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Abstract.  Changes in the day of peak Net Primary Production in the North Atlantic (25-65o N) are here identified in daily

data from two fully coupled CMIP6 Earth System Models, EC-Earth3-CC and NorESM2-LM, for the period 1750-2100

(under SSP5-8.5 scenario). The majority of the region displays the largest change point in the day of peak NPP occurring

after the year 2000 indicating a shift towards earlier peak NPP with the most change occurring in the northern parts of the

domain. We compared the ESM data of NPP to estimates derived from the CAFE satellite based data and found significant

differences between the Earth System Model simulations and the CAFE data. However, the two models well represent both

the magnitude of peak NPP and the seasonal cycles. Furthermore, the occurrence of the first day with MLD shallower than

40 m shows positive correlation with the occurrence of the day of peak NPP for most of the domain and, similar to the day of

peak NPP, displays the largest changepoints occurring around or after the year 2000. The early timing of the detected shifts

in both models suggests that similar shifts could already have been initiated or could start in the near future. This highlights

the need for long term monitoring campaigns in the North Atlantic.

1 Introduction

Net  Primary  Production  (NPP)  is  the  net  rate  of  photosynthetic  carbon  fixation.  In  the  ocean,  NPP  is  performed  by

microscopic planktonic phototrophs with a turnover time of about one week. Though the individual plankton are small, the

total marine NPP almost equals its terrestrial counterpart with an estimated size of marine NPP on the order of 50GtC/yr (eg.

Kulk et al., 2020, Westberry et al., 2008, Silsbe et al., 2016, Carr et al., 2006). NPP constitutes the basis of the food chain

and provides the energy for higher trophic levels. Changes in NPP thus affect the entire ecosystem and ultimately fisheries

and human food supply (Stock et  al.,  2017).  In addition, NPP is the first step in the biological  carbon pump, a set  of

processes  by  which  carbon  is  exported  from  the  surface  to  the  deep  ocean  through  the  sinking  of  organic  matter.
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Understanding how the NPP and the subsequent export of organic carbon from the euphotic zone will change in future

climate is thus vital for evaluating future uptake of atmospheric carbon dioxide (Honjo et al., 2014).

The north Atlantic is a region of particular importance for carbon sequestration in the deep ocean (Goris et al. 2018; Baker et

al., 2022). This region contributes about 0.55-1.94 GtC/yr (Sanders et al. 2014) to the global export production, estimated to

be 4-12 GtC/yr (de Vries and Weber,  2017). Moreover,  here,  cold water increases  CO2 solubility and deep mixing and

subduction in the subpolar portion of this area result in a net transport of carbon to depth, a combination of processes known

as the solubility carbon pump.

NPP is affected by climate variability through precipitation, wind patterns, temperature and light and is thus projected to

change with anthropogenic climate change (Laufkötter et al., 2015; Pearl et al., 1999; Myriokefalitakis et al., 2020). Though

an increase in temperature may enhance the growth rate of phytoplankton and thereby the net primary production, global

NPP is projected to decrease (Behrenfeld et al., 2006; Steinacher et al., 2010; Bopp et al., 2013) though the uncertainty

displayed in state-of-the-art Earth system Models (ESMs) is very large (Kwiatkowski et al., 2020). A projected NPP decline

is often explained as being caused by increased water column stability that decreases the amount of nutrients available for

primary production (Behrenfeld et al., 2006; Steinacher et al., 2010) but processes such as retreat of sea ice and increased

stratification in high latitudes reduces the light limitation leading to NPP increases (Kwiatkowski et al., 2020). Efforts have

been made to estimate how NPP has already changed in the historical satellite record but the limited range of satellite time-

series  makes  such endeavors  difficult.  Estimates  range from -2.1% per  decade  over  the period 1998-2015 (Gregg and

Rousseaux, 2019) to no significant change (Kulk et al., 2020).

The seasonal cycle of phytoplankton blooms has been explained with various theories. An often cited theory is the Critical

Depth Hypothesis (Sverdrup, 1953) which postulates that a bloom can occur when the mixed layer has shoaled to a critical

depth where the light limited gross production outweighs respiration. It does not, however, give an explanation as to when a

bloom starts and ends. A more recent theory, termed the Disturbance Recovery Theory, of the timing of blooms was given

by Behrenfeld (2010) (see also Behrenfeld and Boss, 2018). The theory suggests a balance between the growth and the loss

in terms of respiration, grazing and disturbances to the physical environment such as the depth of the mixed layer. Other

theories include Smyth et al. (2014) that relates the seasonality to the shift between negative and positive net heat flux.

Changes in seasonality and the timing of algal blooms can occur along with climate change with cascading effects into

higher trophic levels up to fish and marine mammals. Changes in the phenology, or the timing of recurring biological events,

of phytoplankton blooms due to climate change have already been observed in the North Sea with the Continuous Plankton

Recorder (CPR) since 1960, with data displaying a significantly earlier onset of the spring bloom (Chivers et al. 2020). A

phenological change in phytoplankton blooms will affect zooplankton and larvae as the timing of available food resources
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will change, an effect known as the match/mismatch hypothesis (Cushing, 1990, Durant et al., 2007). The suggested causes

of phenological shifts range from bottom up controls, including thermal stratification occuring earlier in the year allowing

for an earlier bloom initiation, to top down controls resulting from changes in zooplankton grazing pressure (Yamaguchi et

al., 2022).

Henson et al. (2013) used historical simulations from six ESMs covering the years 1985-2009 and a high emission future

scenario (RCP8.5) to study changes in the NPP phenology. They found a shift towards an earlier peak NPP for most areas

around the globe. However, the monthly resolution of the CMIP5 data dampens the phenology signal considerably. In a

more recent study, Henson et al. (2018) used higher frequency model output to investigate the effect of temporal resolution

on results of phytoplankton phenology. They found that in order to detect long term trends in bloom timing, a maximum

temporal resolution of not more than 20 days is required.

However,  even  though a 20-day resolution may be  adequate  to  detect  long term trends,  it  is  certainly  not  enough for

detecting the timing of a rapid change in phenology in the course of global warming. In this paper, we use a long time series

of daily output from two ESMs that contributed to the 6th Coupled Model Intercomparison Project (Eyring et al., 2016), to

investigate the evolution of oceanic net primary production and its phenology in a region 25-65 o N in the North Atlantic in

the period 1750-2100. Furthermore, we divide the region into biogeochemical provinces (Longhurst et al., 1995) in order to

see how localities with similar biogeochemical functioning differ across the region. We then investigate the occurrence of

change points in the time-series of the day of peak NPP for the different provinces using change point analysis. Furthermore,

we investigate the cross-correlation between the day of mixed layer depth shallower than a certain limit (here arbitrarily

taken to be 40 m) and the day of peak NPP. We also investigate the largest change points in the day of the mixed layer

shoaling above the limit. The cross-correlation analysis is complementary to the change point analysis and highlights at

which leads and lags, the timing of mixed layer shoaling and peak NPP are covariant in the different regions.

2 Method

Daily output of vertically integrated net primary production has been produced using NorESM2-LM and EC-Earth3-CC for

100 years pi-control, historical (1850-2014) and the very high emission scenario SSP5-8.5 (2015-2100, Kriegler et al., 2017).

All runs are forced with prescribed atmospheric CO2 concentrations (concentration driven) in accordance with Meinshausen

et al., 2020. The models are described in section 2.1. Section 2.2 describes the observational data set and section 2.3 provides

an overview of the change point analysis method used. The phenological indicator that we have used is the day of peak NPP

which is calculated as a simple max of NPP. This is a well defined metric that is robust unless for bimodal distributions with

two peaks of similar size, which was not found in our data. The metric has previously been used in eg. Nissen and Vogt

(2021) and Henson et al. (2013).
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The mixed layer depths used for the analysis are calculated differently in the two ESMs. In EC-Earth3-CC we have used the

turbocline depth as a mixed layer depth proxy calculated with a turbulent mixing coefficient criterion of 5cm2/s while in

NorESM2-LM the mixed layer depth has been calculated in accordance with the criterion of de Boyer Montégut et al. (2004)

and with a density difference of 0.03 kg/m3.

2.1 Models

2.1.1 EC-Earth3-CC

EC-Earth3 is an ESM developed by a European consortium of institutes and universities (Döscher et al. 2022). It is available

in several different configurations. For this work, we have used EC-Earth3-CC which consists of the Integrated Forecast

System (IFS) CY36R4 of the European Centre for Medium-Range Weather Forecasts (ECMWF) for simulating physics of

the atmosphere and land surface, NEMO3.6 (Madec, 2015) for ocean physics, LPJ-Guess (Smith et al., 2014) for terrestrial

vegetation and PISCES (Aumont et al., 2015) for ocean biogeochemistry. In concentration driven form, PISCES is fed a

spatially uniform atmospheric pCO2 while a CO2 mapping occurs within IFS to account for regional heterogeneities.

PISCES  is  a  mixed  Monod-quota  model  simulating  two  different  phytoplankton  functional  types,  diatoms  and

nanophytoplankton, two size classes of zoo-plankton, micro and meso, and nutrients nitrate, ammonium, phosphate, iron and

silicate.  Iron and silicate are modeled using quotas in phytoplankton and the other nutrients with fixed Redfield ratios.

Phytoplankton growth depends on the external concentration in nutrients, light and temperature. PISCES is suited for a wide

range of spatial and temporal scales, including quasi-steady state simulations on the global scale. PISCES further simulates

the  carbon  system,  as  well  as  dissolved  and  particulate  organic  matter.  Net  primary  production  is  the  growth  of

phytoplankton thus the term excludes mortality, excretion and grazing. The integrated net primary productivity used for the

analysis is integrated over the water column and also summed over the two different phytoplankton functional types.

PISCES has  been  used  and  validated  in  a  number  of  settings  (Ramirez-romero  et  al.,  2020;  Gutknecht  et  al.,  2019;

Kwiatkowski et al., 2018). Skyllas et al. (2019) validated EC-Earth3, in an offline ocean only NEMO-PISCES version, for a

north-south  (29-63oN) transect  in  the  North-west  Atlantic  using  cruise  data  of  temperature,  salinity  and  nutrients  and

chlorophyll-a and found a good agreement with observations. Net primary production has not previously been validated for
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EC-Earth3-CC although the air-sea CO2 flux, which is strongly affected by net primary production, was compared to an

observation based climatology in Döscher et al. (2022). Their results showed stronger uptake of CO 2 than observations in the

North Atlantic, thought to be caused by too active convection in the Labrador Sea.

2.1.2 NorESM2-LM

The Norwegian Earth System Model NorESM2 (Seland et al., 2020, Tjiputra et al, 2020) is a fully coupled ESM, which is

based on the Community Earth System Model version 2 (CESM2, Danabasoglu et al. 2020) but employs a different ocean

component (the Bergen Layered Ocean Model, BLOM) and a modified atmosphere model (CAM6-Nor). The land surface

and terrestrial biogeochemistry is represented by the Community Land Model version 5 (CLM5). BLOM uses isopycnic

coordinates in the vertical (below a bulk mixed layer represented by two non-isopycnic model layers on top) and it includes

the iHAMOCC model to represent ocean biogeochemistry. BLOM is coupled to the sea-ice component CICE5, which is the

same as in CESM2. The LM version of NorESM2 used in this study has an atmosphere-land resolution of 2o and a nominal

ocean model resolution of 1o. iHAMOCC is derived from the HAMOCC model (Six and Maier-Reimer, 1996; Ilyina et al.

2013) and was adapted for the use with isopycnic coordinates by Assman et al.(2010).  HAMOCC includes a relatively

simple NPZD ecosystem model with one phytoplankton and one zooplankton compartment and an implicit representation of

calcifying and silicifying organisms. The model simulates nitrogen and phosphorus nutrients as well as dissolved iron with

phytoplankton nutrient uptake according to Redfield molar ratios. The growth of phytoplankton is further affected by light as

well as temperature.

NorESM2-LM has been validated with regards to biogeochemical variables including net primary production in Tjiputra et

al. (2020). The results show a seasonal cycle of marine NPP that is reasonably well captured in amplitude but with a too low

annual mean.

2.2 Satellite based data - The CAFE model

Direct observational data records of net primary production are scarce and in order to validate the two ESMs with respect to

NPP, we have chosen to use data from a satellite based approach. There are several different methods for deriving total water

column NPP estimates from satellite data. Often they are either based on ocean color (Behrenfeld and Falkowski, 1997),

carbon (Westberry et al., 2008) or absorption (Smyth et al., 2005).
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In this work, we use data from the Carbon, Absorption and Fluorescence Euphotic-resolving (CAFE) model (Silsbe et al.

2016),  freely  available  through  the  Ocean  Productivity  site

(http://sites.science.oregonstate.edu/ocean.productivity/index.php).  The model utilizes  satellite  derived  properties  and has

been shown to compare well to in situ observations (Johnson and Bif, 2021). We here utilize the MODIS-aqua dataset from

2002 to 2021.

2.3 Longhurst Provinces

The seasonality of NPP depends on the physical  characteristics of different ocean localities. In modelling the terrestrial

environment, the division into regions of similar growth conditions such as boreal forest or savannah is well defined, while

in the ocean, biological differences between regions exist but are more difficult to constrain (Sathyendranath et al., 1995).

Division of the global ocean into biogeochemical provinces has been done in a number of references (Longhurst et al., 1995;

Sathyendranath et al., 1995) with the object of determining the global or regional net primary production. Longhurst et al.

(1995) made the static boundaries that we have used in this analysis (downloaded from: https://www.marineregions.org/).

Although the boundaries in reality are shifting on seasonal and interannual time scales (Reygondeau et al., 2013), we have

chosen to use the static boundaries as we then are able to compare the same localities in the two models and in the CAFE

data. The North Atlantic is divided according to three main areas: Coastal, westerlies and polar which are further subdivided

to give the regions shown in Fig. 1. Note that we have chosen not to include the entire Arctic basin causing the Arctic

provinces to be cut off in the north. The boreal polar region (BPLR) is defined by the southward flowing Labrador current

that  continues  northward  along  the  Greenland  coastline.  The  Atlantic  Arctic  region  (ARCT)  is  defined  by  strong

stratification caused by large inflow of meltwater while the Atlantic subarctic (SARC) is characterized by poleward flowing

warm North Atlantic water. The west wind regions; Gulf Stream (GFST), North Atlantic Drift (NADR) and North West

(NADW) and North East Atlantic sub polar gyre (NASE) are governed by westerly winds and a Sverdrup type circulation.

We have also included the coastal region North west Atlantic continental shelf (NWCS).

2.4 Change point analysis

Change point detection is a method to identify abrupt change in a time-series. Formally, the problem is to find the best

possible segmentation of a signal according to some chosen criterion. Depending on this criterion one can look for changes
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in, for example, mean, variance, or a spectral characteristic of a given signal  In climate science, the method has been used to

detect shifts in a wide variety of quantities (Beaulieu et al., 2012) such as AMOC strength (Smeed et al., 2018), coastal

organic  C sequestration  (Watanabe  et  al.,  2018),  and  cod  stock  (Möllmann et  al.,  2021).  We have  used  change  point

detection to identify rapid change in the calendar-day of peak NPP. The calculations have been performed using the Python

package Ruptures (Truong et al. 2020).

Generally speaking, change point detection requires a search method, a cost function and a constraint on the number of

change points to detect. Search methods can be either exact or approximate. Here we use a version of the former called

optimal detection, as computational speed is not an issue. Moreover, we use primarily the kernel based cost function and a

constraint where we directly pick the number of change points to find. Many methods of change point analysis, in fact, focus

on finding a predetermined number of shifts in a predefined quantity, such as the time series mean or variance (Truong et al.,

2020). Another option that does not require the number of change points to be determined beforehand, is to   instead use a

penalty that  is related to the amplitude of the change of interest. A small penalty generates many change points, which may

arise due to intra-annual variability or noise, while a large penalty instead only gives the largest, if any, changes in the time

series. By choosing a large enough penalty, the number of change points can in this way be tuned. In the process of doing

this research we have tested both approaches.

Furthermore, instead of predefining the type of time series change, we have chosen to primarily use a kernel based non-

parametric cost function developed by Arlot et al. (2013), in the following called “the kernel based cost function”. This

model can detect all sorts of changes in the probability distribution of the time-series; mean, variance and higher order

changes such as skewness and kurtosis. The upside of this approach is that no large changes are missed. The downside is that

the  method  does  not  provide  information  on  which  change  point  is  related  to  what  type  of  change.  Therefore,  we

complement the method with analyses using the Least absolute deviation (L1) cost function that detects changes in the

median and the Least squared deviation (L2) cost function that detects changes in the mean of the time-series. Both of these

are also available through the ruptures package and the search method used is the same as for the kernel based cost function.

3 Results

3.1 ESMs vs CAFE
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We have compared the daily ESM data with 8 day NPP estimates from the CAFE data (Silsbe et al, 2016). Seasonal mean

NPP over the MODIS-aqua period 2003-2021, for March, April, May (MAM), June, July, August (JJA) and September,

October, November (SON) seasons are shown in Fig. 2. Note that the 2003-2021 period modelled by the ESMs is not the

same  period  as  that  in  the  observationally  constrained  CAFE model.  The  two  ESMs are  forced  with  greenhouse  gas

concentrations that are similar to those for the period, but the internal variability of the climate system as modelled by the

two  ESMs  is  not  in  sync  with  that  in  reality  or  with  each  other.  The  comparison  that  can  be  done  is  thus  strictly

climatological. Due to the smaller area seen by satellites in winter, the CAFE data contains missing data over the winter

months. In order to correctly compare the seasonal cycles, the ESM data was bounded to the north by the maximum latitude

present in the CAFE data (Fig. S1). This means that not all data points to calculate a mean over the entire SON are present.

The SON mean over the northern part of the domain is thus biased towards September-October.

Figure 2 shows large spatial differences between CAFE, EC-Earth3-CC and NorESM2-LM data. Most notably, EC-Earth3-

CC shows a very strong NPP in MAM over the Gulf stream region. The high resolution CAFE data show that the enhanced

production occurs in the warm Gulf stream eddies while the low resolution of the ESMs gives a wider warm water transport.

The NorESM2-LM results in the Gulf stream region are closer to the CAFE data, although the production in the northern

part of the domain is underestimated in both ESMs.

Figure 3 shows the area mean seasonal cycle over the period 2003-2021 for the different provinces. Again, the data is

bounded to the north by the extent of CAFE the data (Fig. S1). The size of the NPP peak is well captured by both ESMs with

the notable exception of province GFST in EC-Earth3-CC. This strong GFST production in EC-Earth3-CC is clearly seen in

Fig. 2. However, the CAFE data shows a flatter and wider peak which generates a higher mean NPP over the time period

compared to both ESMs for all provinces except for GFST and NASW in EC-Earth3-CC (Tab. 1). It is also apparent from

Fig. 3 that the timing of peak NPP differs between biogeochemical provinces and models (Tab. 1). In the CAFE data, the day

of peak NPP occurs in day 164-178 (early to late June) in the northernmost provinces BPLR, ARCT, SARC and NADR

while the subtropical gyres (NASW, NASE), GFST and NWCS generates an earlier peak NPP between day 114 (April 24)

and day 130 (May 10). Similarly, in EC-Earth3-CC, the three arctic regions BPLR, ARCT and SARC display the latest peak

NPP occurring from day 150 to day 166 (May 30 to June 15) while the peak NPP in NADR occurs earlier compared to

CAFE (day 124, May 4). The earliest peak NPP occurs in NASE on day 83 (March 24). As in the CAFE data, the earliest

peak NPP in NorESM2-LM occurs in NASW (April 26, day 116 compared to April 24 in CAFE) while the latest occurs in
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NWCS (day 186, July 5). In NorESM, the three arctic regions display a day of peak NPP of 159 (June 8) for BPLR, 161

(June 10) for ARCT, and 176 (June 25) for SARC. NASE and GFST have a day of peak NPP of 138 (May 18) and 148 (May

28) respectively. In general, EC-Earth3-CC is closer to the CAFE data in size but NorESM2-LM is closer in timing (Tab. 1).

3.2 Historical and future NPP

The time-series of annual mean NPP for the different biogeochemical provinces from 100 years of pi-control, historical and

SSP5-8.5 are shown in Fig. 4 for EC-Earth3-CC, NorESM2-LM along with the annual mean CAFE data for the period 2003-

2021. The figure reveals a large interannual and multidecadal variability in EC-Earth3-CC compared to NorESM2-LM.

For most provinces, EC-Earth3-CC generates higher annual mean NPP than NorESM2-LM, with the exception of BPLR and

NASE. For BPLR, the mean for the entire period (not shown) is 110 mgC/m2/day for EC-Earth3-CC and 112 mgC/m2/day

for NorESM2-LM and for NASE 314mgC/m2/day for EC-Earth3-CC compared to 321mgC/m2/day for NorESM2-LM. The

largest difference between the two models is seen in GFST, where EC-Earth3-CC generates a time-series mean of 640

mgC/m2/day compared to 282 mgC/m2/day in NorESM2-LM. The highest NPP in NorESM2-LM is instead found in NASE.

The standard deviation for the entire period is in EC-Earth3-CC between 23.8 mgC/m2/day and 71.6 mgC/m2/day depending

on the province (not shown). The largest standard deviation is found in NASE and the lowest in NWCS. In contrast, the

standard deviation in NorESM2-LM is between 9.17 mgC/m2/day and 22.0 mgC/m2/day with, similar to EC-Earth3-CC, the

largest found in NASE and the lowest in NWCS.

In order to find how the NPP and the timing of peak NPP has changed over the time-series, we have compared the last 30 yr

period of SSP5-8.5 (2070-2099) to the first 30 yr period of the historical simulation (1850-1879). The results are summarized

in Tab. 2. EC-Earth3-CC shows an increased NPP for most provinces with the exception of NADR and NASE where the

NPP is lower in the late period compared to the early historical period. In addition to those provinces, NorESM2-LM display

decreased NPP also for NASW and SARC. The day of the year of peak NPP decreases for all regions except one in both EC-

Earth3-CC (NASE) and NorESM2-LM (GFST).
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To further find how the shift in phenology is distributed over the region, the spatial distribution of the day of peak NPP

averaged over the 30 year period 1850-1879 for the two ESMs is shown in Fig 5. Also shown in the figure is the difference

of the ESM results averaged over the period 1985-2014 and 2070-2099 from the early period 1850-1879. In the early period,

1850-1879, both ESMs displayed a pattern of later bloom in the northern parts compared to the rest of the domain. For EC-

Earth3-CC, this is most notable in the Labrador Sea while in NorESM2-LM, the later bloom is also visible in the Gulfstream

and the northwest continental shelf area (NWCS).

The period 1985-2014 shows small and scattered differences from the early period. In the late period, 2070-2099, most of the

domain experienced  an earlier  peak NPP but with some notable exceptions.  Parts  of the Gulf  stream region display a

markedly later  peak NPP in the NorESM2-LM data compared  to the early  period,  1850-1879. This  corresponds to  an

expansion of the pattern of late peak NPP in the Gulf stream region seen in the early period.

In EC-Earth3-CC, the pattern of earlier peak NPP in the final 30 yrs of SSP5-8.5 is widespread over the domain although a

notable feature is the much later bloom in NASE (27 days on average, Tab. 2). The size of NPP in this region was greatly

reduced in 2070-2099 compared to 1850-1879 (-86.6 mgC/m2/day, Tab. 2) caused by a strong reduction in winter surface

nitrate concentration (not shown). The NPP seasonality in this area shifts from a clear spring peak to an extended period of

weak NPP (not shown) with peak NPP therefore occurring later in the year. Also shown in Fig. 5 is the deviation of the late

period from the 1850-1879 mean divided by the standard deviation of the PI-control in each grid cell which gives a measure

of the significance of the late period change. The results show large significance in the northern parts of the domain.

Averaging over the different provinces allows us to look at the mean change in the day of peak NPP as well as identify

change points. Fig. 6 shows the time-series of the day of peak NPP averaged over the different provinces together with the

largest (cf. Fig. S2 for the largest change points using the PELT search method). In EC-Earth3-CC, the largest change point

occurs between 2002 (BPLR and ARCT) and 2066 (NASE) for all regions except NASW where the largest change point
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occurs  the  year  1900.  Note  also  that  NASW is  the  province  with  the  least  change  over  the  time  period  (Tab.  2).  In

NorESM2-LM, the  largest  change  point  is  in  general  located  later,  between  2010 (NASW) and 2082 (NASE).  When

increasing to two change points, the pattern of most change occurring after the year 2000 is maintained with few change

points occurring earlier (Fig. 6). Also shown in the figure is the largest change point found by the L1 and L2 cost function

that indicates changes in the median and mean respectively. The results show that the L1, L2 and the kernel based cost

function gives almost the same results for almost all provinces. The most discrepancy is found in NASW in EC-Earth3-CC

which is also the region displaying the least change.

Fig. 7 shows the first day of the year at which the spatial mean Mixed Layer Depth (MLD) shoals to 40 m or shallower in

each  province.  Similar  to  the  results  of  the  day  of  peak  NPP (Fig.  6),  the day  of  MLD shallower  than  40 m occurs

progressively earlier over SSP5-8.5 for most provinces and for both EC-Earth3-CC and NorESM2-LM. The largest change-

point in the time-series (Tab. 3) occurs between 1997 (GFST) and 2067 (NASW) for EC-Earth3-CC and between 2025

(ARCT, NADR) and 2092 (NWCS) for NorESM2-LM. Increasing to two change points, the pattern is consistent with most

points located after the year 2000 (Fig. 7). Note that the choice of 40 m is arbitrary. We have tested for other cut-off depths

with similar results (Figs. S3-S5).

But how well do change points in the spatial mean day of peak NPP of the different provinces represent the separate grid

points? The year during which the largest change point for every grid point occurs is shown in Fig. 8. The results broadly

correspond to the results seen in the spatial mean time series with a major change point occurring after the year 2000. Few

grid points display a change point earlier than that. Note that many of the grid cells displaying change points early in the

time-series correspond to cells where the PELT search method could not find only one single change point (Fig. S6). This

points to the fact that in these grid points, little significant change occurs (cf. Fig 5. bottom panel). Furthermore, EC-Earth3-

CC displays an earlier major change point for most grid points as compared to NorESM2-LM. The northern part of the

domain, i.e. regions where the euphotic zone is more vigorously coupled to the deep sea by vertical mixing like the Labrador
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Sea, northern North Atlantic and the sub-polar gyre, shows the earliest change point in the EC-Earth3-CC results close to the

year 2000. The south-eastern part of the domain displays the latest change point in both NorESM2-LM and EC-Earth3-CC.

To elucidate on the correlation between the day of MLD shallower than 40 m and the day of max NPP, the cross correlation

between the area  averaged time-series  shown in Figs.  6 and 7 has been plotted in Fig.  9.  The figure shows a notable

correlation, well above the 95% confidence bound, between the two indices in most provinces for both ESMs. The maximum

correlation occurs for zero lag in most provinces, indicating, as expected, that peaks in these variables tend to occur within

the same year. Note that the strongest correlation for zero lag, at least in EC-Earth3-CC is seen in the west wind provinces,

GFST, NADR, NADW and NASE that have a Sverdrup-like circulation. These are also open ocean regions where mixed

layers can be expected to be less constrained by freshwater fluxes from land. Furthermore, a striking feature is the strong

negative correlations found in the BPLR and ARCT provinces in EC-Earth3-CC. Looking at Fig. 8 we find that the day of

MLD shallower than 40 m, at least in the BPLR province, occurs so early in the year that it can hardly affect the day of peak

NPP. Thus, suggesting that the anti-correlation between these variables is owing to a lurking variable affecting both NPP and

MLD. The similar correlation structure between BPLR and ARCT strongly suggests that the same is true about the ARCT

province.

4. Discussion

The comparison between CAFE and the two ESMs showed that the size of peak NPP was well captured by the ESMs. The

regional difference in NPP is larger in the ESMs compared to the CAFE data which is evident by the difference in annual

mean between the provinces (Tab. 1). Peak NPP occurs latest in the year for the arctic provinces; BPLR, ARCT and SARC

in EC-Earth3-CC which corresponds well to the CAFE data (although peak NPP in NADR occurs later than BPLR in

CAFE).
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The results showed that the most change in the day of peak NPP occurs after the beginning of the 21 st century which is

consistent with the results of Henson et al (2009), who found no long term trend in the subpolar north Atlantic towards

earlier or later blooms in model data spanning 1959-2004. The earlier bloom displayed for most provinces (Tab. 2) under

SSP5-8.5 is in agreement with Asch et al. (2019) who showed that blooms north of 40 oN shifted earlier under RCP8.5 using

5 daily output from GFDL ESM2M including the biogeochemical  model TOPAZ2.0. In  contrast,  Henson et  al.  (2018)

reports, using an ocean only model (MEDUSA-2.0, NEMO), a start of bloom shifting later in the year under RCP8.5 in most

parts of the North Atlantic. However, both studies relate to surface chlorophyll and not to NPP, which makes the comparison

problematic. Although surface chlorophyll has the benefit of being easily validated to observations, it is not, in a simple

manner connected to vertically integrated NPP. The chlorophyll maxima can be found below the surface (Cornec et al.,

2021) and the relationship between the surface concentration and the subsurface profile differs between different localities

(Sathyendranath et al., 1995). The seasonality of peak NPP is therefore not necessarily directly relatable to the seasonality of

surface chlorophyll. Moreover, our temporal resolution is higher and both Henson et al. (2018) and Asch et al. (2019) use the

start of bloom as well as length of bloom as a phenological indicator instead of the timing of the annual peak which further

complicates the comparison.

The change-point analysis revealed that the largest change points in the day of peak NPP occur in most provinces after the

year 2000 in both ESMs (Tab. 3, Fig. 6). A noteworthy observation is that very few change points occur in the latter part of

the 21st century even though it is then that the warming in the SSP5-8.5 is the greatest. In EC-Earth3-CC many change

points occur already in the historical simulation, while in NorESM2-LM they tend to occur in the middle of the 21st century,

at a point when the very high emission scenario SSP5-8.5 has just started to diverge from the more moderate emission

scenarios in terms of global mean surface temperature (IPCC, 2022).  Change points occur earlier in EC-Earth3-CC than in

NorESM2-LM in all provinces, and the same change points are generally found regardless of which cost function (L1,L2 or

kernel  based)  is  chosen  in  both  models.  This  indicates  that  the  change  points  found  are  affecting  multiple  statistical

moments.
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We compared the day of peak NPP with the day of MLD shallower than 40 m and the cross correlation did show the

strongest correlation at zero lag. The fact that we saw significant correlations also with much longer lags likely reflected the

low-frequency cycles of the Atlantic multi-decadal variability which affects many physical parameters, like SST and MLD,

on multi-decadal time scales (e.g. Börgel et al. 2020). Both this type of low frequency variability and anthropogenic climate

change could act as a lurking variable driving coherent changes in both NPP and MLD on a range of both positive and

negative  lags.  Furthermore,  we noted  from Fig.  9  a  strong  anticorrelation  between  the  MLD and  NPP phenology for

provinces BPLR and ARCT in EC-Earth3-CC. Given that both the provinces are far to the north and that SSP5-8.5 is a very

strong warming scenario, we speculate that changes in sea-ice could be behind the observed correlation structure. This is

supported by the fact that EC-Earth3 has been shown to overestimate sea ice concentrations in the Labrador Sea (Döscher et

al., 2022). However, given that the timing of the MLD shallowing is unlikely to be important for the timing of peak NPP in

these provinces we did not investigate further.

NPP and its timing is, of course, both in the models and in reality dependent on many other factors in addition to the MLD.

Some examples are light availability, nutrient concentrations and temperature. The MLD can similarly both be affected by

and affect some of these factors. In light of this, it is clear that MLD changes can both act as a driver of phenology changes

in itself and act as a proxy for other drivers, which complicates the interpretation. The cross correlation analysis therefore

does  not  point  to  the  validity  of  a  certain  bloom timing theory  such  as  Critical  Depth  Hypothesis  or  the Disturbance

Recovery Theory (Behrenfeld, 2010) but it does highlight the covariance of the NPP and MLD phenology.

The biogeochemical modules included in the earth system models are by necessity simplistic, with PISCES simulating two

phytoplankton functional types representing nanophytoplankton and diatoms and HAMOCC only one. However, even with

reduced complexity interpretation is not straightforward. Compared to observations, community structure has been shown to

affect the NPP and models containing a more dynamic phytoplankton community have a more non-linear response to climate

change due to decreases in large cells and an increasing amount of regenerated production (Fu et al., 2016). Thus, more
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complex biogeochemical models may generate different results. The simpler biogeochemical model included in NorESM2-

LM may be the reason for the lower variability seen in the NPP results (Fig. 4).

For this work we have used fully coupled earth system models as opposed to ocean only models, that are often used for

similar work (eg. Henson et al., 2018, 2009). The exchange of heat, momentum and freshwater is more accurately treated in

coupled  models  than  in  ocean  only models.  This  affects,  for  example,  temperature  and  stratification.  It  has  also  been

demonstrated that interactive coupling affects the variability of these variables (e.g. Bhatt et al. 1998, Barsugli and Battisti,

1998). The biogeochemical response is therefore expected to differ in the coupled vs. the uncoupled case. Because of more

realistic physics with respect to uncoupled models, we believe using coupled models might constitute an important step

forward in the larger effort of trying to understand what phenology changes might occur in the future.

5 Summary and conclusions

Using daily output for the period 1750-2100 under historical and SSP5-8.5 from two fully coupled ESMs, we have analyzed

NPP and the  day of  peak NPP for  an  area  covering  25-65oN in the North  Atlantic.  We have compared  the vertically

integrated NPP for the two ESMs with the satellite based CAFE model. Both ESMs show deviations from the CAFE data. At

least for EC-Earth3-CC, this is especially true in the Gulf Stream region.

Furthermore, we separated the domain in biogeochemical provinces in accordance with Longhurst et al. (1995) in order to

look at spatial averages. The seasonal cycle of the CAFE data displays a longer growing season in most provinces than the

two ESMs. NorESM2-LM is typically better at capturing the timing of peak NPP and EC-Earth3-CC is closer in annual

average NPP in most provinces. The multi-decadal variability is smaller in NorESM2-LM than in EC-Earth3-CC. The CAFE

data seem to show larger interannual variability than both ESMs though this is difficult to determine given the relatively

short (2003-2021) satellite record.
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The ESM data show that shifts in the seasonal cycle occur mainly during the 21st century with reduced NPP as well as a

peak NPP occurring earlier in the year for most of the biogeochemical provinces. The largest change towards an earlier day

of peak NPP occurs in the northern parts for both ESMs. In EC-Earth3-CC the largest change occurs in the biogeochemical

province BPLR and in NorESM2-LM in the arctic province ARCT. Moreover, the changes in the day of peak NPP are far

outside the range of the natural variability diagnosed from the PI-control run in large parts of the domain. For future work it

would be very interesting to see what a similar change point analysis would reveal in low and moderate emission scenarios.

For all provinces, the change points occur earlier in EC-Earth3-CC than in NorESM2-LM.

Cross correlation analysis showed significant correlation between the day of MLD shallower than 40 m and the day of peak

NPP in most regions. The peak correlation occurs at zero lag, but correlations are significant at many both positive and

negative lags. The large range of correlated lags we ascribe to forced and unforced low frequency variability affecting both

parameters.

Our results point to phenological shifts occurring in the early 21st century in the vertically integrated NPP in different parts of

the North Atlantic (25-65oN). Shifts in the phenology may have an impact on fishery yields through the mismatch of fish

spawning and available resources. Furthermore, carbon sequestration in this highly productive region may be affected by

changes in ecosystem structure in turn affecting the export production and the general efficiency of the biological pump. 

Code availability: The EC-Earth3 code is available from the EC-Earth development portal for members of the consortium.

All code related to CMIP6 forcing is implemented in the component models. Model codes developed at ECMWF, including

the atmosphere model IFS, are intellectual property of ECMWF and its member states. Permission to access the EC-Earth3

source code can be requested from the EC-Earth community via the EC-Earth website (http://www.ec-earth.org/, EC-Earth

consortium,  2019a)  and  may  be  granted  if  a  corresponding  software  license  agreement  is  signed  with  ECMWF.  The

repository tag for the version of EC-Earth that is used in this work is 3.3.1. Currently, only European users can be granted

access due to license limitations of the atmosphere model. The component models NEMO, LPJ-GUESS, TM5, and PISM are

not limited by their licenses.
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The NorESM code can be accessed via zenodo: Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff,

L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Gao,

S., Griesfeller,  J.,  Grini, A., Guo, C., Ilicak, M., Karset,  I. H. H.,  Landgren, O., Liakka, J.,  Moree, A., Moseid, K. O.,

Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NorESM2 source code as used

for  CMIP6  simulations  (includes  additional  experimental  setups,  extended  model  documentation,  automated  inputdata

download, restructuring of BLOM/iHAMOCC input data), Zenodo [code], https://doi.org/10.5281/zenodo.3905091, 2020.
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Figure 1: Study area and Longhurst provinces. BPLR: Boreal polar, ARCT: Atlantic arctic, SARC: Atlantic subarctic, NADR:

North Atlantic drift, GFST: Gulf stream, NASW: North west Atlantic subtropical gyre, NASE: North east Atlantic subtropical

gyre, NWCS North west Atlantic shelf.
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Figure 2: Seasonal mean vertically integrated NPP from the CAFE model (upper), EC-Earth3-CC (middle) and NorESM2-LM

(bottom). The ESM data was masked by the maximum latitude present in the CAFE data to account for the smaller area seen by

satellites in winter. This only affects the SON values which is biased towards September-October (Fig. S1).
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Figure 3: Seasonal cycle of vertically integrated NPP for CAFE, EC-Earth3-CC and NorESM2-LM averaged over 30-60 oN. The
model data was masked by the maximum latitude present in the CAFE data to account for the smaller winter domain visible by

satellites. A multi-year (2003-2021) average is shown.
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CAFE EC-Earth3-CC NorESM2-LM

Province
Mean  NPP

[mgC/m2/day]

Day  of  peak

NPP

Mean  NPP

[mgC/m2/day]

Day  of  peak

NPP

Mean  NPP

[mgC/m2/day]

Day  of  peak

NPP

BPLR 405 155 161 166 141 159

ARCT 470 179 321 152 160 161

SARC 525 171 442 150 210 176

NADR 472 163 332 124 203 172

NWCS 477 122 396 100 239 186

GFST 441 130 608 126 276 148

NASW 358 114 442 112 238 116

NASE 41 122 273 83 326 138

Table 1. Mean NPP and mean Day of peak NPP over the time period 2003-2021. The ESM data was masked to the

real valued CAFE data. 
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Figure 4: Time-series of annual mean vertically integrated NPP for  the different biogeochemical provinces for EC-Earth3-CC
(blue), NorESM2-LM (orange) and CAFE (green). 
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EC-Earth3-CC

2070  to  2099  mean  minus  1850  to
1889 mean

NorESM2-LM

2070 to 2099 mean minus 1850 to 1889
mean

Province NPP Day of peak NPP NPP Day of peak NPP

BPLR 79.4 -68.2 24.7 -12.09

ARCT 125 -25.8 15.4 -20.8

SARC 48.6 -8.84 -2.25 -18.0

NADR -24.1 -7.71 -3.19 -10.1

NWCS 42.8 -12.7 12.2 -1.40

GFST 20.4 -5.73 28.0 13.3

NASW 47.4 -5.13 -14.1 -1.28

NASE -86.6 27.0 -59.8 -12.8

Table 2. Mean NPP over the period 2070-2099 minus mean NPP over the period 1850-1889 together with the difference in the day

of peak NPP for the same periods.
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Figure 5: Mean day of peak NPP for NorESM2-LM (left) and EC-Earth3-CC (right) over the years 1850-1879 (top). The second 
panels show the mean over 1985-2014 minus the 1850-1879 mean. The third panels shows  the mean over 2070-2099 minus the
1850-1879 mean (bottom). The bottom panels show the results from the third panels normalised by the yearly standard deviation
of the day of peak NPP in the respective PI-control simulations, giving a view of how large the changes are compared to unforced
variability.
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Figure 6: Day of peak NPP per region for EC-Earth3-CC (blue) and NorESM2-LM (orange). The major change points (calculated
with a kernel based cost function) in the time-series are marked by the vertical lines. The largest change point is marked by solid
lines and the two largest are marked with dashed lines. The centre of the circles represents the largest change point in the time
series  that  corresponds  to  a change  in the  mean (  L2) while  the centre of  the triangles  represents  the  largest  change point
corresponding  to  a  change  in  the  median  (  L1).
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.Figure 7: First day of the year when the mixed layer is 40m or less for EC-Earth3-CC (blue) and NorESM2-LM (orange). The
major change points (calculated with a kernel based cost function) in the time-series are marked by the vertical lines. The largest
change point is marked by solid lines and the two largest are marked with dashed lines. The centre of the circles represents the
largest change point in the time series that corresponds to a change in the mean ( L2) while the centre of the triangles represents
the largest change point corresponding to a change in the median ( L1)
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EC-Earth3-CC
Largest Change point [year]

NorESM2-LM
Largest Change point [year]

Province
Day  of  peak

NPP
Day of MLD <40m

Day  of  peak

NPP

Day  of  MLD

<40m

BPLR 2002 2001 2032 2031

ARCT 2002 2001 2050 2025

SARC 2036 2033 2049 2040

NADR 2017 2038 2061 2025

NWCS 2004 2056 2065 2092

GFST 2025 1997 2061 2069

NASW 1900 2067 2010 2031

NASE 2066 2064 2082 2028

Table 3. The table shows the largest change points of the day of peak NPP and the day of MLD<40m time series.
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Figure 8: Year of change point of the day of maximum primary production for all grid spaces. The change point algorithm is here

set to look for only one change point.
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Figure 9: Cross correlation between the day of peak NPP and the first day of mixed layer depth (MLD) shallower than or equal to

40m. Negative lag means that the day of peak NPP proceeds the first day of MLD shallower than 40m, while the opposite holds for

positive lag. The horizontal blue lines mark the 95% confidence bounds.
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