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Abstract 1 

Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key 2 

source of uncertainty in predicting carbon climate feedbacks. Machine learning models can help 3 

identify dominant environmental controllers and their functional relationships with SOC stocks. 4 

The resulting knowledge can be implemented in ESMs to reduce uncertainty and better predict 5 

SOC dynamics over space and time. In this study, we used a large number of SOC field 6 

observations (n = 54,000), geospatial datasets of environmental factors (n = 46), and two 7 

machine learning approaches (Random Forest (RF) and Generalized Additive Modeling (GAM)) 8 

to: (1) identify dominant environmental controllers of global and biome-specific SOC stocks, (2) 9 

derive functional relationships between environmental controllers and SOC stocks, and (3) 10 

compare the identified environmental controllers and predictive relationships with those in 11 

Coupled Model Intercomparison Project phase six (CMIP6) models. Our results showed that 12 

diurnal temperature, drought index, cation exchange capacity, and precipitation were important 13 

observed environmental controllers of SOC stocks. RF model predictions of global-scale SOC 14 

stocks were relatively accurate (R2 = 0.61, RMSE = 0.46 kg m-2). In contrast, precipitation, 15 

temperature, and net primary productivity explained >96% of ESM-modeled SOC stock 16 

variability. We also found very different functional relationships between environmental factors 17 

and SOC stocks in observations and ESMs. SOC predictions in ESMs may be improved 18 

significantly by including additional environmental controls (e.g., cation exchange capacity) and 19 

representing the functional relationships of environmental controllers consistent with 20 

observations. 21 

 22 

https://doi.org/10.5194/bg-2023-50
Preprint. Discussion started: 21 March 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

Keywords: Environmental controllers, Earth system models, soil organic carbon, net primary 23 

productivity, machine learning, model benchmarking 24 

 25 

1. Introduction 26 

Soil is the largest actively cycling carbon pool in terrestrial ecosystems and stores almost twice 27 

the amount of carbon as in the current atmosphere (Lal, 2016). A small change in soil carbon 28 

stocks can lead to large changes in the atmospheric CO2 concentration and future climate change 29 

trajectories. Soils also play a crucial role in sequestering atmospheric CO2 as soil organic carbon 30 

(SOC) (Hinge et al., 2018). Thus, sequestration, protection, and sustainable management of SOC 31 

stocks can be a promising climate mitigation strategy (Lal, 2020). Accurate representation of 32 

global SOC storage and its environmental controllers are essential for predicting realistic 33 

changes of SOC under different land use and climate change scenarios. Yet, no consensus exists 34 

among current Earth system models (ESMs) in representing the spatial distributions of global 35 

SOC storage and its fate under future climate change scenarios (Friedlingstein et al., 2014.; 36 

Arora et al., 2020).  37 

Multiple environmental variables, including climatic and topographic factors, land use history, 38 

and edaphic properties, have been identified as possible controllers of SOC storage (Georgiou et 39 

al., 2021; Mishra et al., 2022). Current ESMs, however, use the effects of only a limited number 40 

of environmental factors in representing SOC storage and dynamics. A recent study that 41 

compared SOC stocks from multiple ESMs against observations indicated a large knowledge gap 42 

in both ESMs and observations (Georgiou et al., 2021). Therefore, it is important to compare 43 

ESM simulations against global SOC observational datasets to evaluate model performance and 44 

identify key environmental controllers of global SOC storage.  45 
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Benchmarking ESM simulations with observed data is a common approach for model evaluation 46 

(Luo et al., 2012; Todd-Brown et al., 2013; Collier et al., 2018). Through comparing model 47 

simulations with observations, model strengths, deficiencies, and needed improvements can be 48 

identified. The resulting understanding from SOC benchmarking could lead to new ESM land 49 

model structures (by identifying key processes) and new parameterizations (by quantifying key 50 

relationships between SOC and environmental variables). Thus, benchmarking analysis of ESMs 51 

is an effective tool to reduce uncertainties in predicting SOC dynamics and can provide more 52 

realistic information for managing SOC under changing climate conditions (Lauer et al., 2017).  53 

Currently ESMs predict SOC stocks primarily with model representations that depend on soil 54 

temperature, moisture, and belowground net primary production (Todd-Brown et al., 2013). 55 

ESMs capture the positive correlation between NPP and precipitation, resulting in high SOC 56 

stocks for areas with high NPP in moist regions (Sun et al., 2016). Higher temperature increases 57 

soil respiration, which, in the short-term, reduces SOC storage. In the longer-term, increased soil 58 

respiration can release nutrients, leading to increased plant growth, belowground carbon inputs, 59 

and thereby SOC stocks; the balance of these factors can take centuries to manifest (Mekonnen 60 

et al., 2022). Soil respiration temperature sensitivity is often defined based on Q10 or Arrhenius 61 

equations in ESMs (Wynn et al., 2006), although low- and high-temperature modifications to 62 

these relationships are likely needed (Jiang et al., 2013; Azizi-Rad et al., 2022).  63 

In a previous U.S. continental-scale study, we derived empirical non-linear relationships between 64 

SOC and environmental factors that produced comparable prediction accuracy to a random forest 65 

(RF) machine learning approach (Mishra et al., 2022). We apply a similar approach in this study 66 

in both global field observations and ESMs to (1) identify key observed environmental controllers 67 

of, and functional relationships with, global SOC stocks and (2) evaluate ESMs with these 68 
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observational benchmarks. Simulated SOC stocks from three CMIP6 ESMs (i.e., Community 69 

Earth System Model (CESM, Hurrell et al., 2013); U.K. Earth System Model (UKESM, Sellar et 70 

al., 2019); Beijing Climate Center model (BCC, Xiao-Ge et al., 2019) were benchmarked with 71 

50,000 SOC profile observations across the globe. We used a machine learning (i.e., random 72 

forest) approach with 46 environmental factors to identify the key environmental controllers of 73 

SOC stocks at the global scale. We then applied a generalized additive model (GAM) to derive the 74 

predictive relationships between these key environmental factors and SOC stocks in observations 75 

and ESM simulations.  Specific objectives of this study were to: (1) identify dominant 76 

environmental controllers of SOC stocks in field observations and CMIP6 ESMs, (2) derive 77 

observed and ESM-modeled functional relationships between environmental factors and SOC 78 

stocks, and (3) analyze these functional relationships to inform needed improvements in ESM 79 

representations of SOC dynamics.  80 

2. Materials and Methods 81 

 82 

     2.1 Soil organic carbon stock observations 83 

 84 

We used two datasets of SOC stocks for the topsoil layer (i.e., 0 – 30 cm) and the whole soil profile 85 

(i.e., 0 – 100 cm). The World Soil Information Service (WoSIS) compiled SOC profiles across the 86 

globe after quality assessment. The 2019 snapshot of the WoSIS dataset contained 111,380 soil 87 

profiles with SOC content information (unit: g C g-soil-1) at different soil depths (Batjes et al., 88 

2020). We estimated the SOC stock (g C m-2) at different soil layers using: 89 

 𝑆𝑂𝐶 𝑆𝑡𝑜𝑐𝑘 = 𝑆𝑂𝐶 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 × (1 −
𝐺

100
) × 𝐵𝐷 × 𝐷                                                                 (1) 90 

where G is the coarse fragment fraction (%); BD is the bulk density of soil (g m-3); and D is the 91 

soil layer depth (m).  92 
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When the measured bulk density value was absent from the dataset, we used a pedo-transfer 93 

function (Yigini et al., 2018) to estimate the soil bulk density: 94 

 𝐵𝐷 = 𝛼 + 𝛽 × 𝑒𝑥𝑝 (−𝛾 × 𝑂𝑀)                                                                                               (2) 95 

Where OM is organic matter, equivalent to SOC×1.724, with SOC content in percent (%); α, 𝛽, 96 

and 𝛾 are fitting parameters. We found α = 0.32, 𝛽 = 1.30, and 𝛾 = 0.0089 after fitting WoSIS data 97 

to this equation.  98 

Another dataset we used in this study was compiled from Mishra et al. (2021). This dataset 99 

contained 2,546 soil profiles with SOC stock (g C m-3) information from permafrost regions in 100 

North America, northern Eurasia, and the Qinghai-Tibet Plateau. In total, we used 113,926 soil 101 

profile observations from these two data sources. SOC stocks of different soil layers were then 102 

summed to SOC stocks in 0 – 30 cm and 0 – 100 cm depth intervals. Because not all these soil 103 

profiles covered the whole 0 – 30 cm or 0 – 100 cm intervals, we used a total of 54,000 soil profiles 104 

that included SOC stock information for both depth intervals. The geographical distributions of 105 

soil profiles used in this study are shown in Figure 1. Because SOC stock values across the globe 106 

were highly skewed, we used a natural logarithm transformation in this study.  107 

 108 

2.2 Environmental predictors of SOC stocks 109 

 110 

The storage and cycling of SOC are controlled by multiple environmental factors. In this study, 111 

we used observations of 46 environmental variables, which represented major soil forming factors 112 

(McBratney et al., 2003.). Twenty-one of the 46 environmental variables were climatic variables, 113 

including annual average temperature, precipitation, evapotranspiration, drought severity index, 114 

and statistics for different temporal scales (e.g., during the wettest and driest quarter in a year). 115 

Thirteen of the 46 variables described soil properties (e.g., clay content, sand content, silt content, 116 

soil texture, pH, and cation exchange capacity). Six variables represented topographic factors (e.g., 117 
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elevation and soil depth). Six variables represented land use and land cover types. All the 118 

categorical variables were converted to integer variables and the environmental variables were 119 

resampled to a common 1 km resolution. The environmental factors, their original spatial 120 

resolution, and data sources are provided in the supporting information (Table S1). 121 

 122 

2.3 Selection of dominant environmental controllers of SOC stocks 123 

 124 

We used RF to select dominant environmental predictors of SOC stocks within biomes and at 125 

global scale in both observations and ESMs. RF is an ensemble learning method, which is an 126 

extension of the classical Classification and Regression Trees (CART). Building a collection of 127 

uncorrelated CARTs through bootstrapping the samples and applying the random subspace method 128 

at each branch of the trees, RF improves the prediction performance (Breiman, 2001; Wiesmeier 129 

et al., 2011; Mishra et al., 2020). RF is well known for its strength in modeling highly nonlinear 130 

relationships between the predictors and is robust to overfitting (Chagas et al., 2016). Moreover, 131 

RF is not very sensitive to the choice of the hyperparameters, which makes RF one of the most 132 

popular off-the-shelf model for many classification and regression problems.  133 

In this study, we trained the RF model using SOC content as a response variable and environmental 134 

factors as predictors. The model performance was evaluated using  the coefficient of determination 135 

(R2) and root mean square error (RMSE). A 10-fold cross-validation was used to compute R2 and 136 

RMSE. Biome-specific analyses were conducted on a subset of the global dataset. For biome 137 

classification, we used the IGBP land classes (Loveland and Belward, 1997). The “Random-138 

Forest” package in R was used to train a RF model using all the observed environmental factors in 139 

the dataset and to identify dominant environmental controllers of SOC stocks. Prior to fitting into 140 

the final model, we performed a potential collinearity test among the environmental variables by 141 

https://doi.org/10.5194/bg-2023-50
Preprint. Discussion started: 21 March 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

calculating pairwise correlations and variance influence factors. Predictors showing a variance 142 

influence factor (VIF) value greater than 10 were omitted, leaving 14 uncorrelated environmental 143 

predictors of SOC stocks in the observations.  144 

 145 

2.4 Generalized additive model 146 

 147 

Generalized additive model (GAM) is an extension of generalized linear models, which employs 148 

spline functions to model nonlinear relationships between predictor and response variables (Arnold 149 

et al., 2013).  In GAM, the relationship between predictor and response variable can be modeled as 150 

(Hastie and Tibshirani, 1987): 151 

𝑌 = 𝐶 + ∑ 𝑓𝑖(𝑋𝑖)
𝑝
𝑖=1                                                                                                                      (3) 152 

Here, Y is the response variable (SOC), 𝐶 is a constant, Xi are the environmental controller 153 

variables, fi is a spline function for Xi, and p is the total number of environmental controllers. We 154 

used the “mgcv” package in R to build GAMs for the observations as well as CMIP6 ESMs 155 

(Arnold et al., 2013). The performance of GAMs was evaluated by using R2 and RMSE. 156 

 157 

2.5 Earth system model outputs 158 

 159 

We downloaded and aggregated the SOC and environmental controller data from three ESMs that 160 

participated in CMIP6: Community Earth System Model (Hurrell et al., 2013.), U.K. Earth System 161 

Model (Sellar et al., 2019), and Beijing Climate Center model (Xiao-Ge et al., 2019). These ESMs 162 

included most of the environmental factors used by CMIP6 ESMs. ESMs did not report depth-163 

dependent soil carbon projections, making direct comparison with depth-dependent SOC 164 

observations difficult. The majority of land models used in ESMs were designed to simulate topsoil 165 
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carbon for topsoil depth; thus, we assumed that the simulated soil carbon is contained within 1 m 166 

of soil profile to simplify comparison with observations. 167 

 168 

3. Results 169 

 170 

3.1 Descriptive statistics of SOC observations 171 
 172 
The average global SOC stock in the 0 - 1 m depth interval was 13.5 kg C m-2, ranging from 0.14- 173 

435.3 kg C m-2. Summary statistics of SOC stocks at global scale and within different biomes is 174 

presented in Table 1. The standard deviation showed a similar spread in SOC stock values in 175 

croplands (n=21820), savannas (n=9807) and grasslands (n=5938). However, in forests (n=12164) 176 

and shrublands (n=3769), the standard deviation was higher indicating a large range in SOC stock 177 

values. Distributions of total SOC stocks in different biomes are presented in Figure 2. Across 178 

different biomes, forests contain the largest organic carbon content globally, with a mean value of 179 

15.9 kg C m-2 and standard deviation 20.7 kg C m-2.  180 

 181 

3.2 Dominant environmental controllers of SOC stocks in observations and ESMs 182 

 183 

At the global scale, we found that diurnal temperature, drought severity index, annual 184 

temperature, and cation exchange capacity are the dominant environmental controllers of SOC 185 

stocks in observations (Figure 3). By including all the environmental controllers, the RF model 186 

explained 61% of observed global spatial SOC variation. R2 ranged from 48% in savannas to 187 

65% in croplands (Table 2) and the importance of key environmental controllers varied between 188 

biomes (Figure 4). In croplands, precipitation, drought, diurnal temperature, and cation exchange 189 

capacity were identified as the dominant controllers of SOC stocks. In grasslands, annual 190 

temperature, cation exchange capacity, and sand content were the dominant controllers. In 191 

forests, cation exchange capacity, precipitation, and temperature were dominant controllers. In 192 
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shrublands, annual temperature, soil pH, and cation exchange capacity were the most important 193 

controllers. In savannas, soil related variables, temperature, and precipitation were the most 194 

important controllers. Across all land cover types, we found that cation exchange capacity and 195 

seasonal climatic variables were the dominant environmental controllers of SOC stocks. 196 

In contrast, the RF model with 8 environmental variable predictors made near-perfect 197 

predictions of ESM simulated SOC stocks (average R2 = 0.95, R2 values for UKESM, CESM, 198 

and BCC model were 0.99, 0.89, and 0.98, respectively). In contrast to the results obtained from 199 

the observed SOC stocks, the dominant controllers of ESM simulated SOC stocks were annual 200 

temperature, net primary productivity (NPP), and annual precipitation (Figure 5). In particular, 201 

NPP was by far the most dominant predictor of SOC stocks in the UKESM.  202 

 203 

3.2 Predictive relationships between environmental factors and SOC stocks  204 

Dominant environmental controllers of observed SOC stocks identified by the RF model 205 

were used in GAM to derive predictive relationships. We retrieved explicit analytical 206 

expressions by fitting the splines derived from GAM in the observation dataset. Notwithstanding 207 

its role as the sole carbon source to soil, our results did not show NPP as a strong controller on 208 

observed SOC stocks (Figure 6a). In contrast with field observations, all ESMs showed 209 

significant dependence (exponential increase) of SOC stocks on NPP. Our results also showed 210 

that observed SOC stocks increased almost linearly with observed annual precipitation (Figure 211 

6b). In contrast, ESMs show different relationships between SOC and precipitation. We found a 212 

nonlinearly increasing SOC with precipitation in CESM, an initial sharply increasing and then 213 

decreasing relationship in UKESM, and a decreasing relationship in BCC ESM. On the 214 

relationship between SOC storage and soil texture and elevation, ESMs do not capture the 215 
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observed relationships. Our results indicated that observed SOC stocks decreased with clay 216 

content in the interval between 0 and 20%, and then increased with clay content above 20% 217 

(Figure 6c). Observed SOC stocks increased with silt content up to 55% and then decreased 218 

(Figure 6d).  219 

SOC stock functional relationships differed between the three ESMs and in many cases 220 

differed with the relationships we derived from observations. In terms of the effects of annual 221 

temperature on modeled SOC storage, we found that SOC stocks decreased with annual 222 

temperature and were most sensitive to temperature in the range between 0 and 10oC (Figure 6e). 223 

However, while the three ESMs captured the general negative relationship between SOC storage 224 

and temperature, none of them correctly described the varying sensitivity of SOC in different 225 

temperature ranges (especially in extreme temperature ranges <0oC and >20oC). In representing 226 

the control of elevation on SOC storage, only UKESM showed consistent patterns with 227 

observations, where SOC storage remained stable when the elevation was lower than 2000 m and 228 

decreased when the elevation was higher than 2000 m (Figure 6f).     229 

 230 

Discussion 231 

Previous studies have suggested that the spatial variation of SOC is dependent on multiple 232 

environmental factors such as climatic and edaphic variables, geography, and vegetation. Here, 233 

we found that climatic variables (i.e., temperature and precipitation) are the most important 234 

controllers of global SOC stocks, followed by edaphic variables (i.e., cation exchange capacity), 235 

topography (i.e., elevation), and vegetation (i.e., NPP). Using boosted regression trees, Luo et al. 236 

(2021) studied edaphic and climatic controls on SOC dynamics at different soil depths and found 237 

that soil type and climatic variables are the most important variables in explaining the SOC 238 
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stocks (Luo et al., 2021). In this study, we found that seasonal climatic variables such as diurnal 239 

temperature range and precipitation seasonality are among the most important environmental 240 

controllers in explaining the spatial variation of SOC stocks. This result indicates the critical role 241 

of seasonal and interannual climatic variables in understanding SOC dynamics. 242 

The importance of climatic variables on global SOC storage emerges from close links 243 

with processes that affect ecosystem productivity and soil microbial processes. Consistent with 244 

our findings, Wiesmeier et al. (2014) reported climatic variables (temperature and precipitation) 245 

as significant controllers of SOC stocks up to 1 m depth in German soils under oceanic climate 246 

(Wiesmeier et al., 2014). Sreenivas et al. (2014) used RF to predict the SOC variability across 247 

semi-arid and humid areas of India in the top 30 cm of soil and found that the top three 248 

environmental controllers were land cover, mean temperature of hottest months, and mean 249 

annual precipitation (Sreenivas et al., 2016). In our analysis, the overall relative importance of 250 

climatic variables was significantly higher than other variables at the global and biome scales.  251 

Soil properties were identified as the second most important controllers of global SOC 252 

stocks. Soil properties impact various processes that govern soil carbon dynamics. For example, 253 

soil properties impact microbial activity, porosity, and oxygen availability in the soil profile, 254 

which directly or indirectly control soil water dynamics, plant growth, and SOC stocks. 255 

Consistent with our findings, Luo et al. (2021) reported that sand content, silt content, and soil 256 

pH were significant controllers of SOC stocks in all soil depths globally. 257 

The Palmer drought severity index, which indicates low soil moisture availability, was a 258 

dominant controller of global SOC stocks. Consistent with our findings, Li et al. (2021) reported 259 

that soil particle size and soil water content were the most influential predictors of SOC variation 260 

(Li et al., 2021). Soil drought, indicating more negative soil water potential and low soil 261 

https://doi.org/10.5194/bg-2023-50
Preprint. Discussion started: 21 March 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

hydraulic conductivity, can cause tree mortality (Anderegg et al., 2012). Climate extremes like 262 

droughts can impact the structure, composition, and functioning of terrestrial ecosystems and can 263 

thereby severely affect the regional carbon cycle (Frank et al., 2015).  264 

Cation exchange capacity is a soil property that indicates the active soil surface to which 265 

SOC may be adsorbed, and polyvalent metal cations can play a significant role in SOC 266 

stabilization by binding organic compounds to mineral surfaces (O’Brien et al., 2015; Solly et 267 

al., 2020). O’Brien et al., (2015) found that exchangeable soil Ca2+ is a significant predictor of 268 

SOC stocks. This relationship is supported by the mechanism that Ca2+ and Mg2+ promote clay 269 

flocculation and bind organic matter to clay surfaces. Solly et al. (2020) reported that SOC and 270 

cation exchange capacity are significantly related in both topsoil and subsoil with strong positive 271 

relationship.  272 

After climatic factors and cation exchange capacity, topography and vegetation (NPP) 273 

were important controllers of observed global SOC stocks. Effects of NPP on observed SOC 274 

stocks was found to be small (~6% in 0-100 cm soil depth). Similar to our findings, Luo et al. 275 

(2021) reported NPP explaining about 10% of the variation of SOC stocks. NPP delivers the 276 

primary inputs of carbon to soil and NPP generally increases with moisture, temperature, and 277 

CO2 up to a certain limit (Todd-Brown et al., 2013). NPP also depends on the availability of soil 278 

nutrients. Most ESMs overestimate the increase in SOC pools in response to NPP increases 279 

(Todd-Brown et al., 2013). The effects of NPP on SOC also depend on biome type and soil 280 

depths (Luo et al., n.d.; Georgiou et al., 2021). The contribution of NPP on SOC stocks mostly 281 

depends on how much NPP ends up in the soil and how it is translocated to different soil depths. 282 

Georgiou et al. (2021) reported a saturating relationship of SOC stocks with increasing NPP in a 283 
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global observational dataset. However, Chen et al., (2018) reported high SOC stocks with 284 

increasing productivity and soil water holding capacity (Chen et al., 2018).  285 

The three CMIP6 ESMs we analyzed predicted SOC stocks mostly as a function of 286 

temperature, precipitation, and NPP. These ESMs simulated positive correlations between SOC 287 

stocks and NPP (Figure 5a), resulting in high SOC stocks in areas with high NPP in most regions 288 

(Shi et al., 2013; Sun et al., 2016). In these ESMs, effects of temperature and precipitation on 289 

SOC stocks are driven by soil respiration. Most current ESMs simulate the response of soil 290 

respiration to temperature using either a Q10 or Arrhenius equation (Wynn et al., 2006), such that 291 

a higher temperature causes more soil respiration, and, all else equal, eventually reduces SOC 292 

stocks (Figure 5b). Our results showed diverse control of precipitation on SOC stocks in 293 

different ESMs. Todd-Brown et al. (2013) showed that ESM soil respiration either increases 294 

monotonically with precipitation, or first increases to a plateau under optimal precipitation and 295 

then decreases with further increasing precipitation. Consistent with those results, the ESMs we 296 

analyzed in this study showed different dependence of SOC storage on annual precipitation.  297 

In this study, we found that, in comparison to the patterns that emerged from 298 

observations, ESMs have distinctively different emergent relationships between environmental 299 

factors and SOC stocks. These results could either result from unrealistic parameterization or 300 

missing critical processes in model representation. Our results show that observed global SOC 301 

stocks are controlled not only by temperature, precipitation, and NPP. Effects of other 302 

environmental factors, such as drought severity index and cation exchange capacity should also 303 

be considered in future representations of SOC dynamics in ESMs. It is also imperative to 304 

compare observational data and ESM simulations to improve model structures and 305 

parameterization.  306 
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 307 

 308 

5. Conclusion 309 

Our results document disagreement between environmental controllers of SOC stocks in 310 

observations and ESM land models. Specifically, NPP, annual temperature, and annual 311 

precipitation have dominant control in modeled SOC stocks. In contrast, diurnal temperature, 312 

drought index, annual temperature, cation exchange capacity, and other soil related variables are 313 

the dominant controllers of observed SOC stocks. Using field observations and data for 314 

environmental factors, machine learning techniques predict about 60% of the variability in 315 

observed global SOC stocks, while in ESMs, only a few environmental factors predict about 316 

95% of the variability in predicted SOC stocks. Comparisons of derived functional relationships 317 

between the environmental factors and SOC stocks in observations and ESM models also show 318 

discrepancies. These discrepancies indicate the importance of efforts to benchmark ESM land 319 

models and to improve the mechanistic representations that are affected by the observed 320 

dominant environmental controllers. Such an effort could decrease disagreements between 321 

observed and modeled SOC stocks. 322 
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Figures and Tables 

 

 

 

 

 
      

Figure 1. Spatial and statistical distributions of 54,000 soil organic carbon profiles used 

in this study.  
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Figure 2: Boxplot of soil organic carbon content (logarithmic scale) for each biome or 

land cover type analyzed in this study. The horizontal line in the middle of the boxes is 

the median while their lower and upper limits correspond to the first and third quartiles. 
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Figure 3: Importance of different environmental factors to predict the global soil organic 

carbon stocks in observations.  
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Figure 4: Strengths and importance of environmental controllers of observed SOC stocks 

within different biomes. 
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Figure 5: Importance of different environmental factors on global soil organic carbon 

stocks in three CMIP6 earth system models. 
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Figure 6: Predictive relationships between environmental factors and soil organic carbon 

stocks in observations (black line) and CMIP6 earth system models (different colors). 
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Table 1: Descriptive statistics of global soil organic carbon stocks at 0-100 cm depth 

interval. 

 

Location Depth  

 

(cm) 

Minimum 

 

(kgC m-2) 

Maximum 

 

(kgC m-2) 

Mean 

 

(kgC m-

2) 

Median 

 

(kgC m-

2) 

Standard 

Deviation 

(kgC m-2) 

Global  0-100 0.14 435.3 13.5 9.5 18.2 

Cropland 0-100 0.14 435.3 12.75 9.5 16.0 

Grassland 0-100 0.56 315.9 12.1 8.7 16.8 

Forest 0-100 0.16 314.4 15.9 10.9 20.7 

Shrubland 0-100 0.19 312.5 13.6 7.6 25.6 

Savannas 0-100 0.32 309.1 12.6 9.2 15.2 
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Table 2: Prediction accuracies of Random Forest models across biomes and at global 

scale in predicting SOC stocks.  

 

Location Depth  

(cm) 

R square 

(RF) 

RMSE 

Global  0-100 0.61 0.46 

Cropland 0-100 0.65 0.51 

Grassland 0-100 0.57 0.46 

Forest 0-100 0.59 0.52 

Shrubland 0-100 0.64 0.54 

Savannas 0-100 0.48 0.52 
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