, and p is the total number of environmental controllers. We 189 
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used the “mgcv” package in R to build nonlinear relationships between environmental factors and 190 

SOC stocks using GAMs for both the SOC field observations as well as CMIP6 ESMs simulated 191 

SOC data (Arnold et al., 2013). The performance of GAMs was evaluated by using R2 and RMSE. 192 

 193 

2.5 Earth system model outputs 194 

 195 

We downloaded and aggregated the SOC and environmental controller data from three ESMs that 196 

participated in CMIP6: Community Earth System Model (Hurrell et al., 2013.), U.K. Earth System 197 

Model (Sellar et al., 2019), and Beijing Climate Center model (Xiao-Ge et al., 2019). These ESMs 198 

included most of the environmental factors used by CMIP6 ESMs. ESMs did not report depth-199 

dependent soil carbon projections, making direct comparison with depth-dependent SOC 200 

observations difficult. The majority of land models used in ESMs were designed to simulate topsoil 201 

carbon for topsoil depth; thus, we assumed that the simulated soil carbon is contained within 1 m 202 

of soil profile to simplify comparison with observations. 203 

 204 

3. Results 205 

 206 

3.1 Descriptive statistics of SOC observations 207 
 208 
The average global SOC stock within the 0 - 1 m depth interval was 13.5 kg C m-2, ranging from 209 

0.14- 435.3 kg C m-2. Our results indicate substantial variability in global scale SOC observations 210 

as the standard deviation (18.2 kg C m-2) was greater than the average SOC stocks. Summary 211 

statistics of SOC stocks at global scale and within different biomes is presented in Table 1. Boreal 212 

forests and Temperate forests exhibited higher SOC stocks compared to other biomes, while tundra 213 

and tropical and subtropical broadleaf forests displayed lower and relatively similar average SOC 214 

stocks. Tundra and tropical and subtropical grasslands and savannas exhibited similar and lower 215 

standard deviations in SOC stock values. The standard deviation showed a similar spread in SOC 216 
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stock values in croplands (n=21820), savannas (n=9807) and grasslands (n=5938). 217 

HoweverConversely, in boreal forests (n=12164) and shrublands (n=3769), showed higherthe 218 

standard deviation, indicating a broader range in SOC stock values. was higher indicating a large 219 

range in SOC stock values. Distributions of total SOC stocks in different biomes are presented in 220 

Figure 2. Across different biomes, forests contain the largest organic carbon content globally, with 221 

a mean value of 15.9 kg C m-2 and standard deviation 20.7 kg C m-2.  222 

 223 

 224 

3.2 Dominant environmental controllers of SOC stocks in observations and ESMs 225 

 226 

At the global scale, we found that diurnal temperature, drought severity index, annual 227 

temperature, and cation exchange capacity are the dominant environmental controllers of SOC 228 

stocks in observations (Figure 3). By including all the environmental controllers, the RF model 229 

explained 61% of observed global spatial SOC variation. R2 ranged from 483% in boreal 230 

forestssavannas to 625% in croplands (Table 2) and the importance of key environmental 231 

controllers varied between biomes (Figure 4). In croplands, precipitation, drought, diurnal 232 

temperature, and cation exchange capacity were identified as the dominant controllers of SOC 233 

stocks. In grasslands, annual temperature, cation exchange capacity, and sand content were the 234 

dominant controllers. In forests, cation exchange capacity, precipitation, and temperature were 235 

dominant controllers. In shrublands, annual temperature, soil pH, and cation exchange capacity 236 

were the most important controllers. In savannas, soil related variables, temperature, and 237 

precipitation were the most important controllers. Across all land cover types, we found that 238 

cation exchange capacity and seasonal climatic variables were the dominant environmental 239 

controllers of SOC stocks. 240 
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In contrast, the RF model with 8 environmental variable predictors made near-perfect 241 

predictions of ESM simulated SOC stocks (average R2 = 0.95, R2 values for UKESM, CESM, 242 

and BCC model were 0.99, 0.89, and 0.98, respectively). In contrast to the results obtained from 243 

the observed SOC stocks, the dominant controllers of ESM simulated SOC stocks were annual 244 

temperature, net primary productivity (NPP), and annual precipitation (Figure 5). In particular, 245 

NPP was by far the most dominant predictor of SOC stocks in the UKESM.  246 

 247 

3.2 Predictive relationships between environmental factors and SOC stocks  248 

Dominant environmental controllers of observed SOC stocks identified by the RF model 249 

were used in GAM to derive predictive relationships. We retrieved explicit analytical 250 

expressions by fitting the splines derived from GAM in the observation dataset. Notwithstanding 251 

its role as the sole carbon source to soil, our results did not show NPP as a strong controller on 252 

observed SOC stocks (Figure 6a). In contrast with field observations, all ESMs showed 253 

significant dependence (exponential increase) of SOC stocks on NPP. Our results also showed 254 

that observed SOC stocks increased almost linearly with observed annual precipitation (Figure 255 

6b). In contrast, ESMs show different relationships between SOC and precipitation. We found a 256 

nonlinearly increasing SOC with precipitation in CESM, an initial sharply increasing and then 257 

decreasing relationship in UKESM, and a decreasing relationship in BCC ESM. On the 258 

relationship between SOC storage and soil texture and elevation, ESMs do not capture the 259 

observed relationships. Our results indicated that observed SOC stocks decreased with clay 260 

content in the interval between 0 and 20%, and then increased with clay content above 20% 261 

(Figure 6c). Observed SOC stocks increased with silt content up to 55% and then decreased 262 

(Figure 6d).  263 
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SOC stock functional relationships differed between the three ESMs and in many cases 264 

differed with the relationships we derived from observations. In terms of the effects of annual 265 

temperature on modeled SOC storage, we found that SOC stocks decreased with annual 266 

temperature and were most sensitive to temperature in the range between 0 and 10oC (Figure 6e). 267 

However, while the three ESMs captured the general negative relationship between SOC storage 268 

and temperature, none of them correctly described the varying sensitivity of SOC in different 269 

temperature ranges (especially in extreme temperature ranges <0oC and >20oC). In representing 270 

the control of elevation on SOC storage, only UKESM showed consistent patterns with 271 

observations, where SOC storage remained stable when the elevation was lower than 2000 m and 272 

decreased when the elevation was higher than 2000 m (Figure 6f).     273 

 274 

Discussion 275 

Previous studies have suggested that the spatial variation of SOC is dependent on multiple 276 

environmental factors such as climatic and edaphic variables, geography, and vegetation. Here, 277 

we found that climatic variables (i.e., temperature and precipitation) are the most important 278 

controllers of global SOC stocks, followed by edaphic variables (i.e., cation exchange capacity), 279 

topography (i.e., elevation), and vegetation (i.e., NPP). Using boosted regression trees, Luo et al. 280 

(2021) studied edaphic and climatic controls on SOC dynamics at different soil depths and found 281 

that soil type and climatic variables are the most important variables in explaining the SOC 282 

stocks (Luo et al., 2021). In this study, we found that seasonal climatic variables such as diurnal 283 

temperature range and precipitation seasonality are among the most important environmental 284 

controllers in explaining the spatial variation of SOC stocks. This result indicates the critical role 285 

of seasonal and interannual climatic variables in understanding SOC dynamics. 286 
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The importance of climatic variables on global SOC storage emerges from close links 287 

with processes that affect ecosystem productivity and soil microbial processes. Consistent with 288 

our findings, Wiesmeier et al. (2014) reported climatic variables (temperature and precipitation) 289 

as significant controllers of SOC stocks up to 1 m depth in German soils under oceanic climate 290 

(Wiesmeier et al., 2014). Sreenivas et al. (2014) used RF to predict the SOC variability across 291 

semi-arid and humid areas of India in the top 30 cm of soil and found that the top three 292 

environmental controllers were land cover, mean temperature of hottest months, and mean 293 

annual precipitation (Sreenivas et al., 2016). In our analysis, the overall relative importance of 294 

climatic variables was significantly higher than other variables at the global and biome scales.  295 

Soil properties were identified as the second most important controllers of global SOC 296 

stocks. Soil properties impact various processes that govern soil carbon dynamics. For example, 297 

soil properties impact microbial activity, porosity, and oxygen availability in the soil profile, 298 

which directly or indirectly control soil water dynamics, plant growth, and SOC stocks. 299 

Consistent with our findings, Luo et al. (2021) reported that sand content, silt content, and soil 300 

pH were significant controllers of SOC stocks in all soil depths globally. 301 

The Palmer drought severity index, which indicates low soil moisture availability, was a 302 

dominant controller of global SOC stocks. Drought severity and duration play crucial roles in 303 

influencing the extent of soil carbon losses through microbial respiration (Borken and Matzner, 304 

2009). A decline in soil CO2 efflux is observed as precipitation events decrease in both quantity 305 

and frequency (Harper et al., 2005). In the initial phases of drought, heightened soil CO2 306 

emissions occur due to the rapid response of plants and microorganisms to environmental stress 307 

(Ru et al., 2018). As drought intensifies, the overall CO2 emission diminishes due to reduced 308 

root growth and microbial CO2 efflux caused by increasing soil dryness (Hasibeder et al., 2015). 309 
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Similar to the impact of drought duration, intensification of drought results in a decrease in total 310 

CO2 emission by suppressing soil microbial activity and associated soil CO2 fluxes (Harper et 311 

al., 2005; Hu et al., 2020). 312 

Consistent with our findings, Li et al. (2021) reported that soil particle size and soil water 313 

content were the most influential predictors of SOC variation (Li et al., 2021). Soil drought, 314 

indicating more negative soil water potential and low soil hydraulic conductivity, can cause tree 315 

mortality (Anderegg et al., 2012). Climate extremes like droughts can impact the structure, 316 

composition, and functioning of terrestrial ecosystems and can thereby severely affect the 317 

regional carbon cycle (Frank et al., 2015).  318 

Cation exchange capacity is a soil property that indicates the active soil surface to which 319 

SOC may be adsorbed, and polyvalent metal cations can play a significant role in SOC 320 

stabilization by binding organic compounds to mineral surfaces (O’Brien et al., 2015; Solly et 321 

al., 2020). O’Brien et al., (2015) found that exchangeable soil Ca2+ is a significant predictor of 322 

SOC stocks. This relationship is supported by the mechanism that Ca2+ and Mg2+ promote clay 323 

flocculation and bind organic matter to clay surfaces. Solly et al. (2020) reported that SOC and 324 

cation exchange capacity are significantly related in both topsoil and subsoil with strong positive 325 

relationship.  326 

After climatic factors and cation exchange capacity, topography and vegetation (NPP) 327 

were important controllers of observed global SOC stocks. Effects of NPP on observed SOC 328 

stocks was found to be small (~6% in 0-100 cm soil depth). Similar to our findings, Luo et al. 329 

(2021) reported NPP explaining about 10% of the variation of SOC stocks. NPP delivers the 330 

primary inputs of carbon to soil and NPP generally increases with moisture, temperature, and 331 

CO2 up to a certain limit (Todd-Brown et al., 2013). NPP also depends on the availability of soil 332 
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nutrients. Most ESMs overestimate the increase in SOC pools in response to NPP increases 333 

(Todd-Brown et al., 2013). The effects of NPP on SOC also depend on biome type and soil 334 

depths (Luo et al., 2021; Georgiou et al., 2021). The contribution of NPP on SOC stocks mostly 335 

depends on how much NPP ends up in the soil and how it is translocated to different soil depths. 336 

Georgiou et al. (2021) reported a saturating relationship of SOC stocks with increasing NPP in a 337 

global observational dataset. However, Chen et al., (2018) reported high SOC stocks with 338 

increasing productivity and soil water holding capacity (Chen et al., 2018).  339 

The three CMIP6 ESMs we analyzed predicted SOC stocks mostly as a function of 340 

temperature, precipitation, and NPP. These ESMs simulated positive correlations between SOC 341 

stocks and NPP (Figure 65a), resulting in high SOC stocks in areas with high NPP in most 342 

regions (Shi et al., 2013; Sun et al., 2016). In these ESMs, effects of temperature and 343 

precipitation on SOC stocks are driven by soil respiration. Most current ESMs simulate the 344 

response of soil respiration to temperature using either a Q10 or Arrhenius equation (Wynn et al., 345 

2006), such that a higher temperature causes more soil respiration, and, all else equal, eventually 346 

reduces SOC stocks (Figure 6e5b). Our results showed diverse control of precipitation on SOC 347 

stocks in different ESMs. Todd-Brown et al. (2013) showed that ESM soil respiration either 348 

increases monotonically with precipitation, or first increases to a plateau under optimal 349 

precipitation and then decreases with further increasing precipitation. Consistent with those 350 

results, the ESMs we analyzed in this study showed different dependence of SOC storage on 351 

annual precipitation (Figure 6b).  352 

In this study, we found that, while current ESMs consider key environmental controllers 353 

such as soil temperature and moisture in regulating SOC storage, they show large inter-model 354 

variations in representing the functional relationships between these factors and SOC at the 355 
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global scale. Meanwhile, none of the three ESMs investigated in this study show agreement with 356 

in comparison to the patterns that emerged from observations, ESMs have distinctively different 357 

emergent relationships between environmental factors and SOC stocks. These results 358 

couldsignify potential  either result from unrealistic parameterization or missing critical 359 

processes in model representation. Moreover, Oour results highlight the importance of including 360 

other environmental factors in simulating global SOC storage. The observed show that observed 361 

global SOC stocks are formed beyond the processes currently considered in ESMs such as 362 

controlled not only by temperature, precipitation, and NPP. Effects of other environmental 363 

factors, such as drought severity index and cation exchange capacity should also be considered in 364 

future representations of SOC dynamics in ESMs. It is also imperative to compareOur results 365 

showed the critical role of observational data in benchmarkingand ESM simulations to 366 

improveand informing model structures and parameterization. While our findings can not 367 

directly be used to develop model parameterizations, they can: (1) point to categories of 368 

functional forms for controllers; (2) inform where effort may best apply to improve model 369 

functional forms (e.g., to the dominant controllers); and (3) inform modelers of where their 370 

model may have very different functional forms for emergent relationships than exist in the 371 

observations. 372 

 We note that though not represented in current generation of ESMs use of ecosystem 373 

specific (for example croplands or forests) environmental factors such as presence or absence of 374 

certain species (for e.g., earthworms or termites) or indicators of anthropogenic management of 375 

land (for e.g., use of fertilizers or conservation agriculture practices) may improve the SOC stock 376 

prediction accuracy in observations. 377 

 378 
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 379 

 380 

 381 

5. Conclusion 382 

Our results document disagreement between environmental controllers of SOC stocks in 383 

observations and CMIP6 ESM simulations land models. Specifically, while the global SOC 384 

observations indicate NPP, annual temperature, and annual precipitation have dominant control 385 

in modeled SOC stocks. In contrast, diurnal temperature, drought index, annual temperature, 386 

cation exchange capacity, and other soil related variables are critical in the dominant 387 

controllingers of observed SOC stocks at the global scale, ESMs overstate the role of NPP, 388 

annual temperature, and annual precipitation in simulating SOC stocks. Moreover, . Using field 389 

observations and data for environmental factors, machine learning techniques predict about 60% 390 

of the variability in observed global SOC stocks, while in ESMs, only a few environmental 391 

factors predict about 95% of the variability in predicted SOC stocks. Comparisons of derived 392 

functional relationships between keythe environmental factors and SOC stocks showed huge 393 

uncertainty among ESMs and no agreement with those emerged from observationsin 394 

observations and ESM models also show discrepancies. Optimizing current model 395 

parameterizations and developing new model structures that consider more processes in soil 396 

carbon cycle to better simulate global SOC storage are critical for future ESMs development. 397 

Our results highlight the importance of benchmarking ESMs with observations to improve the 398 

mechanistic understanding of soil carbon cycle at the global scale. 399 

These discrepancies indicate the importance of efforts to benchmark ESM land models and to 400 

improve the mechanistic representations that are affected by the observed dominant 401 
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environmental controllers. Such an effort could decrease disagreements between observed and 402 

modeled SOC stocks. 403 
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Figure 1. Spatial and statistical distributions of 54,000 soil organic carbon profiles used 

in this study.  

 

 

 

 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Boxplot of soil organic carbon (SOC) stock for each biome analyzed in this 

study. The horizontal line in the middle of the boxes is the median while their lower and 

upper limits correspond to the first and third quartiles. TS is tropical/subtropical. 
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Figure 3: Importance of different environmental factors to predict the global soil organic 

carbon stocks in observations.  
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Figure 4: Strengths and importance of environmental factocontrollers in predictingof 

observed SOC stocks within different biomes. 
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Figure 5: Importance of different environmental factors in predictingon global soil 

organic carbon stocks in three CMIP6 earth system models. 
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Figure 6: Predictive relationships between environmental factors and soil organic carbon 

stocks in observations (black line) and CMIP6 earth system models (different colors). 

Red circles are computed from fitted curves. The shade around the solid line indicates 

95% confidence interval. 
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Table 1: Descriptive statistics of global soil organic carbon stocks at 0-100 cm depth 

interval. 

 

Location Minimum 

 

(kgC m-2) 

Maximum 

 

(kgC m-2) 

Mean 

 

(kgC m-2) 

Median 

 

(kgC m-2) 

Standard 

Deviation 

(kgC m-2) 

Global  0.14 435.30 13.50 9.50 18.20 

TS broadleaf forest 0.19 314.40 10.89 8.10 14.02 

Temperate broadleaf 

and mixed forest 
0.47 312.14 16.20 12.39 17.28 

Temperate grassland 0.56 315.85 12.1 8.65 16.78 

Boreal forest 0.16 311.80 23.50 14.18 33.55 

Cropland 0.14 435.29 12.75 9.54 16.00 

Shrubland 0.19 312.54 13.59 7.59 25.63 

Tundra 0.30 106.86 10.34 6.06 14.81 

TS grasslands and 

savannas 
0.32 309.13 12.60 9.16 15.17 

T/S is tropical subtropical. 
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Table 2: Prediction accuracies of Random Forest models across biomes and at global 

scale in predicting SOC stocks.  

 

Biomes R square 

 (Random forest) 

RMSE 

(kgC m-2) 

Global 0.61 0.46 

TS broadleaf forest 0.54 0.46 

Temperate broadleaf and 

mixed forest 

0.50 0.53 

Boreal forest 0.43 0.69 

Shrubland 0.58 0.61 

Cropland 0.62 0.53 

Temperate grassland 0.56 0.48 

Tundra 0.69 0.54 

TS grasslands and savannas 0.47 0.53 

T/S is tropical subtropical; RMSE is root mean square error. 

 

 

 

 

 

 

 

 

 

 


