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Abstract. Arctic terrestrial greenhouse gas (GHG) fluxes
of carbon dioxide (CO2), methane (CH4), and nitrous ox-
ide (N2O) play an important role in the global GHG bud-
get. However, these GHG fluxes are rarely studied simul-
taneously, and our understanding of the conditions control-5

ling them across spatial gradients is limited. Here, we ex-
plore the magnitudes and drivers of GHG fluxes across fine-
scale terrestrial gradients during the peak growing season
(July) in sub-Arctic Finland. We measured chamber-derived
GHG fluxes and soil temperature, soil moisture, soil organic10

carbon and nitrogen stocks, soil pH, soil carbon-to-nitrogen
(C/N) ratio, soil dissolved organic carbon content, vascular
plant biomass, and vegetation type from 101 plots scattered
across a heterogeneous tundra landscape (5 km2). We used
these field data together with high-resolution remote sens-15

ing data to develop machine learning models for predicting
(i.e., upscaling) daytime GHG fluxes across the landscape at
2 m resolution. Our results show that this region was on aver-
age a daytime net GHG sink during the growing season. Al-

though our results suggest that this sink was driven by CO2 20

uptake, it also revealed small but widespread CH4 uptake in
upland vegetation types, almost surpassing the high wetland
CH4 emissions at the landscape scale. Average N2O fluxes
were negligible. CO2 fluxes were controlled primarily by an-
nual average soil temperature and biomass (both increase net 25

sink) and vegetation type, CH4 fluxes by soil moisture (in-
creases net emissions) and vegetation type, and N2O fluxes
by soil C/N (lower C/N increases net source). These results
demonstrate the potential of high spatial resolution modeling
of GHG fluxes in the Arctic. They also reveal the dominant 30

role of CO2 fluxes across the tundra landscape but suggest
that CH4 uptake in dry upland soils might play a significant
role in the regional GHG budget.
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1 Introduction

Over the past millennia, Arctic soils in the treeless tundra
biome have played an important role in the global climate
system by accumulating large amounts of carbon (C) and ni-
trogen (N), thus cooling the climate (Hugelius et al., 2014,5

2020; Strauss et al., 2017). However, the ongoing climate
warming is changing the C and N cycles, leading to poten-
tially increased net greenhouse gas (GHG) emissions from
Arctic ecosystems to the atmosphere (Belshe et al., 2013;
McGuire et al., 2012; Masyagina and Menyailo, 2020). Yet,10

even the current GHG balance of Arctic ecosystems is insuf-
ficiently understood due to severe gaps in flux measurement
networks and poorly performing coarse-resolution models
(Virkkala et al., 2021; Treat et al., 2018c). Thus, the contribu-
tion of Arctic regions to the global climate feedback remains15

uncertain.
One of the main uncertainties in understanding the Arctic

GHG balance is related to the inadequately quantified magni-
tudes of all three main GHG fluxes – carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O) – which show pro-20

nounced spatial variability across the diverse terrestrial envi-
ronmental gradients in tundra (Virkkala et al., 2018; Pallandt
et al., 2021; Voigt et al., 2020). In most tundra ecosystems,
CO2 fluxes are the largest flux driving the GHG balance due
to the strong growing season photosynthetic activity and rel-25

atively high non-growing season respiratory CO2 losses (Na-
tali et al., 2019; Euskirchen et al., 2012; Heiskanen et al.,
2021). However, growing evidence points to the importance
of CH4 and N2O fluxes, which are more potent GHGs than
CO2 (Voigt et al., 2017b). All three gases have distinct spa-30

tiotemporal dynamics (Emmerton et al., 2014; Bruhwiler et
al., 2021). However, only a few studies have simultaneously
considered the contributions of all three main GHG fluxes to
the tundra GHG balance (Voigt et al., 2017b; Kelsey et al.,
2016; Brummell et al., 2012; Wagner et al., 2019).35

The largest fine-scale differences in Arctic GHG fluxes oc-
cur in ecosystems with spatially varying soil moisture condi-
tions (McGuire et al., 2012). Broadly speaking, the Arctic
can be divided into wetlands and drier uplands (i.e., shrub-
lands, grasslands, and barren lands; see, e.g., Treat et al.,40

2018a; Virkkala et al., 2021). Wetlands cover between 5 %
and 25 % of the Arctic (Olefeldt et al., 2021; Kåresdotter et
al., 2021; Raynolds et al., 2019). They are hotspots for soil
C and N stocks and have the potential for high CH4 emis-
sions (Euskirchen et al., 2014; Hugelius et al., 2020); there-45

fore they have been intensively studied (Rinne et al., 2018;
Peltola et al., 2019; Turetsky et al., 2014). However, uplands
cover the largest part of the Arctic (75 % to 95 %) and can
have significant variability in environmental conditions and
GHG fluxes. These uplands have been relatively well studied50

for CO2 fluxes (Williams et al., 2006; Cahoon et al., 2012a).
Upland CH4 and N2O fluxes, on the other hand, remain less
well understood in terms of their magnitudes and drivers
(Virkkala et al., 2018; Voigt et al., 2020). There are still likely

some GHG flux hotspots to be discovered and coldspots to be 55

verified, particularly in the upland tundra ecosystems.
The Arctic tundra is characterized by fine-scale environ-

mental heterogeneity even within upland and wetland tun-
dra environments. Thus, local-scale study settings that cover
the main spatial environmental gradients are highly impor- 60

tant (Treat et al., 2018c; Davidson et al., 2017). Such fine-
scale variabilities are often measured with chambers, but
most chamber-based study designs are limited to relatively
small environmental gradients focusing on only a handful of
different land cover types and environmental variables, leav- 65

ing large gaps in our understanding of GHG flux hotspots
(Virkkala et al., 2018). In this study, using an extensive spa-
tial study design with chamber GHG flux measurements from
101 plots, we aim to understand the magnitudes and envi-
ronmental drivers of Arctic terrestrial CO2, CH4, and N2O 70

fluxes in a heterogeneous tundra landscape dominated by up-
land heaths. By combining in situ measurements and remote
sensing data, we investigate the fine-scale (2 m) spatial het-
erogeneity of GHG fluxes across the landscape and estimate
the contribution of the three gases to the total landscape-scale 75

GHG flux.

2 Materials and methods

2.1 Study area

The field measurements were collected during 2016–
2018 in a sub-Arctic tundra environment in Kilpisjärvi 80

(Gilbbesjávri in Northern Sámi language), northwestern Fin-
land (69.06◦ N, 20.81◦ E). The study area is located on
an elevational gradient between two fells, Saana (Sána;
1029 m a.s.l.) and Korkea-Jehkas (Jiehkkáš; 960 m a.s.l.), and
the valley in between (∼ 600 m a.s.l.). The study area is 85

above a mountain birch (Betula pubescens ssp. czerepanovii)
forest and is dominated by dwarf-shrub evergreen and de-
ciduous heaths. Dominant vascular plant species are, e.g.,
Empetrum nigrum ssp. hermaphroditum, Betula nana, Vac-
cinium myrtillus, Vaccinium vitis-idaea, and Phyllodoce 90

caerulea. Vegetation in the wetlands is dominated by species
common to fen wetlands, such as Eriophorum sp. or Carex
sp. Mesic meadows are rich in forbs and grasses, whereas
barren heaths accommodate mostly lichens (e.g., Cladonia
spp.) and mat-forming cushion plants (e.g., Diapensia lap- 95

ponica) with scattered patches of E. nigrum and B. nana.
Soils in the area are shallow (mean organic layer depth
6.6 cm, mean mineral layer depth 13.0 cm), and permafrost
is absent from soils but can be found in the bedrock above
800 m a.s.l. (King and Seppälä, 1987). The environment is 100

relatively undisturbed but experiences reindeer (Rangifer
tarandus tarandus) grazing. The mean annual temperature
in Saana fell (1002 m a.s.l.) is −3.1 ◦C, and the annual pre-
cipitation in Kilpisjärvi village ca. 5 km from the study site
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(480 m a.s.l.) is 518 mm in 1991–2018 (Finnish Meteorolog-
ical Institute, 2019a, b).

Our study design covered an area of ca. 3× 1.5 km and
consisted of 101 plots with GHG flux measurements and
their supporting environmental data (Fig. 1). To produce con-5

tinuous maps of soil temperature, moisture, vegetation type,
biomass, soil C/N, and soil organic carbon stock, we uti-
lized an extended dataset where some of the variables were
measured from 50 plots while others from more than 6000
plotsTS1 (Table S1 in the Supplement). We selected the plots10

based on a combination of stratified sampling and systematic
grid approaches, and the plots contain a variety of environ-
mental gradients and habitats as well as the transition zones
between them (Kemppinen et al., 2021). We recorded the
locations of the plots using a hand-held Global Navigation15

Satellite System receiver with an accuracy of up to ≤ 6 cm
under optimal conditions (GeoExplorer GeoXH 6000 Series;
Trimble Inc., Sunnyvale, CA, USA).

2.2 Data

We measured GHG fluxes from 101 plots during the peak20

growing season (from now on, growing season). Environ-
mental conditions explaining these GHG fluxes were mea-
sured at each plot. Most environmental variables had near-
complete spatial coverage; missing data were filled using the
environmental predictions (see Sect. 2.3.2, Table S1). We25

used additional in situ environmental data to upscale and vi-
sualize environmental conditions across the entire landscape
(see Fig. 2): continuous soil moisture loggers (50 plots), con-
tinuous soil temperature loggers (250), soil samples for car-
bon and nitrogen stock and C/N estimation (168), and vege-30

tation classification data (6524).TS3 The full set of variables
at a plot consisted of the plot for GHG flux measurements,
and of a nearby complementing plot (max. 2 m distance)
where we monitored soil moisture and temperature continu-
ously and did a vegetation classification. The additional plot35

was separated from the GHG plot to avoid disturbance of the
continuous recordings. The additional plot was carefully sit-
uated to similar vegetation and microtopographic conditions
as the GHG plot. Soil samples were collected as close as pos-
sible to the GHG plot.40

2.2.1 Chamber measurements

We measured GHG exchange using a static, non-steady-
state non-flow-through system (Livingston and Hutching-
son, 1995) composed of an acrylic chamber (20 cm diameter,
25 cm height). The chamber was placed on top of a collar and45

ventilated before each measurement. Prior to the measure-
ments, we installed steel collars, which were 21 cm in diam-
eter and 6–7 cm in height. Each collar was visited once dur-
ing the growing season, and measurements were conducted
between 10:00 and 17:00 EET. Although we did not have any50

temporal replicates, the spatial variation in our plots covered

most of the temperature variation during the growing season.
For more details, see Sect. S1.

For CO2 flux measurements, transparent and opaque
chamber measurements were conducted during 1 and 55

27 July 2018. The chamber included a small fan, a CO2
probe GMP343, and an air humidity and temperature probe
HMP75 (Vaisala, Finland). In the chamber, CO2 concentra-
tion, air temperature, and relative air humidity were recorded
at 5 s intervals for 90 s. Photosynthetically active radiation 60

was logged manually outside the chamber at 10 s intervals
during the same period using a MQ-200 quantum sensor with
a hand-held meter (Apogee Instruments, Inc, USA). MQ-
200 measures photosynthetic photon flux density (PPFD) at
a spectral range from 410 to 655 nm in µmol m−2 s−1. For 65

more details of the equipment, see Happonen et al. (2022).
We progressively decreased the light intensity of net

ecosystem exchange (NEE) measurements from ambient
conditions to ca. 80 %, 50 % and 30 % PPFD by shading
the chamber with layers of white mosquito net (replicate 70

measurements per collar= 5–9). Ecosystem respiration (ER)
was measured in dark conditions (0 PPFD), which were ob-
tained by covering the chamber with a space blanket (repli-
cates= 2–3). Before flux calculations, we discarded the first
0–5 s as well as the last 5 s of the measurements to remove 75

potentially disturbed observations. Fluxes were calculated
from the concentration change within the chamber headspace
over time using linear regression (for performance statistics
see Sect. S2).

We standardized NEE, gross primary productivity (GPP), 80

and ER measurements conducted at different light and tem-
perature conditions to allow across-plot comparison of the
fluxes. We fitted light-response curves using a non-linear hi-
erarchical Bayesian model with the plot as a random effect
(Sect. S5). We used the Michaelis–Menten equation to model 85

instantaneous NEE with plot-specific ER, maximum pho-
tosynthetic rate (GPPmax), and the half-saturation constant
(K) as parameters using the same formula as in Williams et
al. (2006) and Cahoon et al. (2012b). ER also had an expo-
nential air temperature (T ) response (for more details, see 90

Happonen et al., 2022). We used this model to predict NEE
at dark (0 PPFD, i.e., ER) and average light (600 PPFD) con-
ditions and an air temperature of 20 ◦C at each plot; 20 ◦C
was chosen as it represents a typical air temperature inside
the chamber during flux measurements and 600 PPFD be- 95

cause it is widely used in tundra literature (Dagg and Lafleur,
2011; Shaver et al., 2007). We then subtracted ER from the
NEE normalized to average light conditions to arrive at an es-
timate of normalized GPP. Negative values in NEE indicate a
net sink of CO2 from the atmosphere to the ecosystems. GPP 100

and ER are given as positive values.
We measured CH4 and N2O fluxes with an opaque cham-

ber (0 PPFD). Measurements were conducted during 2 July
and 2 August 2018. Five gas samples were taken within
a 50 min enclosure time and transferred into 12 mL vials 105

(Labco Exetainer, Labco Ltd.). The vials were pre-evacuated

avirkkala
Sticky Note
I apologize for not noticing this earlier, but could you change the (250) here to (139) instead?

I will explain this change to the editor too.

 

viola.zierenberg
Replace
139

viola.zierenberg
Cross-Out

viola.zierenberg
Replace
5000

viola.zierenberg
Cross-Out

viola.zierenberg
Replace
5413

viola.zierenberg
Cross-Out



4 A.-M. Virkkala et al.: Spatial patterns in Arctic terrestrial greenhouse gas fluxes

Figure 1. The distribution of the main vegetation types across the Arctic tundra (Dinerstein et al., 2017; European Space Agency, 2017)
and the location of our study area (a), the distribution of plots (b) and environmental conditions derived from statistical upscaling of in
situ measurements (see Sect. 2.3.2) across the study area (c). Soil moisture and temperature represent mean daytime (08:00 to 20:00 EET)
conditions from 1 July to 2 August, and annual soil temperature is an average within the entire year (July 2017–June 2018). Other variables
represent growing season conditions and are considered static in this study. The aerial image is produced by the National Land Survey of
Finland (2016).TS2

in the laboratory and filled with 25 mL of the sample in the
field. Gas samples were analyzed at the University of East-
ern Finland with a gas chromatograph (Agilent 7890B; Agi-
lent Technologies, Santa Clara, CA, USA), equipped with an
autosampler (Gilson Inc., Middleton, WI, USA), with ther-5

mal conductivity detector (TCD) for CO2, flame ionization
detector (FID) for CH4, and an electron capture detector

(ECD) for N2O. We calculated gas concentrations from sam-
ple peak areas relative to those derived from gas standards
with known GHG concentrations (CO2: seven concentration 10

levels ranging from 0–10 000 ppm; CH4: seven concentration
levels ranging from 0–100 ppm; N2O: five concentration lev-
els ranging from 0–5000 ppb). Fluxes were calculated from
the concentration change within the chamber headspace over
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time using linear regression. Quality control was based on vi-
sual inspection and RMSE. We also verified that the RMSE
was less than 3 · standard deviation of gas standards in a sim-
ilar concentration range. Negative values in these fluxes rep-
resent net CH4 and N2O sinks from the atmosphere to the5

ecosystems.

2.2.2 Soil temperature and moisture data

Soil moisture and soil temperature were measured simul-
taneously during the flux measurements. We measured soil
moisture with a time-domain reflectometry sensor (Field-10

Scout TDR 300; Spectrum Technologies Inc., Plainfield, IL,
USA; 0 to 7.5 cm depth). Soil temperature measurements
conducted at the same time as CO2 flux measurements were
taken with a thermometer (TD 11 thermometer; VWR Inter-
national bvba; Leuven, Germany; 6.0 to 7.5 cm depth). Soil15

temperature measurements (TM-80N measure and ATT-50
sensor) conducted at the same time as CH4 and N2O flux
measurements were taken with a thermometer in the upper-
most 10 cm. We refer to these variables as soil moisture and
soil temperature throughout the text.20

Temperature loggers (Thermochron iButton DS1921G and
DS1922L, San Jose, CA, USA, and TMS-4; TOMST s.r.o.,
Prague, Czech Republic) monitored temperatures at 7.5 and
6.5 cm (iButton and TMS-4, respectively) below ground at
0.25–4 h intervals (Sect. S3). We calculated a variable de-25

scribing average soil temperature conditions during the pre-
vious 12 months by averaging the measurements from the
study design (n= 138) from July 2017 to June 2018. We re-
fer to this variable as annual soil temperature. In addition to
temperature, the TMS-4 loggers also monitored soil moisture30

(raw time-domain transmission data between 1 and 4095)
to a depth of ca. 14 cm (Wild et al., 2019). The raw time-
domain transmission data were transformed into volumetric
water content (VWC%) (Tyystjärvi et al., 2022).

These continuous soil moisture and temperature data were35

used to upscale soil microclimatic conditions at 2 h time steps
during daytime (08:00 to 20:00) and from 1 July to 2 August.
This period was chosen because the GHG fluxes were mea-
sured during this period, and we did not want to extrapolate
outside our main measurement campaign. Moreover, this pe-40

riod represents the peak growing season of this region.

2.2.3 Vegetation data

We took images from CH4 and N2O collars on the mea-
surement day and used them to classify the dominant veg-
etation to five distinct classes, following the Circumpolar45

Arctic Vegetation Map physiognomic classification system
(Walker et al., 2005) with minor modifications (Fig. 1). We
used the following classes: barren (< 10 % vegetation cover),
evergreen shrub, deciduous shrub, meadow (graminoids and
forbs), and wetlands. The sample sizes were not even be-50

tween vegetation types; rather they roughly represent the spa-

tial coverage of each vegetation type (8 observations of bar-
ren, 38 of evergreen shrub, 14 of deciduous shrub, 26 of
meadow, and 15 of wetland). We utilized a larger dataset
of 6524TS4 vegetation descriptions in total estimated in the 55

field and from aerial imagery from the study design to create
the vegetation type map (for more details, see Sect. S4.1).
We collected biomass samples from above-ground vascular
plants using the clip-harvest method during late peak sea-
son, between 17 July and 10 August. Samples were collected 60

within the chamber collars and were oven-dried at 70 ◦C for
48 h and weighed after drying. We refer to this variable as
biomass (g dry weight m−2).

2.2.4 Soil sampling and analyses

We measured the thickness of the organic and mineral soil 65

layers using a metal probe reaching up to 80 cm depth. We
collected soil samples (ca. 1 dL) from the organic and min-
eral layers using metal soil core cylinders (4–6 cm Ø, 5–7 cm
height) during August in 2016–2018. The organic samples
were collected from the top soil and mineral samples di- 70

rectly below the organic layer, which was on average 6.6 cm
deep. Large roots were excluded from the samples. The soil
samples were freeze-dried and analyzed in the Laboratory of
Geosciences and Geography and Laboratory of Forest Sci-
ences (University of Helsinki). Bulk density (kg m−3) was 75

estimated by dividing the dry weight by the sample volume.
Soil organic layer pH was analyzed following ISO standard
10390. Total carbon and nitrogen content (C%, N%) analyses
were done using Vario Elementar Micro cube and Vario Ele-
mentar Max analyzer (Elementar Analysensysteme GmbH, 80

Germany). Prior to CN% analysis, mineral samples were
sieved through a 2 mm plastic sieve. Organic samples were
homogenized by hammering the material into smaller pieces.

Soils in this landscape are acidic and likely have a mini-
mal amount of carbonates; consequently, we assumed C% to 85

equal organic C%. Soil organic carbon and nitrogen stocks
were calculated for the entire soil horizon up to 80 cm (in
95 % of plots soil depth was less than that). Some plots
lacked CN% data (30 % of the plots), and therefore we
used soil organic matter content estimated with the loss-on- 90

ignition method according to SFS (1990)TS5 to derive C%.
We utilized a similar stock calculation framework using the
bulk density, layer depth, and C% and N% data as in Kemp-
pinen et al. (2021) except we used average bulk density and
mineral C% estimates in each vegetation type in case that 95

information was missing in stock calculation.
Soil samples for dissolved organic carbon concentration

analyses in dry soil were collected between the 5 and
14 July 2018. After the collection, samples were stored at
4 ◦C and then dried at 60 ◦C for at least 5 d. Extraction of 100

dissolved organic carbon was done using pure water extrac-
tions with 0.5 to 3 g of dried soil added to 40 mL of water fol-
lowing the WEOC protocol from Hensgens et al. (2021). Ex-
tracts were immediately filtered (0.7 µm) using glass fiber fil-
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ters, diluted, acidified to remove inorganic carbon, and mea-
sured on a Shimadzu TOC V-CPN analyzer set on the non-
purgeable organic carbon mode. We refer to this variable as
dissolved organic carbon.

2.2.5 Remotely sensed data5

Remotely sensed optical and light detection and ranging-
based (lidar) data describing topographic, vegetation, snow,
and surficial deposit conditions were used for upscaling the
in situ measured environmental variables (Fig. 2, Sect. S4
and Fig. S1 in the Supplement).10

2.3 Statistical analyses

We investigated the dependencies of GPP, ER, NEE, CH4
flux, and N2O flux on environmental variables using statisti-
cal analyses which included analysis of variance (ANOVA)
and machine learning modeling and prediction. We devel-15

oped machine learning models, in which we (1) upscaled en-
vironmental data (annual soil temperature, soil temperature,
soil moisture, soil C/N, soil organic carbon stock, vegetation
type, biomass) using remotely sensed variables as predictors;
(2) modeled GHG fluxes using the environmental data as pre-20

dictors, and (3) upscaled GHG fluxes using the upscaled en-
vironmental data maps at a 2 m spatial resolution across the
landscape (Fig. 2). This two-step upscaling approach enabled
us to focus on the relationships between GHG fluxes with
their physical and ecological, in situ measured environmental25

controls instead of the remotely sensed data that are proxies
by nature. We ran all analyses in the R statistical program-
ming environment (R Core Team, 2020; version 4.0.3). We
used the ArcGIS Pro 3.0.3 software to visualize spatial data
(ESRI, 2022).30

2.3.1 Analysis of variance (ANOVA)

We used one-way ANOVAs to test for vegetation type
differences in environmental conditions and GHG fluxes,
and we tested significance using multiple comparisons with
Tukey’s honest significant difference test (p < 0.05). CH435

flux, soil moisture, soil organic carbon and nitrogen stock,
and biomass were not normally distributed. Thus we used
Kruskal–Wallis test instead of ANOVA.

2.3.2 Machine learning models

We modeled our response variables using three machine-40

learning methods (generalized boosted regression models,
GBM; random forest, RF; and support vector machine re-
gression, SVM), all of which have been widely used in flux
upscaling studies (see, e.g., Natali et al., 2019; Peltola et
al., 2019; Tramontana et al., 2016). These three approaches45

are non-parametric and can handle linear and non-linear re-
lationships and different data distributions. We chose RFs
and GBMs because they utilize several decision trees in an

ensemble model framework and thus avoid overfitting, have
high accuracy, are highly adaptable, and are not significantly 50

impacted by outliers. We chose SVMs because they are good
at generalizing the relationships in the data. Based on these
models, we visualized the partial dependence plots charac-
terizing the relationships between the response and predictor
variables while accounting for the average effect of the other 55

predictors in the model using the pdp package (Greenwell,
2017). Further, we calculated variable importance using the
vip package (Greenwell and Boehmke, 2020). Variable im-
portance scores were estimated by randomly permuting the
values of the predictor in the training data and exploring how 60

this influenced model performance based on the adjusted R2

values, with the idea that random permutation would de-
crease model performance (Breiman, 2001). We used 100
simulations to calculate 100 importance scores which were
averaged. A standard deviation across these scores was used 65

as an uncertainty estimate, together with the differences in
average importance across models. For more details, see
Sect. S5.

We used 10 topography, snow, vegetation, and surficial
deposits variables to construct landscape-wide predictors 70

matching the in situ environmental conditions that we used to
model the GHG flux values. These variables were the follow-
ing: elevation, topographic wetness index, topographic posi-
tion index at 5 and 30 m radii, aspect, slope, potential incom-
ing solar radiation, normalized difference vegetation index, 75

snow cover duration, and surface deposits. Soil organic car-
bon stocks, soil C/N, biomass, and annual soil temperature
models were calibrated only once, and a single prediction
was made to the landscape. Soil temperatures and moisture
vary throughout the growing season; thus, we calibrated each 80

model at each time step and created 231 predictions over the
study period (every 2 h between 08:00 and 20:00 from 1 July
until 2 August). For each variable, an ensemble prediction
was produced by calculating a median prediction over the
three predictions from the different modeling methods. 85

We examined the relationship between the five primary
response variables (GPP, ER, NEE, CH4 flux, N2O flux)
and environmental predictors that describe (i) soil resources
and conditions (soil moisture, soil C/N, soil pH), which
are relevant to, for example, the growth of organisms (No- 90

brega and Grogan, 2008; Happonen et al., 2022); (ii) soil
C and N stocks and dissolved organic carbon, which are
one of the main sources for the GHG emissions (Bradley-
Cook and Virginia, 2018); (iii) soil temperatures, which reg-
ulate enzymatic processes (St Pierre et al., 2019; Mauritz 95

et al., 2017); and (iv) biomass and vegetation type, which
describe resource-use strategies, carbon inputs to soils and
plant photosynthetic capacity and integrate multiple environ-
mental properties into one variable (Magnani et al., 2022).
We excluded soil pH and soil nitrogen stock from model- 100

ing analyses due to high correlations (Pearson’s r > 0.7) with
soil moisture and soil organic carbon stock, respectively. Fur-
ther, dissolved organic carbon was excluded due to its low
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Figure 2. The upscaling framework used in this study. We first linked GHG fluxes to the in situ environmental drivers using machine learning
models. Then we trained three machine learning models to upscale environmental conditions across the landscape using remote sensing data.
Then we used the GHG flux models and environmental predictions to upscale GHG fluxes across the landscape throughout the entire growing
season.

importance in all the models. We did not use air temperature
as a predictor as we already controlled for it in CO2 fluxes
in the light-response model, and we assumed that soil mi-
crobes regulating CH4 and N2O cycling are most importantly
driven by soil temperatures (Kuhn et al., 2021). The final pre-5

dictors for our models were soil moisture, soil temperature,
annual soil temperature, soil organic carbon stock, soil C/N,
biomass, and vegetation type. The machine learning param-
eters tuned for each model can be found from Sect. S5.

We used the machine learning models to predict GHG10

fluxes across the landscape for each 2 h time step from 1 July
until 2 AugustTS6 . Similar to the environmental predictions,
an ensemble prediction was produced by calculating a me-
dian prediction over the three predictions from the different
modeling methods. As our focus was on understanding the15

spatial patterns in the mean growing season fluxes, we aver-
aged GHG flux predictions over the study period. However,
a visualization of the predicted mean daily patterns in soil
moisture and temperatures and the consequent GHG fluxes
is provided in the Supplement (Fig. S2).20

To compare the magnitude of all three important GHGs,
namely CO2, CH4, and N2O, we calculated the radiative
forcing strength of the three GHGs over a 100-year period
from our measurements and ensemble predictions. We used
the global warming potential (GWP; 27 for CH4 and 273 for25

N2O, IPCC, 2021) and sustained GWP (45 for CH4 and 270
for N2O, Neubauer and Megonigal, 2015), which are, to our
knowledge, the best and most widely used approaches that
exist to compare flux magnitudes. We acknowledge that these
approaches are designed to quantify an effect of a change in30

emission to the radiative forcing and are thus not fully suit-
able to be used to quantify the climatic effect of natural con-

tinuous fluxes in our study (Mathijssen et al., 2022; Frolking
et al., 2006).

For all of our models, we used a leave-one-plot-out cross- 35

validation scheme in which each plot was iteratively left out
from the dataset, and the remaining data were used to pre-
dict fluxes for the excluded plot to assess the predictive per-
formance of the models (Bodesheim et al., 2018). Estimates
of bias were calculated as an average of the absolute er- 40

ror (MAE) between prediction and actual observation. Co-
efficient of determination (R2) was used to determine the
strength of the linear relationship between the observed and
predicted fluxes.

The root mean squared error (RMSE) was used to estimate 45

the model error. The same evaluation metrics were also cal-
culated based on the prediction to the full model training data
to represent model fit (Virkkala et al., 2021); see Table S3,
which presents these for the individual models. Uncertainty
in GHG flux predictions was derived by bootstrapping (frac- 50

tional resampling with replacement based on vegetation type
classes). We subset the model training data into 30 differ-
ent datasets, all of which had the same number of observa-
tions as the original data itself. These 30 datasets were then
used to produce 30 individual predictions for a subset of the 55

times with all three machine learning models and their en-
semble for each response variable (Sect. S5). The uncertainty
estimates represent how different distributions of the input
data as well as model parameters influence the upscaled flux
maps. 60

viola.zierenberg
Sticky Note
n=5413

viola.zierenberg
Sticky Note
This range of numbers shows the minimum and maximum number of plots for all the variables. Now the largest number of plots that were used across those here should actually be 168 (that is for soil organic carbon stock data). So if you can change this from 50-250 to 50-168, that would be great. 
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3 Results

3.1 Environmental conditions and GHG fluxes across
vegetation types

We observed large variability in GHG fluxes and environ-
mental conditions within and across vegetation types (Fig. 3,5

Table S2). The variability within the vegetation types differed
depending on the flux and environmental variable considered
(e.g., meadow class had large variability in GPP and ever-
green shrub class in soil C/N). Frequently, wetlands differed
clearly from the other vegetation types. While wetlands had10

high CH4 emissions, all the other vegetation types with sig-
nificantly lower soil moisture showed CH4 uptake. Meadows
were a significantly larger net CO2 sink than evergreen shrub
sites, while other vegetation types had intermediate NEE val-
ues. The N2O fluxes were low from all vegetation types and15

varied between small sinks and small sources.

3.2 The performance of environmental and greenhouse
gas flux models

The predictive performance of the ensemble environmental
variable models was rather high but varied depending on20

the variable (R2: 0.09–0.71; Fig. S3). The predictive per-
formance of the GHG models was for most variables lower
(R2: 0.00–0.52), with N2O flux models being close to ran-
dom and GPP models performing the best (Fig. 4). Model
fit was significantly higher than predictive performance for25

all the fluxes (Table S3). The scatterplots of observed and
cross-validation-based predicted GHG fluxes suggest that the
highest flux estimates are often predicted most poorly, but
the mean fluxes in each vegetation type were predicted accu-
rately, as expected.30

3.3 Drivers of greenhouse gas fluxes

The most important controlling variables and the response
shapes differed depending on the GHG flux (Figs. 5, 6 and
S4) and sometimes also depending on the machine learning
model type applied. CO2 fluxes were driven by annual av-35

erage soil temperature, biomass, and vegetation type. In ad-
dition, soil organic carbon stocks were an important predic-
tor for ER. Soil moisture and vegetation type were the most
important predictors for CH4 fluxes, and soil C/N and soil
moisture for N2O fluxes. In general, warmer and wetter con-40

ditions increased net emissions of CH4 and N2O and net up-
take of CO2. Some fluxes were further positively correlated
with soil organic carbon stocks (ER, CH4 flux) and nega-
tively with soil C/N (GPP, ER, N2O). The importance for
variables explaining the N2O flux is low because the model45

predictive performance is close to random.

3.4 Spatial patterns and contributions in greenhouse
gas flux predictions

The model predictions show large spatial variability in GHG
fluxes across the landscape (Figs. 7, S5). Net CO2 uptake as 50

well as GPP and ER were highest in the warm and produc-
tive meadow locations of the valley, whereas CH4 and N2O
fluxes were highest in the eastern parts of the landscape that
is dominated by wetlands. The prediction suggests small but
widespread net CH4 uptake across the entire upland region. 55

CO2 was the most important flux contributing to the net GHG
sink (Fig. 8). Mean fluxes calculated based on the upscaled
flux maps differ from the in situ based ones, particularly for
wetland CH4 emissions (Figs. 8, S6).

4 Discussion 60

4.1 CO2 fluxes driven by both biotic and abiotic
variables

Our results show the importance of several environmental
variables for CO2 fluxes, demonstrating the strong depen-
dence of GPP and ER on a wide range of soil microclima- 65

tological, hydrological, soil biogeochemical, and ecological
processes (Sørensen et al., 2019; Dagg and Lafleur, 2011;
Nobrega and Grogan, 2008; Cahoon et al., 2016). Overall,
the relationships with environmental conditions and GPP and
ER were rather similar. Biomass was a more important pre- 70

dictor than vegetation type for all the CO2 fluxes, indicat-
ing that the quantity of plant material producing and emit-
ting carbon was potentially more important than the different
types of plants associated with CO2 cycling in this study set-
ting (Happonen et al., 2022). The high importance of plant- 75

related variables (e.g., leaf area index) as drivers of spatial
variability in CO2 fluxes has been previously found in other
tundra landscapes (Marushchak et al., 2013, and references
therein).

Our models also show that annual soil temperatures have 80

a different and stronger relationship with CO2 fluxes than
instantaneous growing season soil temperatures, and these
two soil temperature variables are indeed not strongly cor-
related with each other in this study design. This is because
annual soil temperatures are driven by winter soil tempera- 85

tures, which increase with thicker snow cover that is found
particularly in the valley and in microtopographic depres-
sions, which are colder in the summer. Moreover, annual
soil temperatures integrate many other environmental condi-
tions from the entire year: they reflect growing season length 90

and temperature conditions, regulate C and N availability,
and control vegetation and microbial community composi-
tion and functioning over long timescales. These conditions
have been shown to be important drivers of CO2 fluxes across
a range of Arctic sites (Zona et al., 2022; Lund et al., 2010). 95

Similar to these previous studies, we observed that plots with
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Figure 3. The vegetation types considered in this study (a), the distribution of GHG fluxes (b), and environmental conditions (c) across the
vegetation types. Lines represent Tukey’s test results (∗=p ≤ 0.05, ∗∗=p ≤ 0.01, ∗∗∗=p ≤ 0.001). The box corresponds to the 25th and
75th percentiles, and the line within the box represents the median. The lines denote the 1.5 IQR of the lower and higher quartile, where IQR
is the inter-quartile range, or distance between the first and third quartiles.

Figure 4. The correlation between observed and predicted values based on the ensemble model predictions (i.e., median of the three machine
learning model outputs). Model predictive performance is described with mean absolute error (MAE), R2 (R squared), and RMSE (root
mean square error).
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Figure 5. The variable importance of the environmental variables used to predict GHG fluxes. The models were generalized boosted regres-
sion models (GBM), random forest (RF), and support vector machine regression (SVM).

warmer annual soil conditions have larger growing season
GPP and ER fluxes and stronger net uptake. Our results also
show other logical relationships between environmental con-
ditions and CO2 fluxes. For example, GPP and ER increased
with soil moisture (Nobrega and Grogan, 2008). However,5

at around 50 %–60 % VWC this relationship plateaued and
turned negative. This was likely due to the lack of oxy-
gen for plant roots restricting growth of non-aerenchymous
plants. Furthermore, the lack of oxygen allows only anoxic
metabolic pathways for microbes, such as CH4 production10

in methanogenesis, where CO2 production is low (Bridgham
et al., 2013). Further, soil organic carbon stock was an im-
portant predictor for ER, but not so much for GPP. This was
likely related to the higher soil carbon contents boosting de-
composition (Schlesinger and Andrews, 2000).15

4.2 Small but consistent net CH4 uptake mostly driven
by soil moisture

Net CH4 flux was strongly controlled by soil moisture due to
its effect on regulating the anoxic and oxic soil conditions,
and therefore CH4 production (methanogenesis) and CH420

consumption (CH4 oxidation, or methanotrophy) (Kelsey et
al., 2016; Christensen et al., 1996; Treat et al., 2018b). Our
results demonstrate that the rate of CH4 emissions increases
sharply in water-logged soil conditions, i.e., at soil moisture
levels of > 60 VWC% (Vainio et al., 2021). In drier condi-25

tions (VWC < 60 %), soils contain more oxygen, which pre-
vents CH4 production and increases net CH4 uptake. This re-
sult supports findings from recent studies that show that drier
upland tundra areas can be habitats for methane-oxidizing

bacteria, which can use CH4 from the atmosphere as their 30

main energy source, transforming these environments to net
CH4 sinks (Christiansen et al., 2015; Juncher Jørgensen et
al., 2015; Lau et al., 2015; Emmerton et al., 2014; Wagner
et al., 2019; St Pierre et al., 2019; Voigt et al., 2023). Given
the large area of the Arctic, even minor fluxes such as those 35

observed here for CH4 uptake can be of global importance.
This CH4 uptake can strengthen the GHG sink of the Arctic
and prevent CH4 from entering the atmosphere.

Our results show that net CH4 uptake increases not only in
drier conditions but also in soils with low C/N and soil or- 40

ganic carbon stocks. This is likely due to microbes needing
and getting C and energy from the atmosphere due to lim-
ited soil C supply (Lau et al., 2015; Juutinen et al., 2022),
and the capability of methanotrophs to effectively compete
against classical heterotrophs dependent on larger organic 45

macromolecules in these environments. The models did not
clearly identify a particular vegetation type controlling net
CH4 uptake; however some individual models demonstrated
deciduous shrubs and meadows to be more closely related
to net CH4 uptake (Larmola et al., 2010). Overall, our re- 50

sults indicate that net CH4 uptake potential is present in any
kind of upland tundra vegetation type (Fig. S7) as long as the
abiotic conditions for microbes responsible for atmospheric
CH4 consumption are favorable.

Methane fluxes had a rather uniform distribution across 55

the mineral upland regions (i.e., small but consistent net
uptake). High CH4 emissions were located in wetland
regions dominated by high soil organic carbon stocks
and moisture levels. Our observations demonstrated sim-
ilar or even higher net CH4 uptake than previous stud- 60



A.-M. Virkkala et al.: Spatial patterns in Arctic terrestrial greenhouse gas fluxes 11

Figure 6. Partial dependence plots showing the relationships between GHG fluxes and environmental conditions across the three models
(generalized boosted regression models, GBM; random forest, RF; and support vector machine regression, SVM). The y axis of the plot
(yhat) represents the marginal effect of the predictor on the response and should not be directly compared with observed or predicted values,
rather the shape and direction of the response instead. RFs and GBMs are based on decision trees, where trees are split based on a certain
threshold in the data, which can be seen as thresholds in the partial dependence plots as well. SVMs map the data into a high-dimensional
space where a hyperplane is fit to separate them, creating smoother response shapes. Partial dependence plots for GPP and ER are found in
Fig. S4.
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Figure 7. Ensemble predictions of growing season GHG fluxes, averaged over 1 July to 2 August (only daytime variability between 08:00
and 20:00 considered) and photographs summarizing the main sink–source patterns in the landscape. Note that the southwestern corner of
the study design has mountain birch forest for which we did not have any data; we did not have measurements from the northeastern corner
either.

ies. For example, dry tundra was CH4 neutral in a re-
cent Arctic–boreal CH4 flux synthesis (mean= 3.83, me-
dian=−0.01 mg CH4 m−2 d−1), primarily based on grow-
ing season daytime fluxes (Kuhn et al., 2021), whereas our
study showed higher uptake rates for the non-wetland plots5

(mean=−2.05, median=−1.81 mg CH4 m−2 d−1). How-
ever, studies focusing on individual sites have recorded sim-
ilar CH4 flux magnitudes as observed here (Emmerton et al.,

2014; Lau et al., 2015), but to the best of our knowledge, such
extensive spatial patterns in CH4 flux uptake using fine spa- 10

tial resolution models as presented here have not been pub-
lished so far.
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Figure 8. Growing season mean and percentile (0.025 and 0.975) GHG fluxes in CO2 equivalents based on in situ data and upscaled flux
predictions, averaged across the entire study period (only daytime variability between 08:00 and 20:00 considered) and across vegetation
types. Note that the scale for the x axis is different for each gas species, and that the uncertainties in in situ versus predicted mean fluxes
cannot be directly compared with each other. The uncertainty in in situ wetland CH4 continues up to 6.7 but was cropped for visualization
purposes. The same graph using the sustained GWP approach can be found in the Supplement Fig. 6 and demonstrates the potentially larger
role of CH4 fluxes over a 100-year horizon in this landscape.

4.3 N2O fluxes remain neglectable and unpredictable

We observed moderate and to a large extent unpredictable
variability in N2O fluxes in this landscape. The differ-
ences in average fluxes between the vegetation types were
small. Based on our observations, most vegetation types5

were on average N2O sinks or neutral, but deciduous
and evergreen shrubs and meadows had some variability
from moderate N2O sinks (up to −200 µg N m−2 d−1) to
moderate N2O sources (up to 400 µg N m−2 d−1). Over-
all, our average N2O fluxes were close to zero and thus10

low in the light of the recent review (Voigt et al., 2020),
which demonstrated that vegetated soils in permafrost re-
gions are often small but evident sources of N2O during
the growing season (∼ 30 µg N m−2 d−1) and that barren or
sparsely vegetated soils serve as substantial sources of N2O15

(∼ 455 µg N m−2 d−1). The relatively small N2O fluxes ob-
served here can be explained by the nitrogen-limited nature
of the studied soils and the strong competition between plants
and microbes for nutrients: with shallow soils and low stocks
of soil organic nitrogen, nitrogen release in labile forms by20

mineralization remains low (Voigt et al., 2020). Most of the
data in the synthesis came from ecosystems that are not
as much nitrogen-limited as our site (e.g., peatlands, grass-
lands).

We were unable to explain the patterns in N2O fluxes25

with the predictors used here. This was likely related to
the relatively low variability in N2O fluxes in most of the
plots in general and the complexity of the soil microbial
N cycle, where N2O is produced (nitrification, denitrifica-
tion, DNRA) and consumed (denitrification) by multiple co-30

occurring processes, differently regulated by environmen-
tal variables (Butterbach-Bahl et al., 2013). Nevertheless,
the most important driver of N2O flux was soil C/N, and
the models suggested that lower C/N ratios were linked to
higher net N2O emissions. This is expected as the excess soil35

N in soils with low C : N ratio allows more rapid N min-
eralization, nitrification, and denitrification as compared to
microbial immobilization, which accelerates N2O emissions
(Klemedtsson et al., 2005; Liimatainen et al., 2018). Further,
N2O emissions were highest in the wetlands, similar to Ma 40

et al. (2007), who explained this by high ammonia or nitrate
levels boosting N2O production. The uppermost soil layers
were also likely not fully saturated by water at the time of the
wetland measurements, which can induce higher N2O emis-
sions in oxic but still moist conditions, which allow aerobic 45

nitrification and anaerobic denitrification to co-occur (Voigt
et al., 2020; Takakai et al., 2008). In contrast to C fluxes, veg-
etation type did not play an important role for N2O fluxes.
This might be related to our study having no measurements
in the previously observed, clear N2O flux hotspots located 50

in barren permafrost peatlands, such as peat plateaus or pal-
sas, with thick organic layers and high inorganic N content
(Repo et al., 2009; Voigt et al., 2017a).

4.4 The sub-Arctic tundra landscape is a strong
growing season GHG sink 55

Our results demonstrate a high level of spatial heterogene-
ity in the growing season GHG fluxes across the landscape,
with areas acting as both net CO2, CH4, and N2O sinks and
sources in some parts of it. Areas acting as GHG sinks cov-
ered most of the landscape (CO2: 91 %, CH4: 87 %, N2O: 60

73 %; 62 % of the area was a sink for all three GHGs). We
observed clear differences in flux magnitudes driven by key
environmental conditions. Moist and carbon- and nitrogen-
rich meadows and deciduous shrub heaths were strong GHG
sinks. Wet sedge-dominated fens were GHG sinks with CH4 65

emissions being compensated by net CO2 uptake. Barren
lands and evergreen shrubs were more resource-limited and
closer to GHG neutral. These results are interesting in the
light of the shrubification patterns observed across the entire
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Arctic (Myers-Smith et al., 2011; Parker et al., 2015; Vowles
and Björk, 2018) and indicate that deciduous or evergreen
shrub expansion may increase or decrease the growing sea-
son GHG sink. If shrubs expand to meadows, the GHG sink
may decrease, whereas if they invade barren areas, the GHG5

sink may increase. However, our results did not quantify this
change over time or cover the entire year to confirm the net
annual effect.

Our results indicate that this heterogeneous Arctic land-
scape was a cumulative net GHG sink during the mea-10

surement period during daytime (08:00 to 20:00) in
July 2018. The July budget for CO2 was −4.7 g C m−2 per
month, for CH4 0.73 mg C m−2 per month, and for N2O
−10.0 µg N m−2 per month. The CO2 sink is relatively small,
likely due to the high cover of patchy and sparsely vegetated15

areas that were often CO2 sources. This small sink value is
an overestimation of the sink activity considering the whole
course of the day as we did not have measurements from
the nighttime and did thus not upscale fluxes in nighttime
conditions when ecosystems are net CO2 sources due to the20

lack of light required for photosynthesis. It also overesti-
mates the importance of CO2 as a radiative forcing agent,
since ecosystem CO2 production during autumn and winter
contributes substantially to the annual C balance (Celis et al.,
2017; Commane et al., 2017), thereby reducing the CO2 sink25

strength on an annual basis. Further, CH4 uptake might con-
tinue even in rather cold conditions as long as soils remain
dry and unfrozen (Emmerton et al., 2014). Nevertheless, our
results demonstrate that net CO2 uptake plays the most im-
portant role for the net growing season GHG budget. CH430

emissions from wetlands are almost balanced by the net CH4
uptake of other ecosystems. The role of N2O fluxes for the
net GHG budget across the entire landscape is negligible for
the growing season.

4.5 Methodological considerations in GHG flux35

modeling

Our study creates new understanding about high-resolution
upscaling of GHG fluxes by incorporating more chamber
measurements, predictors, models, and environmental gradi-
ents compared to earlier efforts (Fox et al., 2008; Dinsmore et40

al., 2017; Räsänen et al., 2021; Juutinen et al., 2022; Vainio
et al., 2021). For example, we included chamber measure-
ments from 101 plots, whereas earlier local-scale upscaling
studies have usually had circa 30 plots. Further, we included
seven different environmental predictors, while other stud-45

ies have often used only one or two, focusing on predictors
describing vegetation type or soil moisture. Finally, we stud-
ied a tundra landscape that consists of almost all the main
vegetation types of the entire Arctic, whereas earlier stud-
ies have investigated a narrower range of vegetation con-50

ditions, with a focus on wet ecosystems. However, at the
same time, our models showed some signs of overfitting as
demonstrated by the high model fit performance statistics and

the mismatch between model fit and predictive performance
statistics (Sect. S5.3 in the Supplement). This is a common 55

issue in upscaling (Kemppinen et al., 2018) and could in-
dicate that the models have potentially learned to fit some
noise or specific patterns unique to the training set instead
of broadly generalizable relationships. Nevertheless, the rela-
tionships we observed were logical and comparable to those 60

observed in other studies – both based on spatial and time
series study designs (e.g., positive soil moisture–CH4 flux or
soil temperature–ER relationships; Euskirchen et al., 2014;
Davidson et al., 2016; Zona et al., 2023). Moreover, our
study is based on a dataset focusing on spatial variation in 65

GHG fluxes and correlations between variables. Therefore,
the dataset should not directly be used to infer causal rela-
tionships or estimates of flux change over time (Damgaard,
2019), and we advise caution when extrapolating these re-
sults to areas outside our study domain or different time pe- 70

riods.
Our study showed that using means of in situ GHG fluxes

in each vegetation class to derive a landscape-level GHG
budget might produce significantly different results com-
pared to the upscaled budget. This was apparent particu- 75

larly for CH4 fluxes, where the in situ based average wet-
land CH4 emission was more than 2 times larger CH4 com-
pared to the upscaled one. This mismatch is likely explained
by the heterogeneity of environmental conditions and CH4
fluxes within the wetland class that the chamber measure- 80

ments alone could not cover (Fig. S7). A multivariate ma-
chine learning modeling approach with variables describing
not only vegetation type but also soil moisture and other con-
ditions was likely able to characterize the resulting CH4 flux
variability in a more representative way. For example, our 85

soil moisture maps showed high variation in soil moisture
between ca. 50 VWC% and 70 VWC% within the wetland
areas, and high CH4 emissions were observed only in areas
with 60 VWC%. Overall, this result suggests that simple land
cover-based upscaling efforts might lead to biased budget es- 90

timates, especially when spatial variability within land cover
types is high, emphasizing the need for multivariate model-
ing in flux upscaling.

The performance of our models varied from good (GPP,
CH4 flux), moderate (ER and NEE), to low (N2O). CH4 95

fluxes – both sources and sinks – were accurately modeled,
providing important support for future studies predicting not
only the large CH4 emissions but also the previously unquan-
tified CH4 uptake in Arctic landscapes. The lower predictive
performance of the models for other GHG fluxes might be 100

explained by the dynamic nature of fluxes not being repre-
sented in our spatial study design with no temporal chamber
replicates in the plots, our models lacking important predic-
tors, or our model structure not being ideal. The performance
of the models could potentially be improved by describing 105

plant functional composition using plant traits (Happonen et
al., 2022) and including more detailed information about soil
nutrients (e.g., soil nitrate or ammonium concentrations as
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soil C/N captures only very roughly how much N is avail-
able) or microbial communities (e.g., communities or genes
associated with nitrification or methanogenesis or methan-
otrophy; Pessi et al., 2022).

Rainfall events are another source of uncertainty in our5

upscaling because they might increase soil moisture levels
and activate processes related to methanogenesis, photosyn-
thesis, and respiration as well as nitrogen cycling. While our
soil moisture predictions should capture these variations in
soil wetness, we only made measurements once per plot un-10

der clear conditions and do not have information about how
GHG fluxes might respond to rainfall events. We might thus
underestimate some of the instantaneous and longer-term
changes in GHG fluxes during and after rain (see Sect. S1
and Fig. S10 for details).15

We chose to use in situ environmental data as predic-
tors of GHG fluxes in our upscaling framework instead of
linking remotely sensed variables with GHG fluxes directly.
This was done to increase understanding about the mechanis-
tic and ecological relationships but required us to first pro-20

duce spatially continuous maps of environmental conditions,
which might have added an additional layer of uncertainty
into our framework. However, the most important environ-
mental variables (i.e., soil moisture, temperature, biomass)
had a high predictive performance. Nevertheless, future stud-25

ies could explore the performance and information derived
by upscaling GHG fluxes using high-resolution satellite or
drone-derived remotely sensed indices directly (Siewert and
Olofsson, 2020; Vainio et al., 2021; Berner et al., 2018).

Overall, the performance of our machine learning mod-30

els predicting spatial variability in GHG fluxes was weaker
than in other studies focusing on temporal variability (e.g.,
López-Blanco et al., 2017; Celis et al., 2017), even though
we had a comprehensive set of environmental measurements.
Our results thus highlight the need for more focus on the spa-35

tial patterns in GHG fluxes. While the temporal variability is
widely acknowledged as a source of uncertainty in GHG bud-
get estimates (Baldocchi et al., 2018), the spatial variability
may be just as important but remains insufficiently studied
(Treat et al., 2018c). Study designs focusing on spatial vari-40

ation in GHG fluxes using a combination of intensive mea-
surement campaigns, remotely sensed datasets, and model-
ing approaches are informative, although they do not produce
direct information on the trends and drivers of GHG flux
change following climate change. They provide new knowl-45

edge about the heterogeneity in GHG fluxes and their envi-
ronmental drivers, which is highly important for understand-
ing flux magnitudes from local to global scales. Further, they
can be used as a space-for-time substitution to understand
ecosystem functions in locations that are assumed to be at50

different stages of development. Moreover, this knowledge
is valuable for designing representative field studies in the
future.

5 Conclusions

This study showed that predicting fluxes in heterogeneous 55

tundra landscapes at high spatial resolutions is possible for
CH4, GPP and to some extent also NEE and ER fluxes, but
it remains a challenge for N2O fluxes. This is a promis-
ing result for future high spatial resolution modeling stud-
ies that aim to understand the fine-scale biogeochemistry of 60

the rapidly changing Arctic environments. Our study fur-
ther demonstrates high spatial variability of GHG fluxes,
which is driven by a multitude of vegetation, soil microcli-
matological, hydrological, and biogeochemical conditions.
The upscaling shows the importance of net CO2 uptake for 65

the peak growing season net GHG budget and suggests that
annual soil temperature and vegetation parameters are the
most important drivers. Most importantly, it reveals small
but widespread CH4 uptake across the entire upland tundra
in our domain that almost surpasses the high wetland CH4 70

emissions. This provides more evidence to the relatively un-
quantified but important CH4 sink in the Arctic GHG budget.
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