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Abstract 15 

The assessment of cropland carbon and nitrogen (C & N) balances play a key role to identify 16 

cost effective mitigation measures to combat climate change and reduce environmental 17 

pollution. In this paper, a biogeochemical modelling approach is adopted to assess all C & N 18 

fluxes in a regional cropland ecosystem of Thessaly, Greece. Additionally, the estimation and 19 

quantification of the modelling uncertainty in the regional inventory are realized through the 20 

propagation of parameter distributions through the model leading to result distributions for 21 

modelling estimations. The model was applied on a regional dataset of approximately 1000 22 

polygons deploying model initializations and crop rotations for the 5 major crop cultivations 23 

and for a timespan of 8 years. The full statistical analysis on modelling results (including the 24 

uncertainty ranges given as ± values) yields for the C balance carbon input fluxes into the soil 25 

of 12.4 ± 1.4 tons C ha-1 yr-1 and output fluxes of 11.9 ± 1.3 tons C ha-1 yr-1, with a resulting 26 

average carbon sequestration of 0.5 ± 0.3 tons C ha-1 yr-1. The averaged N influx was 212.3 ± 27 

9.1 kg N ha-1 yr-1 while outfluxes were estimated on average of 198.3 ± 11.2 kg N ha-1 yr-1. The 28 

net N accumulation into the soil nitrogen pools was estimated to 14.0 ± 2.1 kg N ha-1 yr-1. The 29 

N outflux consist of gaseous N fluxes composed by N2O emissions 2.6 ± 0.8 kg N2O-N ha-1 yr-30 

1, NO emissions of 3.2 ± 1.5 kg NO-N ha-1 yr-1, N2 emissions 15.5 ± 7.0 kg N2-N ha-1 yr-1 and 31 

NH3 emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1, as well as aquatic N fluxes (only nitrate leaching 32 

into surface waters) of 14.1± 4.5 kg NO3-N ha-1 yr-1, N fluxes of N removed from the fields in 33 

yields, straw and feed of 128.8 ± 8.5 kg N ha-1 yr-1.  34 

 35 
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Graphical abstract: Result distributions of all nitrogen fluxes with means and medians 40 
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1 Introduction 44 

Food security as well as the agricultural productivity depend to a major extend on the applied 45 

nitrogen (N) fertilizers (Klatt et al., 2015a). Worldwide, the N fertilizer use for the years 1960 to 46 

2005 has increased from 30 to 154 million tons (IFADATA, 2015). In Europe, the increase of 47 

yields in arable land and grassland systems was 45-70% since 1950 (EFMA, 2009) due to the 48 

agricultural production systems intensification. Excessive use of N fertilizers, though 49 

beneficially affecting the yield, could cause a harmful impact to the environment, e.g. increased 50 

gaseous emissions and aquatic fluxes of nitrous oxide (N2O) to the atmosphere and leaching 51 

of nitrate (NO3) into water bodies (Erisman et al., 2011; Galloway et al., 2013; Kim et al., 2015)  52 

The N2O poses a twofold environmental threat. From the one hand, it is a strong greenhouse 53 

gas with a warming potential of 300 times greater (in a 100-year time period) than carbon 54 

dioxide (CO2) and from the other hand, it is a major driver of ozone depletion in stratosphere 55 

(Ravishankara et al., 2009). The fertilizer use aiming at the increase of the agricultural 56 

production is the most crucial anthropogenic source of atmospheric N2O, which at present 57 

contributes for approximately 45% of total anthropogenic N2O emissions on a global scale 58 

(Jones et al., 2014). Because of the global population growth and thus a growing food and 59 

feed demand (Godfray et al., 2010), the fertilizer use will probably increase. Consequently, the 60 

prediction of the current business-as-usual scenarios show doubled anthropogenic N2O 61 

emissions by the year 2050 (Davidson and Kanter, 2014). The European countries have 62 

recently set up bilateral agreements in order to reduce N2O emissions from cultivated crop 63 

lands (EU-Commission, 2014). Similarly, the European Nitrates Directive (EU-Commission, 64 

2019; Musacchio et al., 2020) aims at NO3 leaching reduction to water bodies to avoid both an 65 

increase of eutrophication (Camargo and Alonso, 2006) and drinking water pollution. Because 66 

of the hazardous N2O and NO3 effects, agricultural systems are necessary to be evaluated for 67 

their profitability and productivity as well as for their impacts to the environment.  68 

The N2O and NO3 production and consumption in agricultural lands are regulated to a large 69 

extend by N plant uptake and, also, the microbial processes of denitrification and nitrification 70 

(Butterbach-Bahl et al., 2013). The factors controlling both the microbial metabolism and plant 71 
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N uptake are a) soil conditions (Butterbach-Bahl et al., 2013) and b) cultivation management 72 

practices e.g. crop rotation, fertilizing amount and timing, and ploughing (Smith et al., 2008).  73 

In order to reach a minimization of the environmental footprint of agricultural production while 74 

securing the global food security (Garnett et al., 2013), it is mandatory to tighten the N cycling 75 

on intensified agricultural systems e.g., by harmonizing N demand of crops with soil N 76 

availability by N fertilization.  77 

Full nitrogen balance inventories provide a comprehensive understanding of the different N 78 

input and output fluxes within an arable system to the scientific community, farmers and policy 79 

makers. The assessment of the N balance is essential to optimize nitrogen use and production 80 

and minimize environmental impact and pollution. Especially policy making and regulatory 81 

bodies require accurate and robust information on all different nitrogen fluxes to develop 82 

effective strategies in agricultural N management. Up to now, our understanding of N cycling 83 

in arable land lacks observations of the full N balance as only few studies tried to quantify the 84 

total N balance of agricultural systems, e.g. (Zistl-Schlingmann et al., 2020) using stable 85 

isotope techniques or (Schroeck et al., 2019) using process based modelling. 86 

A recent opinion paper by a large group of leading scientists Grosz et al., (2023) in the field of 87 

process based ecosystem modelling identified the lack of knowledge on the full N balance and 88 

“the scarcity of complete modeled N balances in the literature stems from the reluctance of the 89 

scientific community to support the publication of unvalidated modeled results, especially given 90 

that the simulation results of these neglected N pools and fluxes may be unrealistic. This this 91 

self-censorship of authors has resulted in a missed opportunity to share knowledge and 92 

improve our understanding of modeled processes.”  93 

Grosz et al., (2023) conclude that “including the entire N balance and related should become 94 

standard when publishing the results of N model studies.” Grosz et al., (2023) emphasize that 95 

this would allow to assess the robustness of modelled N fluxes and full N balances, and to 96 

illustrate the diversity and uncertainty of the different process based modeling approaches, 97 

e.g. modelling denitrification processes in soils. 98 
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In this analysis, the process-based bio-geochemical model LandscapeDNDC (Haas et al., 99 

2013) was applied to the agricultural cropland systems in the region of Thessaly (Greece). The 100 

objective of our study was threefold: 101 

i) Assesing and reporting the cropland C and N balance including all associated 102 

fluxes such as e.g. CO2, N2O and NH3 emissions, NO3 leaching as well as the soil 103 

carbon stock changes as demanded by Grosz et al., (2023).  104 

ii) Increasing the robustness and trustworthiness of the balance modelling by 105 

assesing and quantifying the modelling uncertainty of the simulated C and N 106 

balance and flux estimations as requested before by the IPCC (IPCC, 2019) 107 

iii) Presenting a regional uncertainty assessment methodology for C and N cycling to 108 

advance the balance modelling by propagating 500 joint parameter and input data 109 

distributions through the model (each representing a full regional C and N balance 110 

inventory simulation) yielding regional result distributions for any modelling 111 

estimations.  112 

 113 

2 Material and Methods 114 

2.1 Model description 115 

LandscapeDNDC is a modular process-based ecosystem model for simulating the bio-116 

geochemical change of C and N in croplands, forest and grassland systems at both site and 117 

regional scale. The modules combined are about plant growth, micro-meteorology, water 118 

cycling, physico-chemical-plant and microbial C and N cycling and exchange processes with 119 

atmosphere and hydrosphere of terrestrial ecosystems. LandscapeDNDC is a generality of the 120 

plant development and soil biogeochemistry of the agricultural DNDC and Forest-DNDC (Li, 121 

2000). There is a successful application of earlier model versions in a number of studies, e.g. 122 

water balance (Grote et al., 2009; Holst et al., 2010), plant growth (Cameron et al., 2013; 123 

Werner et al., 2012), NO3 leaching (Kim et al., 2015; Thomas et al., 2016) and soil respiration 124 

and gas emission trace (Chirinda et al., 2011; Kraus et al., 2014; Molina-Herrera et al., 2015). 125 
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For the initialization of LandscapeDNDC physical and chemical site-specific soil profile 126 

information is used (specified for different soil depths): Soil organic carbon (SOC) and nitrogen 127 

(SON) content, soil texture (clay, sand and silt content), of the plant growth and soil 128 

biogeochemistry, bulk density, pH value, saturated hydraulic conductivity, field capacity and 129 

wilting point. Daily or hourly climate data of air temperature (max, min and average), N 130 

deposition, precipitation, and atmospheric CO2 concentration are used in LandscapeDNDC in 131 

combination with agricultural management practices e.g. crop planting and harvesting, 132 

fertilizing (synthetic and organic) or feed cutting and tilling are used to drive LandscapeDNDC 133 

simulations. Regarding fertilization management three types of mineral fertilizers, i.e. urea, 134 

compound fertilizers based on NH4 and NO3 as well as organic amendments, i.e. green 135 

manure, farmyard manure, slurry, straw, bean cake and compost are currently considered. 136 

The growth of crops and grasses is similar to the DNDC approach using two major parameters 137 

that describe seasonal plant development (cumulative temperature degrees days) and 138 

maximum reachable biomass under optimum conditions (Li, 2000) while daily growth 139 

limitations due to water and nutrient availability are considered. Model parameters describing 140 

soil and vegetation characteristics are obtained from an external parameter library. In 141 

LandscapeDNDC, the parameterization of the main cultivated commodity crops in Europe 142 

occurs by default parameter sets representing an average plant type while process parameter 143 

values for micro-meteorology, water cycle and bio-geochemical processes were obtained from 144 

previous validation studies, e.g. (Klatt et al., 2015a; Molina-Herrera et al., 2016; Rahn et al., 145 

2012) proving that the LandscapeDNDC model could be universally applicable for similar 146 

conditions.  147 

For all simulations in the current study, site-specific crop parameterizations were derived in a 148 

preceding analysis of various site scale simulations and validations of yield characteristics 149 

across the region. An overview of the crops cultivated at the different study sites and detailed 150 

information on specific crop rotations used to simulate crop growth are provided in Table A2 151 

(supplementary material). 152 
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2.2 Case study description and input data 153 

The region of Thessaly is located in Central Greece covering a total area of 14 000 Km2, where 154 

5000 Km2 is lowland and approx. 2300 Km2 and 6500 Km2 are semi-mountainous and 155 

mountainous land respectively. The plain of Thessaly is considered to be among the largest 156 

agricultural land of the country (Kalivas et al., 2001) accounting for almost 410 000 ha, of which 157 

about 370 000 ha is arable land where almost 80% is covered by annual and 10% by perennial 158 

crops (ELSTAT, 2012). The crop/plant production of the region is around 14.2% (ELSTAT, 159 

2012) of the total production of the country (2nd in Greece). 160 

Soil input data for the region was available from the European Project Nitro Europe IP (Sutton 161 

et al., 2013) based on the European Soil Database (ESDB v2.0, 2004) containing, soil type 162 

and soil profile description of bulk density, SOC content, texture (sand, silt clay), pH value, 163 

stone fraction, saturated hydraulic conductivity, wilting point and water-holding capacity in 164 

various soil strata (Cameron et al., 2013). A regional soil dataset for the area of interest 165 

contained about 1500 spatial polygons out of which approximately 1000 covered the cultivated 166 

cropland that was finally simulated. The climate data for the regional simulations was derived 167 

at polygon level from gridded ERA5 climate data for Greece. 168 

2.3 Agricultural Management and model input data processing 169 

The total cultivated area and the respective yields for the years 2010 to 2016, used in the 170 

current analysis were obtained from the Hellenic Statistical Authority (ELSTAT). Moreover, 171 

data associated with the animal capital for the respective years was also provided (ELSTAT) 172 

in order to estimate the annual manure production distributed in the region however no data is 173 

available on whether and how much of the manure is used in croplands. For the water 174 

management, the percentage of irrigated and non-irrigated land (estimated to almost 50% for 175 

each case) was also given (ELSTAT) while indicative sets of irrigation management data were 176 

acquired through the River Basin Management Plans of the Special Secretariat for Water, 177 

Ministry of Environment and Energy (YPEKA, Portmann et al., 2010). The irrigation water 178 

volumes were estimated based on the crops needs and the minimum and maximum quantities 179 
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necessary according to literature while using upscaling tools to get the regional values. The 180 

fertilization data sets were provided by Fertilizer Producers and Merchandiser Association 181 

(FPMA) for the recent years (2010-2016) and are equated to the annual consumed quantities 182 

on a national level, scaled down to a regional level based on crop pattern in the Region of 183 

Thessaly cultivated land.  184 

In this study, the five main crops maize, wheat, clover, cotton and barley were considered, 185 

covering the majority of the cultivated arable land in the region (over 95%) while the remaining 186 

cropland was included acquiring the final corrected land/crop coverage. In Table 1 the resulting 187 

crop rotation scenarios (R1 - R5) are presented for the evaluation period 2012 - 2016. Note, 188 

each rotation sequence (R1 – R5) is shifted in time such that for each year, each crop appears 189 

exactly in one rotation. Based on the crop cover contribution in each simulated year the crop 190 

rotation contribution factors were estimated and are summarized in Table 2. The management 191 

practices were based on the general agricultural practices applied in the region and information 192 

provided by farmers. 193 

 194 

Table 1. Summary of the crop rotation scenarios (R1- R5) for the region of Thessaly. The crop abbreviations corn, 195 
wiwh, clover, cott and wbar refer to maize (food corn and silage maize), winter wheat, clover (legume feed crops 196 
s.a. alfalfa or vetch), cotton and winter barley respectively. 197 

year R1 R2 R3 R4 R5 

2012 clover cotton wbar corn wiwh 

2013 cotton wbar corn wiwh clover 

2014 wbar corn wiwh clover cotton 

2015 corn wiwh clover cotton wbar 

2016 wiwh clover cotton wbar corn 

 198 

Table 2. Crop cultivation area contribution per year to the aggregation of the five rotations; data constant across 199 
the region of Thessaly 200 

Crop Rotation Contribution [% / 100] 

Years R1 R2 R3 R4 R5 

2012 0.15 0.15 0.45 0.11 0.14 

2013 0.13 0.29 0.09 0.10 0.39 

hat gelöscht: Table 1201 

hat gelöscht: Table 2202 
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2014 0.29 0.13 0.10 0.35 0.12 

2015 0.15 0.11 0.43 0.16 0.16 

2016 0.10 0.36 0.14 0.14 0.25 

 203 

 204 

2.4 Uncertainty analysis 205 

As stated in the IPCC 2006 guidelines and updated in 2019, the assessment of uncertainty is 206 

considered a major and crucial/mandatory component when compiling regional or national 207 

GHG emission inventories (Larocque et al., 2008). The difference in scale in which the model 208 

is used results in divergent errors of the C and N dynamics prediction across different climate 209 

zones and scales. Thus, uncertainty analysis is a crucial step towards a higher quality decision 210 

making process. The sources of uncertainty can vary and are related to a) the initial conditions 211 

(starting values), b) the drivers (e.g. climate and crop management data), c) the conceptual 212 

model uncertainty and d) the parameter uncertainty of the various processes (Refsgaard et al., 213 

2007; Wang and Chen, 2012).  214 

Santabárbara, (2019) performed a Bayesian Model Calibration and Uncertainty Analysis using 215 

a Monte Carlo Markov Chain (MCMC) approach targeting uncertainties associated to the data 216 

(bulk density, SOC, pH, clay content) of the initial soil conditions, drivers (cropland 217 

management such as fertilization/manure rates & timing, harvest & seeding timing, tillage 218 

timing) and bio-geochemical process parameterizations.  219 

In order to identify the most sensitive process parameters with a reduced number of model 220 

simulations, the Morris method (Morris, 1991) obtains a hierarchy of parameters influence on 221 

a given output (gaseous N fluxes) and evaluates whether a non-linearity exists or not. (Morris, 222 

1991) proposed that this order can be assessed through the statistical analysis of the changes 223 

in the model output, produced by the "one-step-at-a-time" changes in “n” number of proposed 224 

parameters. Incremental steps of each parameter range, lead to identifying which ones have 225 

substantial influences over the concerned results, without neglecting that some effects could 226 
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cancel each other (Saltelli et al., 2000), leading to the identification of the 24 most sensitive 227 

process parameters (Houska et al., 2017; Myrgiotis et al., 2018b). 228 

 229 

Metropolis – Hastings algorithm 230 

The Markov Chain Monte Carlo (MCMC) Metropolis–Hastings algorithm results in numerous 231 

parameter sets that approximate the posterior joint parameter distribution by performing a 232 

random walk through the space of joint parameter values. This probability evaluation of the 233 

data obtained from each step leads to the update of the initial uniform parameter distributions. 234 

Bayes’ formula relating conditional probabilities may become a powerful and practical 235 

computational tool when combined with Markov chain processes and Monte Carlo methods, 236 

so-called Markov Chain Monte Carlo (MCMC). A Markov chain is a special type of discrete 237 

stochastic processes wherein the probability of an event depends only on the event that 238 

immediately precedes it. Integrating parameters (θ) and observation data (D) into Bayes’ rule 239 

results in the formula: 240 

 241 

 

 
𝑃(θ|D) =

𝑃(D│θ* ∗ 𝑃(θ)
𝑃(D)

 2.1 

where 𝑃(D│θ*, the probability of the data, is used to obtain the probability of these parameters 242 

updated by the data: 𝑃(θ|D) where the evidence is computed as:  243 

 244 

 

 

𝑃(𝐷) = - 𝑙𝑖𝑘𝑒𝑙𝑦ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟	 ∙ 	𝑑θ 
2.2 

 

where 𝑃(𝐷) can be numerically approximated with the aforementioned MCMC method (Robert 245 

and Casella, 2011).  246 

The method uses prior knowledge concerning the sources of the model uncertainty to obtain 247 

a narrowed posterior distribution for each one of the sources. By propagating the parameter 248 

distributions through the model, the overall uncertainty in the model results can be quantified.  249 

Formatiert: Links
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In a previous study by Santabárbara, (2019), an extensive sensitivity analysis on all soil bio-250 

geochemical process parameters, soil initial data and arable management data was performed 251 

identifying the 24 most sensitive process parameters (listed in supplementary material), the 252 

most sensitive soil initial data (soil profile data on bulk density, soil organic carbon content, pH 253 

value) and the most sensitive management information (fertilization and manure N rates, tilling 254 

depth) to aquatic and gaseous N fluxes from arable soils. This was digested in the MCMC 255 

simulation sampling a combination of 24 parameter values, 3 values of soil initial data and 3 256 

management information. The sampling of the soil initial data as well as the management data 257 

was performed as perturbations to the existing data: For each quantity, a perturbation was 258 

sampled individually and applied to all corresponding values in the soil profile or to all years in 259 

the management description. The MCMC simulation performed by Santabárbara, (2019) 260 

simulated more than 100 000 iterations for various arable sites until the MCMC simulation 261 

converged towards a stable combined posterior distribution of parameter values and soil and 262 

management input data perturbations. In the current analysis, we have sampled 500 joint 263 

parameter / input data perturbation sets from the posterior distributions as reported by 264 

Santabárbara, (2019) and we deployed them in simulations (propagation through the model) 265 

for the regional inventory leading to 500 inventory simulations. A statistical analysis was, 266 

afterwards, applied to estimate the updated regional and temporal result distributions. 267 

 268 

2.5 Statistical methods and data aggregation 269 

Regional result aggregation 270 

One full regional inventory simulation consists of 10 individual inventory simulations: Five (5) 271 

different crop rotations for irrigated and rain feed conditions were simulated in parallel (see 272 

section 2.3). The results of the crop rotations were aggregated according to the crop shares 273 

per year (see Table 2) accounting for all effects of the different crops cultivated in the region 274 

for irrigated and rain feed conditions. The final inventory simulation results were obtained by 275 

considering irrigated versus rain feed water management. The final inventory contains 276 

hat gelöscht: Table 2277 
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simulation results aggregated to area weighted yearly means across the total simulation 278 

domain accounting for the cropland area of each polygon.  279 

 280 

Uncertainty quantification and statistical analysis 281 

A regional aggregation was performed for all 500 uncertainty simulations. All the uncertainty 282 

results were finally reported via statistical measures evaluating the 500 regional uncertainty 283 

simulation runs reporting mean values, standard deviation, medians and the 25 and 75 284 

interquartile ranges (IQR, Q25 to Q75).  285 

 286 

3 Results Analysis and Evaluation 287 

The simulation time span was from 2009 to 2016, while the years 2009 – 2011 were used as 288 

spin-up to get all soil C and N pools into equilibrium after the initialization. Therefore, reported 289 

simulation results are limited to years 2012 - 2016. The assessment of the regional C and N 290 

balances (CB and NB) were obtained - as a consequence of the uncertainty quantification - 291 

resulting in distributions and therefore reported by statistical measures such as mean/median 292 

or interquartile ranges of the uncertainty ensemble.  293 

 294 

3.1 Regional yield simulations and validation 295 

The evaluation of the model performance in estimating the NB and CB components was 296 

analyzed based on the comparison of the simulated yield values with the observed yield data 297 

provided by the Hellenic Statistical Authority (ELSTAT), averaged for the total simulated 298 

period. 299 

 300 
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Crop yields and feed production  301 

For model validation, datasets of crop yields from Hellenic Statistical Authority (ELSTAT) were 302 

used. Table 3 summarizes the aggregated regional crop yields for all the simulated years and 303 

the respective mean, median and standard deviation values resulted from the statistical 304 

analysis of the simulation results together with the observed yield and feed production provided 305 

by the Hellenic Statistical Authority (ELSTAT). Simulated yields consist for cotton of the cotton 306 

bolls, clover feed is the total cutting and harvested above ground biomass, for wheat and barley 307 

is the grain yield and for maize is accounted grain ear and the stems. Based on the 308 

observations, maize appears to be the dominant crop with an average yield of 12 tons ha-1, 309 

followed by clover product of 8.4 tons ha-1. The rest of the three crop yields appear to be in the 310 

same order of magnitude from 3.3 up to 3.4 tons ha-1.  311 

 312 

Table 3. Simulated and observed yields and feed production [tons dry matter ha-1] in the region of Thessaly. All 313 
results are based on statistical aggregation across all polygons, rotations, years and finally across all 500 UA 314 
inventory simulations. The observed values of dry matter (DM) are provided by the Hellenic Statistical Authority.  315 

Simulated crop yield and feed distributions  

 [tons dry matter ha-1] 

Observed 

[tons dry matter ha-1] 

Crops Median Mean standard deviation Mean 

Cotton 3.5 3.3 0.8 3.3 

Clover 9.8 9.6 0.6 8.4 

Wheat 3.9 3.6 0.9 3.4 

Barley 4.7 4.5 1.0 3.3 

Maize1) 10.2 9.9 1.4 12.0 
1) Observation data for maize did not distinguish between food corn and silage maize.  316 

 317 

Additionally, the simulated average yield of cotton was estimated to 3.3 ± 0.8 tons DM ha-1, 318 

wheat to 3.6 ± 0.9 tons DM ha-1, barley 4.5 ± 1 tons DM ha-1, maize 9.9 ± 1.4 tons DM ha-1. As 319 

for the feed, the clover was estimated to 9.6 ± 0.6 tons DM ha-1. The average nitrogen use 320 

efficiency (NUE) across time and space is 63.29%.  321 

 322 

hat gelöscht: Table 3323 
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Figure 1 presents the uncertainties of the simulated crop yield across the whole evaluation 324 

time span 2012 -2016 both in irrigated and rain feed conditions. As shown, corn shows a much 325 

more narrow distribution with a higher median for the irrigated scenario compared to the rain 326 

feed while shows the same extreme value variations. To the contrary, winter barley has a wider 327 

distribution and slightly higher median for the irrigated scenario and, also, a wider extreme 328 

value variation. As for cotton, the distribution appears to be bimodal for the rain feed scenario 329 

in which the median is also lower than the one in the irrigated case. In addition, the extreme 330 

value variation is wider in the latter case. Finally, for the example of winter wheat irrigated and 331 

rain feed scenarios reach the same results.  332 

 333 

 334 

Figure 1. Simulated crop yield uncertainties across the evaluation time span 2012 - 2016 for irrigated and rain feed 335 
conditions. Horizontal lines indicate median, mean, maximum and minimum values of the distributions.  336 

 337 

3.2 Regional Carbon and Nitrogen Balance 338 

Carbon Balance (CB) 339 

For the CB, Figure 2 presents average C input fluxes into the soil of 12.4 ± 1.4 tons C ha-1 yr-340 

1 (with inter quartile ranges (IQR) from Q25 to Q75 of 12.1 to 13.2 tons C ha-1 yr-1) and output 341 

fluxes of 11.9 ± 1.3 tons C ha-1 yr-1 with IQR from 11.6 to 12.7 tons C ha-1 yr-1. The resulting 342 

carbon sequestration was estimated to 0.5 ± 0.3 tons C ha-1 yr-1 with IQR from 0.4 to 0.7 tons 343 

C ha-1 yr-1 (data summarized in Table 4). 344 

hat gelöscht: Figure 1345 

hat gelöscht: Figure 2346 

hat gelöscht: Table 4347 
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 348 

  
 

Figure 2. Carbon balance for cropland cultivation for the region of Thessaly: a) Total carbon balance of cropland 349 
soils in mio. tons C, b) averaged Carbon Balance in tons C ha-1 and c) averaged fluxes across the region and the 350 
years 2012-2016. (Positive change equals soil C sequestration).  351 

 352 

The input fluxes consist of annual gross primary productivity (GPP) of 11.7 ± 1.4 tons C ha-1 353 

yr-1 with IQR from 11.4 to 12.4 tons C ha-1 yr-1 and carbon applied to soils in manure estimated 354 

by 0.7 ± 0.001 tons C ha-1 yr-1 (see Table 4). This compares on the other hand to respirative 355 

carbon fluxes from the soil to the atmosphere (TER) of 8.5 ± 1.1 tons C ha-1 yr-1 with IQR from 356 

8.2 to 9.1 tons C ha-1 yr-1 and carbon fluxes via exported crop yields and feed (including all 357 

straws and removed crop residues) of 3.4 ± 0.3 tons C ha-1 yr-1 with IQR from 3.4 to 3.6 tons 358 

C ha-1 yr-1. The aggregation of the carbon fluxes to the regional level of approx. 360 000 ha of 359 

cropland results in 4.25 ± 0.20 M tons C yr-1 by GPP, 0.25 ± 0.01 M tons C yr-1 carbon influx 360 

via organic fertilizers compared to 3.08 ± 2.97 M t C yr-1 TER and 1.24 ± 0.05 M t C yr-1 carbon 361 

exports via crop yields and feed production leading to a net carbon sequestration of 0.5 ± 0.3 362 

M tons C ha-1 yr-1 with IQR from 0.4 to 0.7 M tons C ha-1 yr-1 (M tons C as Million tons carbon).  363 

 364 

Table 4. Carbon Balance (per hectare) Assessment and Uncertainty Analysis of the of cropland cultivation at the 365 
region of Thessaly, Greece. 1) mean; 2) standard deviation; 3) median; Interquartile ranges: 4) Q25: 25 quartile, 5) 366 
Q75: 75 quartile are applied across the 500 values for the quantities in this table; 6) C-Inputs as the sum of the 367 
absolute values of all the input fluxes of the 500 simulations; 7) C-Outputs as the sum of the absolute values of all 368 
the output fluxes of the 500 simulations; 8) SOC-changes as the difference between the input and output fluxes of 369 
each of the 500 simulations. Note: The underlying arable management / crop rotations include the ploughing in of 370 
a perennial feed crop leading to large C inputs to the soil.  371 

 Mean1) Std2) Median3) Q254) Q755) 

 [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] 

      

hat gelöscht: Table 4372 
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C-Inputs6) 12.4 1.4 12.7 12.1 13.2 

C-Outputs7) 11.9 1.3 12.2 11.6 12.7 

SOC-changes8) 0.5 0.3 0.5 0.4 0.7 

      

Input fluxes      

GPP 11.7 1.4 12.0 11.4 12.4 

C in manure 0.7 0.0 0.7 0.7 0.7 

      

Output fluxes      

TER 8.5 1.1 8.7 8.2 9.1 

Biomass export 3.4 0.3 3.5 3.4 3.6 

      

 373 

Nitrogen balance (NB) 374 

In Figure 3 the assessment of the distribution of the NB with the in- and out-fluxes is presented. 375 

The averaged nitrogen influx (represented by the uncertainty ensemble mean) per hectare was 376 

estimated to 212.3 ± 9.1 kg N ha-1 yr-1 with IQR from 203.3 to 220.0 kg N ha-1 yr-1 while nitrogen 377 

out-fluxes were estimated in average to 198.3 ± 11.2 kg N ha-1 yr-1 with IQR from 191.4 to 378 

204.0 kg N ha-1 yr-1 (Figure 3) leading to a net N accumulation in the soil of 14.0 ± 2.1 kg N ha-379 

1 yr-1 with IQR from 11.9 to 16.0 kg N ha-1 yr1. 380 

 381 

 382 

Figure 3. Nitrogen balance for cropland cultivation for the region of Thessaly; a) Total NB in k-tons N and b) 383 
averaged NB in kg N ha-1; Data averaged for the years 2012-2016. Horizontal lines indicate mean (red), median 384 
and minimum and maximum of the distribution.  385 

 386 

hat gelöscht: Figure 3387 

hat gelöscht: Figure 3388 
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Table 5. Nitrogen Balance (per hectar). Summary of the Assessment and Uncertainty Analysis of the NB Fluxes 389 
(per hectare) of cropland cultivation of the region of Thessaly, Greece. 1) N-Inputs as the sum of the absolute values 390 
of all input fluxes of the 500 simulations; 2) N-Outputs as the sum of the absolute values of all the output fluxes of 391 
the 500 simulations; 3) N-stock-changes as the difference between the input and output fluxes of each of the 500 392 
simulations; 4) Gaseous emissions are the sum of N2O, NO, N2 and NH3 fluxes; 5) Aquatic flux is nitrate leaching 393 
(NO3

-). 394 

 Mean Std Median Q25 Q75 

 [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] 

      

N-Inputs1) 212.3 9.1 215.2 203.3 220.0 

N-Outputs2) 198.3 11.2 196.4 191.4 204.0 

N-stock-changes3) 13.8 2.1 13.7 14.5 12.5 

      

Input fluxes      

N deposition 6.3 0.8 6.8 6.0 6.8 

Bio. N fixation 45.6 4.3 45.7 43.7 47.7 

N in min. fertilizer 80.2 4.8 81.3 76.6 82.7 

N in organic fertilizer 80.2 3.6 80.9 77.5 82.7 

      

Output fluxes      

Gaseous emissions4) 55.4 8.8 55.1 48.9 61.6 

N2O 2.6 0.8 2.5 2.1 3.1 

NO 3.2 1.5 2.9 2.0 4.1 

N2 15.5 7.0 14.6 9.9 20.7 

NH3 34.0 6.7 31.8 29.3 36.9 

Aquatic fluxes5)      

NO3 leaching 14.1 4.5 13.6 11.0 17.0 

      

 395 

The N influx was composed by the input of synthetic fertilizer of 80.2 ± 4.8 kg N ha-1 yr-1 (IQR 396 

76.6 to 82.7) and organic fertilizer of 80.2 ± 3.6 kg N ha-1 yr-1 (IQR from 77.5 to 82.7), followed 397 

by the biological nitrogen fixation (BNF) via legumes estimated as 45.6 ± 4.3kg N ha-1 yr-1 (IQR 398 

from 43.7 to 47.7) and nitrogen deposition of 6.3 ± 0.8kg N ha-1 yr-1 (IQR from 6.0 to 6.8). Thus, 399 

almost 75% of the nitrogen input influx is related to the fertilization (mineral and organic) whilst 400 

the minor part that corresponds to nitrogen fixation and deposition approximates to 25%.  401 
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The N outflux consist of gaseous N fluxes of 55.4 ± 8.8 kg N ha-1 yr-1 (IQR from 48.9 to 61.6), 402 

aquatic N fluxes (only nitrate leaching into surface waters was considered) of 14.1 ± 4.5 kg N 403 

ha-1 yr-1 (IQR from 11.0 to 17.0), N fluxes by removed N in yields, straw and feed of 128.8 ± 404 

8.5 kg N ha-1 yr-1 (IQR of 125.2 to 131.7) (see Figure 4 and Table 5). Based on the 405 

aforementioned results all gaseous and aquatic N-fluxes correspond to about 28% and 7% of 406 

the N output flux respectively, while the far largest N output flux was N removed in yields, straw 407 

and feed representing almost 65% of the N outflux (Figure 4). 408 

  409 

Figure 4. Averaged annual nitrogen balance (inner ring of the pie diagram) and their decomposition into the various 410 
components of the N fluxes (outer ring of the pie diagram); (all data summarized in Table 5).  411 

 412 

The simulated gaseous fluxes were composed of N2O emissions estimated to 2.6 ± 0.8 kg 413 

N2O-N ha-1 yr-1 (IQR from 2.1 to 3.1), NO emissions of 3.2 ± 1.5 kg NO-N ha-1 yr-1 (IQR from 414 

2.0 to 4.1), N2 emissions 15.5 ± 7.0 kg N2-N ha-1 yr-1 (IQR range from 9.9 to 20.7) and NH3 415 

emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1 (IQR from 29.3 to 36.9). Ammonia volatilization 416 

represents the largest share (61.48%) of gaseous N losses, with highest densities in the 417 

emission distribution between approx. 25 and 35 kg N ha-1, followed by di-nitrogen losses 418 

hat gelöscht: Figure 4419 
hat gelöscht: Table 5420 

hat gelöscht: Figure 4421 

hat gelöscht: Table 5422 
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(28.03%) of gaseous N losses, with a much wider emission variability in the distribution, 423 

followed by NO3 (5.79%) and N2O (4.7%). Figure 5 shows the overall NB in a waterfall diagram 424 

adding up cumulative all in- and out-fluxes illustrating the uncertainty distribution of each flux 425 

contributions. The waterfall diagram illustrates the overall outcome of the NB, a N accumulation 426 

into the soil as the difference between all out-fluxes minus all in-fluxes. 427 

 428 

  429 

Figure 5. Waterfall representation of the result distributions of the different Nitrogen in- and outfluxes of the cropland 430 
cultivation in Thessaly. Vertical lines in the distributions indicate mean values of the corresponding N-flux. Red 431 
colors indicate gaseous outfluxes, blue aquatic fluxes, green biomass yield and feed production outfluxes and brown 432 
color indicates N influxes such as synth. N-fertilizer, N-Manure, biological N fixation (BNF) and N deposition. The 433 
Resulting N sink of the Nitrogen Balance (based on distribution means) is -13.8 kg N ha-1 yr-1. (Negative value 434 
indicates flux into the soil). 435 

 436 

Nitrate leaching mean estimates were 14.1 ± 4.5 kg NO3-N ha-1 yr-1 (IQR from 11.0 to 17.0) 437 

with a bell-shaped distribution.  438 

Total yield and biomass (straw and feed) N export fluxes were 62.4 ± 4.4 kg N ha-1 yr-1 with 439 

uncertainty ranges from 59.9 to 65.1 consisting of yield N exports (grains and cotton balls) of 440 

30.3 ± 1.7 kg N ha-1 yr-1 (IQR from 29.6 to 30.9) and for straw and feed N exports of 36.1 ± 6.0 441 

kg N ha-1 yr-1 (IQR from 34.9 to 37.6). The result distributions for yield N are well bell shaped, 442 

hat gelöscht: Figure 5443 
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for feed biomass N very moderate bell shaped and well distributed within the bounds and for 444 

straw N very sharp within a comparable small interval.  445 

Figure 5 illustrates the cumulative nitrogen fluxes composing the NB as a waterfall diagram 446 

considering the mean of each component. The NB results in a net N sink of 13.8 kg N ha-1 yr-447 

1 (see result distribution in Figure 6) for the region corresponding to an annual carbon 448 

sequestration of approx. 0.5 tons C ha-1 yr-1 as depicted in Figure 2 b) (see also the annual 449 

dynamics of the topsoil (30 cm) soil organic carbon and nitrogen distributions in Figure 8).  450 

 451 

 452 

Figure 6. Distribution of the overall Nitrogen Balance of the cropland cultivation in Thessaly: Statistical analysis 453 
across all 500 individual NB results of the inventory simulations (mean 13.8 kg N ha-1 yr-1, median 13.7 kg N ha-1 454 
yr-1) corresponding to the Carbon balance in Figure 2.  455 

 456 

Figure 7 and Figure 8 show the dynamics of the annual distribution of the gaseous and aquatic 457 

outfluxes as well as the dynamics of the annual distributions of the top soil (30 cm) soil organic 458 

carbon and nitrogen pools for the evaluation period 2011 – 2016.  459 

  

hat gelöscht: Figure 5460 

hat gelöscht: Figure 6461 

hat gelöscht: Figure 2462 

hat gelöscht: Figure 8463 
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Figure 7. Annual dynamics of the uncertainty distributions of the gaseous (subfigure a) to d)) and aquatic (subfigure 467 
e)) N outfluxes 2011 – 2016. Uncertainty bandwidth (blue band) defined as the range between the q25 and the q75 468 
quartile, green band (Q10. to Q90 interval) indicating the variance of the fluxes neglecting the outliners of the 469 
distribution.  470 

 471 
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Figure 8. Annual dynamics of the uncertainty distributions of the soil carbon (subfigure a)) and soil organic nitrogen 472 
(subfigure b)) and the corresponding dynamics of the uncertainty distributions of the annual change rates of the 473 
total soil carbon and nitrogen pools (subfigures c) and d)) respectively.  474 

4 Discussion.  475 

In this study, following the recommendation of Grosz et al., (2023), an assessment of the 476 

combined full C and N balance of a regional cropland agroecosystem is reported for the first 477 

time using inventory simulations with a process-based ecosystem model. The additional  478 

quantification of the associated modelling uncertainty of the balance simulations increase the 479 

trustworthiness of the study.  480 

Up to present, process-based modelling studies mainly focus on single site applications e.g. 481 

Daycent: (del Grosso et al., 2005; Gurung et al., 2020), APSIM: (Vogeler et al., 2013), CERES-482 

EGC: (Dambreville et al., 2008; Gabrielle et al., 2006; Heinen, 2006; Hénault et al., 2005), 483 

CERES-Wheat: (Mavromatis, 2016), DNDC: (Li, 2000), LandscapeDNDC: (Haas et al., 2013; 484 

Klatt et al., 2015a; Molina-Herrera et al., 2016; Zhang et al., 2015). Fewer studies deploy 485 

models on the regional to national (del Grosso et al., 2005; Kim et al., 2015; Klatt et al., 2015a) 486 

or continental to global scale (del Grosso et al., 2009; Franke et al., 2020; Jägermeyr et al., 487 

2021; Smerald et al., 2022; Thompson et al., 2019). All of these studies are subject to criticism 488 

stated by Grosz et al., (2023) as they are reporting in general only one specific or a few 489 

components of the carbon or nitrogen cycle such as e.g. soil carbon stocks or N2O emissions, 490 

lacking any information on the full C and N balance.  491 

There are only a very few cases where an attempt for regional estimation of the NB has been 492 

made. The study reported by Schroeck et al., (2019) is the only previous attempt fulfilling the 493 

requirements of Grosz et al., (2023) in reporting the full NB for a large alpine watershed in the 494 

Austrian Alps characterized by arable production in the low-lying areas and grassland in the 495 

mountains using a process based model. In addition, Lee et al., (2020) tried to estimate 496 

nitrogen balances in Switzerland alternating the cropping systems or management practices. 497 

There were, also, cases where the regional NB was estimated with the use of nitrogen balance 498 

equations (He et al., 2018). Recently, Zistl-Schlingmann et al., (2020) assessed the full N 499 

balance of alpine grasslands using the 15N stable isotope techniques. 500 
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In order to achieve a more concrete and complete analysis of the CB and NB that could be 501 

used for future policy development, an uncertainty analysis is considered as 502 

necessary/mandatory. The IPCC guidelines demand for UNFCC reporting the uncertainty 503 

quantification of any reported inventory study (IPCC Updated guidelines 2019). Recent 504 

publications have reported the deployment of different methods to assess and quantify the 505 

various sources of uncertainty in ecosystem modelling. (Klatt et al., 2015b) published a study 506 

on the impact of parameter uncertainty on N2O emissions and NO3 leaching on the regional 507 

scale. (Houska et al., 2017) deployed the GLUE method (Generalized Likelihood Uncertainty 508 

Estimation) for the LandscapeDNDC model on a grassland site, other studies such as 509 

(Lehuger et al., 2009a; Li et al., 2015; Myrgiotis et al., 2018a) used the Bayesian Model 510 

Calibration and Uncertainty Assessment approach, which has been used in the current study 511 

as well. 512 

 513 

4.1 Yield and feed Production 514 

LandscapeDNDC was validated in a study by Molina-Herrera et al., (2016) on cropland and 515 

grassland sites across Europe reporting good agreement in reproducing observed above 516 

ground biomass and yield estimates. Similar model performance for the cultivation of 517 

commodity crops was reported by (Kasper et al., 2019; Klatt et al., 2015a; Molina-Herrera et 518 

al., 2017; R. J. Petersen et al., 2021). 519 

Lyra and Loukas, (2021) used REPIC model to estimate the crop growth/yield production of 520 

several crops in the Basin of Almyros, Thessaly. The simulated results were approximately 11 521 

tons ha-1 clover, 3.3/3.5 tons ha-1 cereals/wheat, 3.8 tons ha-1 cotton and 9 tons ha-1 maize, 522 

being well compared to the results of our research shown in Table 3. The simulated results 523 

presented in our study are in line with the results by Voloudakis et al., (2015) simulating cotton 524 

production in seven different areas of Greece applying the AquaCrop model. Similar results 525 

were reported by (Tsakmakis et al., 2019). 526 

hat gelöscht: Table 3527 
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There are few cases in literature concerning yield simulations on a European level. Based on 528 

the yield datasets of FAO and EUROSTAT, Ciais et al., (2010a) estimated mean crop yields 529 

for the period 1990–1999 at the scale of EU-25 as 6.1 (FAO) and 5.3 (EUROSTAT) tons DM 530 

ha−1 yr−1, respectively, which corresponds well to results of our study. Haas et al., (2022) 531 

estimated with a model ensemble mean for crop yields for EU-27 of 4.41 ± 1.85 tons DM ha−1 532 

yr−1 for the period 1990–1999. Lugato et al., (2018) estimated cropland yield projections of 533 

4.34 tons DM ha−1 yr−1 (mean), ranging from 3.69 to 4.90 tons DM ha−1 yr−1 with the DayCent 534 

model for EU-27, comparable to the 6.18 tons DM ha−1 yr−1 average simulated crop yields of 535 

this study. The simulated yields in the current study vary from 3.3 to 9.9 tons DM ha−1 yr−1 for 536 

the cases of cotton and maize respectively.  537 

Higher yield estimates for the region of Thessaly in this study are certainly due to the inclusion 538 

of the legume feed crops in the rotations. This argument is supported by a recent meta-analysis 539 

by (Lu, 2020) that concluded that on average yield increases of 5.0 to 25% can be expected 540 

for various conditions if residues are completely returned to the field as compared to no-residue 541 

return systems. Similar results were reported by Fuchs et al., (2020) and Barneze et al., (2020).  542 

Following the recommendations of Grosz et al., (2023), our study has reported transparently 543 

all major C & N fluxes for the region as being simulated by the model. In our study, we have 544 

not calibrated the model against any observations, therefore all simulation results will be 545 

discussed versus other modelling results available. As up to now, there is only one comparable 546 

modelling study available in literature reporting and discussing the total N balance of a site or 547 

region, which we have used to compare our N balance against.  548 

 549 

4.2 Carbon and Nitrogen Balance:  550 

Full N balance  551 

At present, the studies of Schroeck et al., (2019) and Lee et al., (2020) are the only to be found 552 

by Web of Science under the search key words “nitrogen AND balance AND process AND 553 

based AND modelling” reporting a compilation of the nitrogen balance and all associated N 554 
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fluxes for a site or region applying a process-based ecosystem model as demanded by Gosz 555 

et al (2023).  556 

Leip et al., (2011) reported the first nitrogen balance for Europe following a mixed approach 557 

combining the CAPRI (Common Agricultural Policy Regionalised Impact) model (a global 558 

economic model for agriculture) with different approaches estimating various nitrogen fluxes 559 

in arable land cultivation, but the approach lacks the explicit quantification of the different 560 

gaseous N fluxes. The study of Schroeck et al., (2019) overcame this hurdle and applied the 561 

process-based ecosystem model LandscapeDNDC to estimate the full regional nitrogen 562 

budgets including all fluxes of different ecosystems (cropland, grassland and pastures) and 563 

climatic zones of a water shed in Austria. That has been the first attempt estimating and 564 

reporting all the N fluxes possible as demanded by Gosz et al (2023).  565 

The N balance estimate in Schroeck et al., (2019) for a catchment in Austria and the N balance 566 

reported in our study compares very well despite the inherent differences in land management 567 

and N inputs. As highlighted by Grosz et al., (2023), such intercomparisons demonstrate the 568 

different model behaviours when applied to different ecosystem. In our study, we see the 569 

partitioning of the N outfluxes from our arable system in similar shares as reported by Schroeck 570 

et al., (2019) for the arable land. 571 

The N2O estimate in Schroeck et al., (2019) and the current study is of a comparable level. We 572 

estimated N2O emissions of 2.6 kg N ha-1 yr-1 while Schroeck et al., (2019) reports 1.51 kg N 573 

ha-1 yr-1, about 40% lower. The NO fluxes differ significantly since we reported a mean value 574 

of 3.2 kg NO-N ha−1 yr−1 while Schroeck et al., (2019) reports 0.08 kg NO-N ha−1 yr−1. This is 575 

on one hand related to some recent model advances, which have been made during this study, 576 

which elevated the NO production in LandscapeDNDC (Molina-Herrera et al., 2017) and on 577 

the other hand due to the high share of organic N fertilization in our study fostering NO 578 

emissions. Ammonia volatilization differs substantially between the two studies, while our study 579 

reports 34 kg NH3-N ha-1 yr-1, Schroeck et al., (2019) reported moderate emissions of 0.23 kg 580 

NH3-N ha−1 yr−1. The strong NH3 volatilization in our study is mostly driven by the high pH-581 

values of the soils in the region of Thessaly (pH values from 6.5 to 8.2 with a considerable 582 
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spatial variation, Greek Soil Map, 2015) and the comparable high manure inputs into the arable 583 

system in our study, while in the research of Schroeck et al., (2019) the manure was preferably 584 

applied only to the grassland systems and mineral fertilizers to the arable land. Concerning 585 

the NO3, Schroeck et al., (2019) reported 45.3 kg NO3-N ha−1 yr−1 which was 3 times higher 586 

compared to this study (14.1 kg N ha−1 yr−1) considering the N-input of approximately 160 kg 587 

and 212.3 kg N ha−1 yr−1 respectively. Even though 50 % or the arable land in our study was 588 

irrigated, the resulting water percolation rates in our study were by far lower than the 589 

percolation simulated in the study of Schroeck et al., (2019) as the Austrian pre-alpine 590 

catchment received nearly double annual precipitation.  591 

The N balance modelling study of Lee et al., (2020) was estimating for Switzerland a national 592 

cropland N balance using an upscaling method based on process-based site simulations with 593 

the DayCent model differentiating the management of the considered cropping systems e.g. 594 

fertilizer rates, tillage or land cover change. The study reported for conventional cultivations 595 

(averaged across 20 years) yield related N outfluxes accounting for about 60%, NO3 leaching 596 

36.1% and gaseous N emissions 4.1% of the total N outputs. Lee et al., (2020) did not report 597 

the different gaseous N fluxes, even though the DayCent model must have simulated all of 598 

them. Although the yield related N outflux is in accordance with our result of 64.95% there 599 

seems to be a discrepancy in the reported gaseous and aquatic N fluxes contribution, as we 600 

report 27.94% for gaseous and 7.11% for NO3 leaching in our study. As demanded by Gosz 601 

et al (2023) we can elaborate different preferences in simulated N outflux partitioning (36% 602 

NO3 and 4% gaseous losses for DayCent versus 7% NO3 and 28% gaseous losses for 603 

LandscapeDNDC) due to the different simulation models, regionalization and upscaling 604 

approaches as well as due to the different soil, climatic and management conditions included 605 

in the respective studies.  606 

Velthof et al., (2009) used the MITTERA-EUROPE model/method, based on the concoction of 607 

GAINS and CAPRI models, to estimate N fluxes of European soils on NUTS2 scale with the 608 

use of European datasets and literature coefficients, where the fertilizer application and 609 

management was similar to our methodology. The average N Input-Output balance was 610 
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calculated as 117 kg N ha-1 yr-1 composed by manure of 49 kg N ha-1 yr-1, synthetic fertilizer of 611 

58 kg N ha-1 yr-1 (in the current study for both cases 80.2 kg N ha-1 yr-1), biological nitrogen 612 

fixation of 2 kg N ha-1 yr-1 (our research 45.6 kg N ha-1 yr-1) and N deposition of 7 kg N ha-1 613 

(current study 6.3 kg N ha-1 yr-1). In contrast to our study the reported output fluxes for NH3 of 614 

8 kg NH3-N ha-1 yr-1, N2O of 2 kg N2O-N ha-1 yr-1, NOx of 2 kg NOx-N ha-1 yr-1, N2 of 51 kg N2-N 615 

ha-1 yr-1 and NO3 leaching of 7 kg NO3-N ha-1 yr-1 while the differences with the results presented 616 

in our study are NH3 of 34.0 kg NH3-N ha-1 yr-1, N2O of 2.6 kg N2O-N ha-1 yr-1, NOx of 3.2 kg 617 

NOx-N ha-1 yr-1, N2 of 15.5 kg N2-N ha-1 yr-1 and NO3 leaching of 14.1 kg NO3-N ha-1 yr-1. 618 

Additionally, the yield output is estimated as 48 kg N ha-1 yr-1. Again, we see a different 619 

preference in N outflux partitioning towards large shares in gaseous N fluxes versus small NO3 620 

leaching shares and the difference with the results presented in our study are related to the 621 

different input data used for initialization and driving of the model, based on regional statistics 622 

and the use of a biogeochemical model versus emission factor approaches.  623 

He et al., (2018) assessed the soil N balance for a time spam between 1984 to 2014 based on 624 

the N budget equations (N input – N output) using multiple coefficients from literature in order 625 

to estimate the nitrogen input and output fluxes of six grouped regions in China. The used 626 

datasets were acquired from national Authorities and include cropping land and yields, 627 

synthetic fertilizers, animal heads, soil types etc. The N synthetic fertilizer input is in average 628 

182.4 kg N ha-1 and the organic fertilizer of 97.3 kg N ha-1, N fixation is estimated as 16.8 kg 629 

N ha-1 and the atmospheric deposition as 22 kg N ha-1. Almost half of the total averaged N 630 

output losses, 48.9%, was attributed to crop uptake while the respective gaseous losses were 631 

N2 19.9%, volatilized NH3 17.3%, N2O 1.2% and NO 0.7%. As for the NO3 leaching share was 632 

5.8% of the total output N fluxes. These reported N outflux proportions comparable well to our 633 

study. The differences in the N uptake data remain and are mainly due to the differences in 634 

the crops and management.  635 

As reported in OECD (OECD, 2020) the net averaged nitrogen balance of the area of our study 636 

is 11.6 kg N ha-1 yr-1 input to the soil which corresponds very well to the simulated mean 637 

nitrogen balance as an in-flux of 13.8 kg N ha-1 yr-1 (IQR 11.9 to 16.0) into the soil. 638 
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So far, the discussion of the presented N balance and N out fluxes compares well to most of 639 

the available studies reporting N balances while one modelling study report different N outflux 640 

partitioning between gaseous and NO3 leaching fluxes. For more detailed intercomparison on 641 

the overall quality of our C and N fluxes we aim to compare our results versus various studies 642 

addressing individual components of the C and N balance and associated fluxes.   643 

SOC stocks  644 

Haas et al., (2022) reported results of a European inventory simulation of soil carbon stocks 645 

and N2O emissions using a model ensemble. The study deployed in a baseline simulation 646 

across EU-27 a similar residues management as compared to our study resulting in very stable 647 

carbon stock dynamics over a long period (1950-2100). In this study, the estimated carbon 648 

sequestration of 0.5 (UA mean and median) ± 0.3 tons C ha-1 yr-1 is mainly caused by the 649 

inclusion of legume feed crops within the crop rotation leading to increased litter production 650 

and C input into the soil (Barneze et al., 2020; Fuchs et al., 2020; K. Petersen et al., 2021). 651 

Haas et al., (2022) reported a management scenario with 100% of crop litter remaining on the 652 

field leading to averaged C-sequestration rates of over 1 ton C ha-1 yr-1 across EU-27. As the 653 

residues management in this study is between the baseline and buried scenario of Haas et al., 654 

(2022), our results compare well to results reported in this study.  655 

Other modelling studies such as (Lugato et al., 2014) reported C sequestration rates for the 656 

conversion of cropland into grassland ranging between 0.4 and 0.8 tons C ha−1 yr−1. Lugato et 657 

al., (2014) reported averaged SOC change rates for a cereal straw incorporation scenario for 658 

EU-27 of 0.1 tons C ha−1 yr−1 (estimates from 2000 to 2020).  659 

The SOC dynamics reported in this study show a stable carbon dynamic in the soil within the 660 

simulation time span (2009 - 2014) with only three years of model spin-up. The initialization of 661 

the various carbon pools with the SOC data from the soil database is balanced by the average 662 

litter production of the deployed crop rotations. The SOC increase in 2015 and 2016 is due to 663 

climatic conditions and higher litter inputs simulated by the model.  664 

 665 
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 N2O emissions 666 

This study reported estimates of N2O emissions of 2.6 ± 0.8 kg N2O-N ha-1 yr-1 (IQR from 2.1 667 

to 3.1) for a mixed crop / legume feed crop rotation, which were well above the estimates 668 

resulting from IPCC Tier I direct emission factors, IPCC would lead to 1.6 kg N2O-N ha-1 yr-1 669 

when applying 30pprox.. 160 kg N ha-1 yr-1. The higher N2O emission strength of the modelling 670 

is likely to result from emission peaks after irrigation due to low anaerobicity (Grosz et al., 671 

2023; Janz et al., 2022). Cayuela et al., (2017) conducted a meta-analysis of the direct N2O 672 

emissions for a number of cropping systems for the Mediterranean climate where the emission 673 

factors (Efs) were altered under different fertilization and irrigation conditions. Higher 674 

fertilization rates led to higher Efs (0.82% less than the 1% of IPCC). Additionally, irrigated and 675 

intensively cultivated crops had higher Efs than rainfed (up to 0.91% dependent on the 676 

irrigation method). The relatively high EF of maize in this study could be possibly attributed to 677 

the irrigation without the application of water-saving methods and the on average higher N 678 

application rates .  679 

The LandscapeDNDC validation study of Molina-Herrera et al., (2016) reported for the Italian 680 

site Borgo Cioffi (Mediterranean climate, Ranucci et al., (2011) annual N2O emissions of 2.49 681 

kg N2O-N ha-1 yr-1 while two sites in southern France showed annual N2O emissions from 0.52 682 

to 3.34 kg N2O-N ha-1 yr-1. N2O emission estimates of our study were higher than results 683 

reported by Haas et al., (2022) using a multi model ensemble estimating average soil N2O 684 

emissions from European (EU-27) cropping systems for the period 1980–1999 of 1.46 ± 1.30 685 

kg N2O-N ha−1 yr−1 under conventional (Baseline) management and comparable average N 686 

input. Klatt et al., (2015a) reported for an inventory (Saxony, Germany) mean N2O emission 687 

of 1.43 ± 1.25 kg N2O-N ha−1 yr−1..  688 

Overall, the reported N2O flux component of our study compares well to the findings 689 

reported in literature. As critizised by Grosz et al. (2023), many studies only focus on the 690 

performance of the models in simulating N2O emissions and the models were even 691 

calibrated for this purpose. Without reporting all the other N fluxes from the models, this 692 
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focusing and calibration for only one quantity can easily lead to inaccuracies for other 693 

components of the N cycle as they may not be checked for consistency anymore.  694 

Janz et al., (2022)Janz et al., (2022)  695 

Nitrate leaching 696 

This study reported average NO3 leaching fluxes (only nitrate leaching into surface waters) of 697 

14.1 ± 4.5 kg NO3-N ha-1 yr-1. Reported nitrate leaching observations for the region or Greece 698 

could not be found in literatureestimated the NO3 leaching with the use of four different models 699 

with varying values from 5 to 40 kg NO3-N ha-1 yr-1 for the area of our study. These high values 700 

could be explained by the fact that it corresponds both to groundwater and runoff. Molina-701 

Herrera et al., (2016) reported for the LandscapeDNDC validation study cropland nitrate 702 

leaching fluxes of approx. 7 to 88 kg NO3-N ha-1 yr-1. In addition, in the research of Molina-703 

Herrera et al., (2017) the described NO3 leaching results varied from 13 to 8 kg NO3-N ha-1 yr-704 

1 showing higher values in regards to the precipitation and fertigation. The most comparable 705 

site Borgo Cioffi resulted in a comparable annual NO3 leaching flux of 18.62 kg NO3-N ha-1 yr-706 

1.  707 

Klatt et al., (2015b) reported in an uncertainty assessment for a regional inventory (Saxony, 708 

Germany) leaching rates of 29.32 ± 9.97 kg NO3-N ha-1 yr-1 for a wheat-barley-rapeseed 709 

rotation simulated by the LandscapeDNDC model. The agricultural system and management 710 

regime is comparable; higher NO3 leaching rates were most likely due to high N fertilization 711 

rates in combination with higher annual precipitation in the region leading to more intense 712 

percolation and therefore to stronger leaching of available NO3 while in our study the 713 

fertilization regime was more lean such that soil nutrient competition was higher and available 714 

nitrate was more likely to be immobilized by plant uptake. Myrgiotis et al., (2019) reported in a 715 

similar assessment NO3 leaching factor (LF) mean for their region of 14% (±7 %), in 716 

comparison we report mean NO3 leaching factor of 7%.  717 

 718 
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NO emissions 719 

In the current study, the model estimated NO emissions were in average 3.2 ± 1.5 kg NO-N 720 

ha-1 yr-1. Butterbach-Bahl et al., (2009) performed the very first European inventory of soil NO 721 

emissions using a modified version of DNDC reporting low NO emission rates mostly below 2 722 

kg NO-N ha-1 yr-1. Molina-Herrera et al., (2017) recently reported a full NO emission inventory 723 

for the State of Saxony Germany compiling annual NO emissions from agricultural soils 724 

ranging from 0.19 to 6.7 kg NO-N ha-1 yr-1 simulated by LandscapeDNDC. The study reported 725 

the model performance on simulating soil NO emissions on more than 20 different sites. The 726 

study of Schroeck et al., (2019) reported for a regional inventory of arable soils in Austria 727 

simulated by LandscapeDNDC annual NO emissions of 1.0–1.5 kg NO-N ha−1 (for the year 728 

2000), while empirical approaches such as Stehfest and Bouwman, (2006) estimated emission 729 

of similar magnitude. Zhang et al., (2015) reported in a model inter-comparison and validation 730 

study of NO and N2O fluxes including three ecosystem models, consistent simulation results 731 

for the LandscapeDNDC model with NO emission strengths of cropland soils were between 1 732 

and 3 kg NO-N ha-1 yr-1 across the sites.  733 

 734 

NH3 emissions 735 

Schroeck et al., (2019) stated that validation studies of NH3 volatilization for any 736 

biogeochemical model were very rarely reported in literature, mainly due to the complexity and 737 

a lack of flux observations at spatial and temporal high resolution.  738 

In our study we estimate soil NH3 emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1. High NH3 739 

volatilization and emission rates can be explained by the predominating neutral to basal soils 740 

conditions (pH values of 7 and above) in the study region favouring the Henry NH4/NH3 741 

equilibrium towards higher NH3 gases enabling ammonia to diffuse out of the soil into the free 742 

atmosphere.  743 
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The IPCC emission factor (EF) method for NH3 volatilization reports estimates of 20% of N 744 

input into the soil to be volatilized as NH3. For our study, IPCC methodology for NH3 would 745 

lead to 32 kg NH3-N ha−1 yr−1, which is well in line with the simulated result.  746 

Sidiropoulos and Tsilingiridis, (2009) estimated a national livestock originated NH3 emission 747 

corresponding to approx. 22 kg ha-1 yr-1 for the region of Thessaly.  748 

There is a number of national NH3 inventories which could be considered detailed and well-749 

studied like the ones in Denmark, Netherlands, Europe, UK and US. In Denmark, (Geels et al., 750 

2012) used the DAMOS model to estimate the Danish NH3 emissions (crop, grass and manure 751 

manipulation) where the values ranged in the 5 regions under study from a very small quantity 752 

to 17.4 kg NH3-N ha−1 yr−1.  753 

As discussed by Sutton et al., (2013) the majority of the NH3 emissions come as a result of the 754 

agricultural production and are considerably impacted by climate influence. In the case of NH3 755 

volatilization, it could almost double every 5°C temperature given certain complex 756 

thermodynamics dissociation and solubility, whilst soil NH3 emission is influenced by the 757 

available water quantity allowing the NHx dissolution and use by microbial organisms, which is 758 

afterwards leading to decomposition.  759 

 760 

 761 

4.3 Uncertainty Analysis and Quantification  762 

Santabárbara, (2019) used the MCMC algorithm to estimate the joint parameter distribution of 763 

the fundamental bio-geochemical process parameters in LandscapeDNDC when simulation 764 

soil C and N fluxes. Propagating these joint parameter distributions through the model (by 765 

sampling 500 joint parameter distributions and performing inventory simulations with each 766 

parameter set with the model) for estimating the regional C and N fluxes was leading to various 767 

distributions for any model result on the regional scale. Statistical analysis calculating mean, 768 

median as well as the interquartile range (Q25 to Q75) determines best estimates and the 769 

uncertainty range of any model output on the regional scale, demonstrating the superiority of 770 
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the method for assessing any ecosystem response by modelling instead of reporting single 771 

results. This is a novel approach, that to our knowledge has not been reported before in 772 

literature for the full carbon and nitrogen balance and neither been applied to regional 773 

simulations by any process-based model. 774 

In this study, the estimated UA mean and median of the carbon sequestration of 0.5 ± 0.3 tons 775 

C ha-1 yr-1 is associated with an uncertainty range from 0.4 to 0.7 tons C ha-1 yr-1 which 776 

compares well to the spatial uncertainty of C-sequestration in the study of Haas et al., (2022). 777 

The approach used in this study enabled to assess the carbon and nitrogen balance of the 778 

Lehuger et al., (2009b) used the Bayesian calibration method for the enhancement of the 779 

CERES-EGC model parameterization (reduction of the apriori parameter distribution) as well 780 

as quantification of the uncertainty of the simulated N2O emissions in different sites. The 781 

estimated fluxes of the different sites resulted in a range between 0.088 to 3.672 kg N2O-N ha-782 

1 yr-1 with values for the q05 quantile of 0.066 to 0.115 kg N2O-N ha-1 yr-1 and for the Q95 783 

quantile from 1.676 to 5.874 kg N2O-N ha-1 yr-1 with an averaged value of 1.04 kg N2O-N ha-1 784 

yr-1 which is lower than the result of the current study but still in the same order of magnitude.  785 

Klatt et al., (2015b) quantified a parameter-induced uncertainty analysis on the regional scale 786 

applying the same process model for simulating N2O emission and NO3 leaching inventories 787 

similar to our study. The region was represented by 4000 polygons of arable land (state of 788 

Saxony, Germany) for crop rotations of barley, wheat and rapeseed while climatic conditions 789 

differ. The results of Klatt et al., (2015b) display a likelihood range of 50% (the IQR range 790 

between Q25 and Q75) for N2O emissions from 0.46 to 2.05 kg N2O-N ha−1 yr−1 which is in 791 

good comparison to our results of 2.1 to 3.1 kg N2O-N ha−1 yr−1. The average N2O emissions 792 

are 1.43 kg N2O-N ha−1 yr−1 comparable to the result of our study (mean: 2.6 and median: 2.5 793 

kg N2O-N ha−1 yr−1 across approx. 1000 polygons). As for leached NO3, Klatt et al., (2015b) 794 

reported leaching rates of mean value: 29 kg NO3-N ha−1 yr−1, (IQR from 24.5 to 36.0), which 795 

is higher compared to the results of our study: Mean: 14.1 kg NO3-N ha−1 yr−1, median: 13.6 796 

kg NO3-N ha−1 yr−1 (IQR from 11 to 17). Despite the difference in climatic and soil conditions, 797 
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both uncertainty analysis studies reported similar regional estimates and uncertainty ranges 798 

for N2O emissions and NO3 leaching.  799 

Butterbach-Bahl et al., (2022) reported the influence of management uncertainties for 800 

compiling national inventories of CH4 and N2O emission from various rice cultivation systems 801 

in Vietnam. The study applied a sampling technique varying model input data within a given 802 

range and analysing the influence on the assessed CH4 and N2O emission strengths. As the 803 

underlying cropland systems were fundamentally different, the assessed uncertainty ranges 804 

were comparable and the study is supporting our approach to focus on reporting uncertainty 805 

ranges rather than single values.  806 

 807 

5 Conclusion  808 

 809 

In this research, we presented for the first time a regional inventory of the full carbon and 810 

nitrogen balance including all sub-components of these fluxes simulated by a process-based 811 

model. Additionally, the study has fulfilled the demand to report always the associated 812 

uncertainties for any modelling results being published in literature. This supports the 813 

trustworthiness of the reported results for the C and N balances.  814 

Comparing the modelled N balance with a similar approach modelling the full N balance with 815 

all associated fluxes for a catchment in pre-alpine Austria leads to the conclusion, that 816 

especially the partitioning the N outflux into the different N flux components is more inherent 817 

to the LandscapeDNDC model itself used in both studies than induced by the two very different 818 

agricultural and climatical systems. Nevertheless, specific N outfluxes between the two studies 819 

show large differences (e.g. NH3 volatilization), which is purely caused by model processes 820 

due to different soil PH values. Comparing to a less granular and detailed study of the N 821 

balance for Switzerland gives a first impressions of the differences to be expected in modelling 822 

the arable N balance with various different models. The discussion of such results will become 823 
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more lively and maybe controversial as soon as more comparable studies using different 824 

models become available.  825 

In addition, a full uncertainty analysis is presented based on the Metropolis-Hastings algorithm 826 

where a parameter subset and input data perturbation was sampled and simulated resulting in 827 

various probability density functions (PDF) for each one of the N and C balance fluxes building 828 

a full uncertainty analysis of the modelled results. This helps to build trustworthiness in 829 

modelling assessments and estimates of the balances as well as of the model behaviour.  830 

As demanded by the nitrogen modelling community, all of the above constitute the novelty of 831 

the conducted research that could be seen as a prototype to analyse and report N cycling in 832 

agro-ecosystems in the future.  833 
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11 Appendix 1225 

11.1 Material and Methods 1226 

Sensitivity Index 1227 

In the first step, the Sensitivity Index algorithm (SI) (Pannell, 1997) was calculated for all 1228 

process parameters by splitting the parameter ranges into 10 equidistant values from minimum 1229 

to maximum and by rating SI values:  1230 

𝑆𝐼 =
𝐶𝑈𝑀!"# − 𝐶𝑈𝑀!$%

𝐶𝑈𝑀!"#
 1231 

where CUMmax and CUMmin are the maximum and minimum cumulative results of 10 1232 

simulations. High SI values explain a high sensitivity of the underlying parameter with respect 1233 

to the model results, whereas low values or even zero indicates low or no sensitivity.  1234 

 1235 

11.2 Results 1236 

Table A 1. Observed yield rates in the region of Thessaly. Cotton yields are the cotton bolls, clover feed is the total 1237 
harvested above ground biomass, for wheat and barley it is the grain yield, maize is accounted grain ear and the 1238 
stems Source ELSTAT.  1239 

Crop Yields [tons dry matter ha-1] 

Crops 2012 2013 2014 2015 2016 Mean 

Cotton 2.7 3.6 3.5 3.4 3.3 3.3 

Clover 8.6 8.9 8.7 7.9 7.7 8.4 

Wheat 3.3 3.3 3.3 3.7 3.6 3.4 

Barley 3.2 3.2 3.2 3.5 3.5 3.3 

Maize 10.9 12.1 12.3 12.7 12.1 12.0 

 1240 

Table A 2. Crop rotation scenarios (R1 – R5) for the region of Thessaly where the crop abbreviations corn, wiwh, 1241 
perg, cott and wbar refer to maize, winter wheat, clover (legume feed crops s.a. alfalfa or vetch), cotton and winter 1242 
barley respectively. 1243 

years R1 R2 R3 R4 R5 

2010 corn wiwh perg cott wbar 

2011 wiwh perg cott wbar corn 

2012 perg cott wbar corn wiwh 

2013 cott wbar corn wiwh perg 
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2014 wbar corn wiwh perg cott 

2015 corn wiwh perg cott wbar 

2016 wiwh perg cott wbar corn 

 1244 

Table A 3. Carbon Balance (totals) Summary of the Assessment and Uncertainty Analysis of the of cropland 1245 
cultivation of the region of Thessaly, Greece, GPP gross primary productivity, TER terrestrial ecosystem respiration, 1246 
Biomass export includes all C in yield, straw and feed exported from the fields, 360000 ha cropland. 1247 

 Mean Std Median Q25 Q75 

 [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] 

      

C-Inputs 4.51 0.20 4.45 4.36 4.69 

C-Outputs 4.32 0.17 4.31 4.19 4.45 

SOC-changes 0.19 0.11 0.20 0.14 0.27 

      

Input fluxes      

GPP 4.25 0.20 4.21 4.11 4.42 

C in manure 0.25 0.01 0.26 0.25 0.26 

      

Output fluxes      

TER 3.08 0.16 3.06 2.97 3.20 

Biomass export 1.24 0.05 1.24 1.21 1.27 

      

 1248 

Table A 4 Nitrogen balance (totals) Summary of the Assessment and Uncertainty Analysis of the total Nitrogen 1249 
Balance of cropland cultivation of the region of Thessaly, Greece. 1250 

 Mean Std Median Q25 Q75 

 [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] 

      

N-Inputs 76.5 3.2 77.8 73.3 79.1 

N-Outputs 71.7 3.2 71.2 69.4 73.7 

N-stock-changes 4.8 0.0 6.6 3.9 5.4 

      

Input fluxes      

N deposition 2.0 0.3 2.1 1.9 2.1 

Bio. N fixation 16.7 1.6 16.7 15.9 17.5 

N in min. fertilizer 28.9 1.7 29.3 27.6 29.8 

N in organic fertilizer 28.9 1.3 29.2 27.9 29.8 
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Output fluxes      

Gaseous emissions1) 21.2 3.1 21.1 18.9 23.4 

N2O 0.9 0.3 0.9 0.7 1.1 

NO 1.1 0.5 1.0 0.7 1.4 

N2 4.9 2.4 4.5 2.9 6.6 

NH3 14.3 2.6 13.5 12.5 15.6 

Aquatic fluxes2)      

NO3 leaching 3.9 1.3 3.8 3.0 4.7 

      

1) Gaseous emissions are the sum of N2O, NO, N2 and NH3 fluxes; 2) Aquatic flux is nitrate leaching (NO3-) 1251 

 1252 

Table A 5. Total crop yields per cultivar and year.  1253 

Crop Yields [tons dry matter] 

Crops 2012 2013 2014 2015 2016 Mean 

Cotton 303 676.9 374 424.6 359 806.7 322 292.0 285 780.3 329 196.1 

Clover 302 753.2 319 401.7 338 134.6 341 938.4 360 693.9 332 584.4 

Wheat 477 700.7 461 875.5 395 902.1 430 014.4 450 254.3 443 149.4 

Barley 84 520.8 99 091.8 139 402.9 139 990.8 102 454.7 113 092.2 

Maize 332 531.6 431 324.6 377 783.9 351 285.4 334 277.7 365 440.6 

 1254 

 1255 

Figure 9. Shares of components of the annual nitrogen in- and output fluxes. 1256 

 1257 

Table A 6. Simulated crop yields per cultivar and year for the irrigated land. 1258 

Crop Yields [tons dry matter ha-1] 
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Crops Median Mean STD 

Cotton 4.0 3.7 0.9 

Clover 9.8 9.6 0.6 

Wheat 3.9 3.6 0.9 

Barley 5.3 5.0 1.2 

Maize 10.9 10.6 1.3 

 1259 
Table A 7. Simulated crop yields per cultivar and year for the rain feed land. 1260 

Crop Yields [tons dry matter ha-1] 

Crops Median Mean STD 

Cotton 3.0 2.9 0.7 

Clover 9.8 9.6 0.6 

Wheat 3.9 3.6 0.9 

Barley 4.0 3.9 0.9 

Maize 9.5 9.2 1.5 

 1261 


