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 24 

Abstract. Arctic terrestrial greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous 25 

oxide (N2O) play an important role in the global GHG budget. However, these GHG fluxes are rarely studied 26 

simultaneously, and our understanding of the conditions controlling them across spatial gradients is limited. 27 

Here, we explore the magnitudes and drivers of GHG fluxes across fine-scale terrestrial gradients during the 28 

peak growing season (July) in sub-Arctic Finland. We measured chamber-derived GHG fluxes and soil 29 

temperature, soil moisture, soil organic carbon and nitrogen stocks, soil pH, soil carbon-to-nitrogen (C/N) ratio, 30 

soil dissolved organic carbon content, vascular plant biomass, and vegetation type from 101 plots scattered 31 

across a heterogeneous tundra landscape (5 km2). We used these field data together with high-resolution remote 32 

sensing data to develop machine learning models for predicting (i.e., upscaling) daytime GHG fluxes across the 33 

landscape at 2-m resolution. Our results show that this region was on average a daytime net GHG sink during 34 

the growing season. Although our results suggest that this sink was driven by CO2 uptake, it also revealed small 35 

but widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the 36 

landscape scale. Average N2O fluxes were negligible. CO2 fluxes were controlled primarily by annual average 37 

soil temperature and biomass (both increase net sink) and vegetation type, CH4 fluxes by soil moisture 38 

(increases net emissions) and vegetation type, and N2O fluxes by soil C/N (lower C/N increases net source). 39 

These results demonstrate the potential of high spatial resolution modeling of GHG fluxes in the Arctic. They 40 

also reveal the dominant role of CO2 fluxes across the tundra landscape, but suggest that CH4 uptake in dry 41 

upland soils might play a significant role in the regional GHG budget.  42 



2 

1 Introduction 43 

Over the past millennia, Arctic soils in the treeless tundra biome have played an important role in the global 44 

climate system by accumulating large amounts of carbon (C) and nitrogen (N), thus cooling the climate 45 

(Hugelius et al., 2014, 2020; Strauss et al., 2017). However, the ongoing climate warming is changing the C and 46 

N cycles, leading to potentially increased net greenhouse gas (GHG) emissions from Arctic ecosystems to the 47 

atmosphere (Belshe et al., 2013; McGuire et al., 2012; Masyagina and Menyailo, 2020). Yet, even the current 48 

GHG balance of Arctic ecosystems is insufficiently understood due to severe gaps in flux measurement 49 

networks and poorly performing coarse-resolution models (Virkkala et al., 2021; Treat et al., 2018c). Thus, the 50 

contribution of Arctic regions to the global climate feedback remains uncertain. 51 

One of the main uncertainties in understanding the Arctic GHG balance is related to the inadequately quantified 52 

magnitudes of all three main GHG fluxes - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - 53 

which show pronounced spatial variability across the diverse terrestrial environmental gradients in tundra 54 

(Virkkala et al., 2018; Pallandt et al., 2021; Voigt et al., 2020). In most tundra ecosystems, CO2 fluxes are the 55 

largest flux driving the GHG balance due to the strong growing season photosynthetic activity and relatively 56 

high non-growing season respiratory CO2 losses (Natali et al., 2019; Euskirchen et al., 2012; Heiskanen et al., 57 

2021). However, growing evidence points to the importance of CH4 and N2O fluxes, which are more potent 58 

GHGs than CO2 (Voigt et al., 2017b). All three gasses have distinct spatiotemporal dynamics (Emmerton et al., 59 

2014; Bruhwiler et al., 2021). However, only a few studies have simultaneously considered the contributions of 60 

all three main GHG fluxes to the tundra GHG balance (Voigt et al., 2017b; Kelsey et al., 2016; Brummell et al., 61 

2012; Wagner et al., 2019).  62 

The largest fine-scale differences in Arctic GHG fluxes occur in ecosystems with spatially varying soil moisture 63 

conditions (McGuire et al., 2012). Broadly speaking, the Arctic can be divided into wetlands and drier uplands 64 

(i.e., shrublands, grasslands, and barren lands; see e.g. (Treat et al., 2018a; Virkkala et al., 2021). Wetlands 65 

cover between 5 and 25 % of the Arctic (Olefeldt et al., 2021; Kåresdotter et al., 2021; Raynolds et al., 2019). 66 

They are hotspots for soil C and N stocks and have the potential for high CH4 emissions (Euskirchen et al., 67 

2014; Hugelius et al., 2020); therefore they have been intensively studied (Rinne et al., 2018; Peltola et al., 68 

2019; Turetsky et al., 2014). However, uplands cover the largest part of the Arctic (75 to 95 %) and can have 69 

significant variability in environmental conditions and GHG fluxes. These uplands have been relatively well 70 

studied for CO2 fluxes (Williams et al., 2006; Cahoon et al., 2012a). Upland CH4 and N2O fluxes, on the other 71 

hand, remain less well understood in terms of their magnitudes and drivers (Virkkala et al., 2018; Voigt et al., 72 

2020). There are still likely some GHG flux hotspots to be discovered and coldspots to be verified, particularly 73 

in the upland tundra ecosystems. 74 

The Arctic tundra is characterised by fine-scale environmental heterogeneity even within upland and wetland 75 

tundra environments. Thus, local-scale study settings that cover the main spatial environmental gradients are 76 

highly important (Treat et al., 2018c; Davidson et al., 2017). Such fine-scale variabilities are often measured 77 

with chambers, but most chamber-based study designs are limited to relatively small environmental gradients 78 

focusing on only a handful of different land cover types and environmental variables, leaving large gaps in our 79 

understanding of GHG flux hotspots (Virkkala et al. 2018). In this study, using an extensive spatial study design 80 
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with chamber GHG flux measurements from 101 plots, we aim to understand the magnitudes and environmental 81 

drivers of Arctic terrestrial CO2, CH4, and N2O fluxes in a heterogeneous tundra landscape dominated by upland 82 

heaths. By combining in-situ measurements and remote sensing data, we investigate the fine-scale (2 m) spatial 83 

heterogeneity of GHG fluxes across the landscape, and estimate the contribution of the three gases to the total 84 

landscape-scale GHG flux.  85 

 86 

2 Materials and Methods 87 

2.1 Study area 88 

The field measurements were collected during 2016-2018 in a sub-Arctic tundra environment in Kilpisjärvi 89 

(Gilbbesjávri in Northern Sámi language), northwestern Finland (69.06 N, 20.81 E). The study area is located on 90 

an elevational gradient between two fells, Saana (Sána; 1029 m.a.s.l) and Korkea-Jehkats (Jiehkkáš; 960 m.a.s.l), 91 

and the valley in between (~600 m.a.s.l.). The study area is above a mountain birch (Betula pubescens ssp. 92 

czerepanovii) forest and is dominated by dwarf-shrub evergreen and deciduous heaths. Dominant vascular plant 93 

species are, e.g., Empetrum nigrum ssp. hermaphroditum, Betula nana, Vaccinium myrtillus, Vaccinium vitis-94 

idaea, and Phyllodoce caerulea. Vegetation in the wetlands is dominated by species common to fen wetlands, 95 

such as Eriophorum sp. or Carex sp. Mesic meadows are rich in forbs and grasses whereas barren heaths 96 

accommodate mostly lichens (e.g. Cladonia spp.) and mat-forming cushion plants (e.g. Diapensia lapponica) with 97 

scattered patches of E. nigrum and B. nana. Soils in the area are shallow (mean organic layer depth 6.6 cm, mean 98 

mineral layer depth 13.0 cm), and permafrost is absent from soils but can be found in the bedrock above 800 m 99 

a.s.l. (King and Seppälä, 1987). The environment is relatively undisturbed but experiences reindeer (Rangifer 100 

tarandus tarandus) grazing. The mean annual temperature in Saana fell (1002 m.a.s.l.) is -3.1 ℃ and the annual 101 

precipitation in Kilpisjärvi village ca. 5 km from the study site (480 m.a.s.l.) is 518 mm in 1991-2018 (Finnish 102 

Meteorological Institute, 2019a, b).  103 

Our study design covered an area of ca. 3 x 1.5 km and consisted of 101 plots with GHG flux measurements and 104 

their supporting environmental data (Fig. 1). To produce continuous maps of soil temperature, moisture, 105 

vegetation type, biomass, soil C/N, and soil organic carbon stock, we utilized an extended dataset where some of 106 

the variables were measured from 50 plots while others from close to 6000 plots (Table S1). We selected the plots 107 

based on a combination of stratified sampling and systematic grid approaches, and the plots contain a variety of 108 

environmental gradients and habitats as well as the transition zones between them (Kemppinen et al., 2021). We 109 

recorded the locations of the plots using a hand-held Global Navigation Satellite 110 

System receiver with an accuracy of up to ≤6 cm under optimal conditions 111 

(GeoExplorer GeoXH 6000 Series; Trimble Inc., Sunnyvale, CA, USA). 112 

https://paperpile.com/c/HKvgR0/sBVm
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113 

Figure 1: The distribution of the main vegetation types across the Arctic tundra (Dinerstein et al., 2017; Agency, 114 

2017) and the location of our study area (a), the distribution of plots (b) and environmental conditions derived 115 

from statistical upscaling of in-situ measurements (see Sect. 2.4.2 Machine learning models) across the study area 116 

(c). Soil moisture and temperature represent mean daytime (8 am to 8 pm) conditions from the 1st of July to the 117 

2nd of August and annual soil temperature is an average within the entire year (July 2017-June 2018). Other 118 

conditions represent growing season conditions and are considered static in this study. The aerial image is 119 

produced by the National Land Survey of Finland (accessed in 2016). 120 

https://paperpile.com/c/HKvgR0/Ue9U+Scak
https://paperpile.com/c/HKvgR0/Ue9U+Scak
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2.2 Data 121 

We measured GHG fluxes from 101 plots during the peak growing season (from now on, growing season). 122 

Environmental conditions explaining these GHG fluxes were measured at each plot. Most environmental variables 123 

had near complete spatial coverage; missing data were filled using the environmental predictions (see Sect. 2.4.2 124 

Machine learning models, Table S1). We used additional in-situ environmental data to upscale and visualize 125 

environmental conditions across the entire landscape (see Sect. 2.4.2 Machine learning models and Fig. 2): 126 

continuous soil moisture loggers (50 plots), continuous soil temperature loggers (250), soil samples for carbon 127 

and nitrogen stock and C/N estimation (168), and vegetation classification data (5280). The full set of variables 128 

at a plot consisted of the plot for GHG flux measurements, and of a nearby complementing plot (max. 2 m distance) 129 

where we monitored soil moisture and temperature continuously and did a vegetation classification. The additional 130 

plot was separated from the GHG plot to avoid disturbance of the continuous recordings. The additional plot was 131 

carefully situated to similar vegetation and microtopographic conditions as the GHG plot. Soil samples were 132 

collected as close as possible to the GHG plot. 133 

2.2.1 Chamber measurements 134 

We measured GHG exchange using a static, non-steady state non-flow-through system (Livingston and 135 

Hutchingson, 1995) composed of an acrylic chamber (20 cm diameter, 25 cm height). The chamber was placed 136 

on top of a collar and ventilated before each measurement. Prior to the measurements, we installed steel collars, 137 

which were 21 cm in diameter and 6 - 7 cm in height. Each collar was visited once during the growing-season, 138 

and measurements were conducted between 10 am and 5 pm. Although we did not have any temporal replicates, 139 

the spatial variation in our plots covered most of the temperature variation during the growing season. For more 140 

details, see Sect. S1. 141 

For CO2 flux measurements, transparent and opaque chamber measurements were conducted during 1st of July 142 

and 27th of July, 2018. The chamber included a small fan, a carbon dioxide probe GMP343 and an air humidity 143 

and temperature probe HMP75 (Vaisala, Finland). In the chamber, CO2 concentration, air temperature and 144 

relative air humidity were recorded at 5-s intervals for 90 s. Photosynthetically active radiation was logged 145 

manually outside the chamber at 10-s intervals during the same period using a MQ-200 quantum sensor with a 146 

hand-held meter (Apogee Instruments, Inc, USA). MQ-200 measures photosynthetic photon flux density 147 

(PPFD) at a spectral range from 410 to 655 nm in µmol m-2 s–1. For more details of the equipment, see 148 

Happonen et al. (2022). 149 

We progressively decreased the light intensity of net ecosystem exchange (NEE) measurements from ambient 150 

conditions to ca. 80%, 50% and 30% PPFD by shading the chamber with layers of white mosquito net (replicate 151 

measurements per collar = 5 - 9). Ecosystem respiration (ER) was measured in dark conditions (0 PPFD), which 152 

were obtained by covering the chamber with a space blanket (replicates = 2 - 3). Before flux calculations, we 153 

discarded the first 0 - 5 s as well as the last 5 s of the measurements to remove potentially disturbed 154 

observations. Fluxes were calculated from the concentration change within the chamber headspace over time 155 

using linear regression (for performance statistics see Sect. S2).  156 

https://paperpile.com/c/HKvgR0/F6E2
https://paperpile.com/c/HKvgR0/F6E2


6 

We standardized NEE, GPP, and ER measurements conducted at different light and temperature conditions to 157 

allow across-plot comparison of the fluxes. We fitted light-response curves using a non-linear hierarchical 158 

bayesian model with the plot as a random effect (Sect. S5). We used the Michaelis-Menten equation to model 159 

instantaneous NEE with plot-specific ER, maximum photosynthetic rate (GPPmax) and the half-saturation 160 

constant (K) as parameters using the same formula as in (Williams et al., 2006; Cahoon et al., 2012b). ER also 161 

had an exponential air temperature (T) response (for more details, see (Happonen et al., 2022). We used this 162 

model to predict NEE at dark (0 PPFD, i.e. ER) and average light (600 PPFD) conditions, and an air temperature 163 

of 20 °C at each plot. 20 °C was chosen as it represents a typical air temperature inside the chamber during flux 164 

measurements, and 600 PPFD because it is widely used in tundra literature (Dagg and Lafleur, 2011; Shaver et 165 

al., 2007). We then subtracted ER from the NEE normalized to average light conditions to arrive at an estimate 166 

of normalized gross primary productivity (GPP). Negative values in NEE indicate a net sink of CO2 from the 167 

atmosphere to the ecosystems. GPP and ER are given as positive values. 168 

We measured CH4 and N2O fluxes with an opaque chamber (0 PPFD). Measurements were conducted during 169 

the 2nd of July and 2nd of August, 2018. Five gas samples were taken within a 50-min enclosure time and 170 

transferred into 12-mL vials (Labco Exetainer, Labco Ltd.). The vials were pre-evacuated in the laboratory and 171 

filled with 25 mL of the sample in the field. Gas samples were analyzed at the University of Eastern Finland 172 

with a gas chromatograph (Agilent 7890B; Agilent Technologies, Santa Clara, CA, USA), equipped with an 173 

autosampler (Gilson Inc., Middleton, WI, USA), with thermal conductivity detector (TCD) for CO2, flame 174 

ionization detector (FID) for CH4 and an electron capture detector (ECD) for N2O. We calculated gas 175 

concentrations from GC peak areas relative to peak areas derived by analyzing gas standards (CO2: 7 176 

concentration levels ranging from 0-10000 ppm; CH4: 7 concentration levels ranging from 0-100 ppm; N2O: 5 177 

concentration levels ranging from 0-5000 ppb). Fluxes were calculated from the concentration change within the 178 

chamber headspace over time using linear regression. Quality control was based on visual inspection and 179 

RMSE. We also verified that the RMSE was less than 3 * standard deviation of gas standards in a similar 180 

concentration range. Negative values in these fluxes represent net CH4 and N2O sinks from the atmosphere to 181 

the ecosystems. 182 

2.2.2 Soil temperature and moisture data 183 

Soil moisture and soil temperature were measured simultaneously during the flux measurements. We measured 184 

soil moisture with a time-domain reflectometry sensor (FieldScout TDR 300; Spectrum Technologies Inc., 185 

Plainfield, IL, USA; 0 to 7.5 cm depth). Soil temperature measurements conducted at the same time as CO2 flux 186 

measurements were taken with a thermometer (TD 11 thermometer; VWR International bvba; Leuven, 187 

Germany; 6.0 to 7.5 cm depth). Soil temperature measurements (TM-80N measure and ATT-50 sensor) 188 

conducted at the same time as CH4 and N2O flux measurements were taken with a thermometer in the uppermost 189 

10 cm. We refer to these variables as soil moisture and soil temperature throughout the text. 190 

Temperature loggers (Thermochron iButton DS1921G and DS1922L, San Jose, CA, USA  and TMS-4; TOMST 191 

s.r.o., Prague, Czech Republic) monitored temperatures at 7.5 cm and 6.5 cm (iButton and TMS-4, respectively) 192 

belowground at 0.25–4 h intervals (Sect. S3). We calculated a variable describing soil temperature conditions 193 

https://paperpile.com/c/HKvgR0/VzO6+OB1i
https://paperpile.com/c/HKvgR0/mkhL
https://paperpile.com/c/HKvgR0/NsAD+ru7v
https://paperpile.com/c/HKvgR0/NsAD+ru7v
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during the previous 12 months by averaging the iButton measurements from the study design (n=138) from July, 194 

2017 to June 2018. We refer to this variable as annual soil temperature. In addition to temperature, the TMS-4 195 

loggers also monitored soil moisture (raw time-domain transmission data between 1 and 4095) to a depth of c. 196 

14 cm (Wild et al., 2019). The raw time-domain transmission data was transformed into volumetric water 197 

content (VWC%) (Tyystjärvi et al., 2022). 198 

These continuous soil moisture and temperature data were used to upscale soil microclimatic conditions at 2-199 

hour timesteps during daytime (8 am to 8 pm) and from the 1st of July to the 2nd of August (see section Models 200 

used to predict environmental conditions). This period was chosen because the GHG fluxes were measured 201 

during this period and we did not want to extrapolate outside our main measurement campaign. Moreover, this 202 

period represents the peak growing season of this region.  203 

2.2.3 Vegetation data 204 

We took images from CH4 and N2O collars on the measurement day and used them to classify the dominant 205 

vegetation to five distinct classes, following the Circumpolar Arctic Vegetation Map physiognomic 206 

classification system (Walker et al. 2005) with minor modifications (Fig. 1). We used the following classes: 207 

barren (< 10 % vegetation cover), evergreen shrub, deciduous shrub, meadow (graminoids and forbs), and 208 

wetlands. The sample sizes were not even between vegetation types, rather they roughly represent the spatial 209 

coverage of each vegetation type (8 observations of barren, 38 of evergreen shrub, 14 of deciduous shrub, 26 of 210 

meadow, and 15 of wetland). We utilized a larger dataset of 5820 vegetation descriptions estimated in the field 211 

and from aerial imagery from the study design to create the vegetation type map (for more details, see S4.1).We 212 

collected biomass samples from above-ground vascular plants using the clip-harvest method during late peak 213 

season, between 17th of July and 10th of August. Samples were collected within the chamber collars, and were 214 

oven-dried at 70 °C for 48 h and weighed after drying. We refer to this variable as biomass (g dry-weight m-2). 215 

2.2.4 Soil sampling and analyses 216 

We measured the thickness of the organic and mineral soil layers using a metal probe reaching up to 80 cm 217 

depth. We collected soil samples (ca. 1 dl) from the organic and mineral layers using metal soil core cylinders (4 218 

- 6 cm Ø, 5 - 7 cm height) during August in 2016-2018. The organic samples were collected from the top soil, 219 

and mineral samples directly below the organic layer which was on average 6.6 cm deep. Large roots were 220 

excluded from the samples. The soil samples were freeze-dried and analysed in the Laboratory of Geosciences 221 

and Geography and Laboratory of Forest Sciences (University of Helsinki). Bulk density (kg m-3) was estimated 222 

by dividing the dry weight by the sample volume. Soil organic layer pH was analyzed following ISO standard 223 

10390. Total carbon and nitrogen content (C%, N%) analyses were done using Vario Elementar Micro cube and 224 

Vario Elementar Max -analyzer (Elementar Analysensysteme GmbH, Germany). Prior to CN% analysis, 225 

mineral samples were sieved through a 2 mm plastic sieve. Organic samples were homogenized by hammering 226 

the material into smaller pieces. 227 

Soils in this landscape are acidic and likely have a minimal amount of carbonates; consequently, we assumed 228 

C% to equal organic C%. Soil organic carbon and nitrogen stocks were calculated for the entire soil horizon up 229 

https://paperpile.com/c/HKvgR0/DMnX
https://paperpile.com/c/HKvgR0/XBHz
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to 80 cm (in 95 % of plots soil depth was less than that). Some plots lacked CN% data (30 % of the plots), and 230 

therefore, we used soil organic matter content estimated with the loss-on-ignition method according to SFS 3008 231 

(1990). We utilized a similar stock calculation framework using the bulk density, layer depth, and C% and N% 232 

data as in Kemppinen et al. (2021) except we used average bulk density and mineral C% estimates in each 233 

vegetation type in case that information was missing in stock calculation.  234 

Soil samples for dissolved organic carbon concentration analyses in dry soil were collected between the 5th and 235 

14th of July 2018. After the collection, samples were stored at 4 °C and then dried at 60 ℃ for at least 5 days. 236 

Extraction of dissolved organic carbon was done using pure water extractions with 0.5 to 3 grams of dried soil 237 

added to 40 ml of water following the WEOC protocol from (Hensgens et al., 2021). Extracts were immediately 238 

filtered (0.7µm) using glass fibre filters, diluted, acidified to remove inorganic carbon, and measured on a 239 

Shimadzu TOC V-CPN analyzer set on the Nonpurgeable Organic Carbon mode. We refer to this variable as 240 

dissolved organic carbon. 241 

2.2.5 Remotely sensed data 242 

Remotely sensed optical and light detection and ranging-based (LiDAR) data describing topographic, 243 

vegetation, snow, and surficial deposit conditions was used for upscaling the in-situ measured environmental 244 

variables (Fig. 2, Sect. S4 and Fig. S1).  245 

2.3 Statistical analyses 246 

We investigated the dependencies of GPP, ER, NEE, CH4 flux, and N2O flux on environmental variables using 247 

statistical analyses which included analysis of variance (ANOVA), and machine learning modeling and 248 

prediction. We developed machine learning models, in which we 1) upscaled environmental data (annual soil 249 

temperature, soil temperature, soil moisture, soil C/N, soil organic carbon stock, dissolved organic carbon, 250 

biomass) using remotely sensed variables as predictors; 2) modeled GHG fluxes using the environmental data as 251 

predictors, and 3) upscaled GHG fluxes using the upscaled environmental data maps at a 2-meter spatial 252 

resolution across the landscape (Fig. 2). This two-step upscaling approach enabled us to focus on the 253 

relationships between GHG fluxes with their physical and ecological, in-situ measured environmental controls 254 

instead of the remotely sensed data that are proxies by nature. We ran all analysis in the R statistical 255 

programming environment  (R Core Team 2020; version 4.0.3). 256 

 257 

https://paperpile.com/c/HKvgR0/fcUG
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 258 

Figure 2: The upscaling framework used in this study. We first linked GHG fluxes to the in-situ environmental 259 

drivers using machine learning models. Then we trained three machine learning models to upscale environmental 260 

conditions across the landscape using remote sensing data. Then we used the GHG flux models and environmental 261 

predictions to upscale GHG fluxes across the landscape throughout the entire growing season.  262 

2.3.1 Analysis of variance (ANOVA) 263 

We used one-way ANOVAs to test for vegetation type differences in environmental conditions, GHG fluxes, 264 

and tested significance using multiple comparisons with a Tukey’s honest significant difference test (p <0.05). 265 

CH4 flux, soil moisture, soil organic carbon and nitrogen stock, and biomass were not normally distributed, thus 266 

we used Kruskal-Wallis test instead of ANOVA at first. 267 

2.3.2 Machine learning models 268 

We modeled our response variables using three machine-learning methods (generalized boosted regression 269 

models, GBM; random forest, RF, and support vector machine regression, SVM), all of which have been widely 270 

used in flux upscaling studies (see e.g. (Natali et al., 2019; Peltola et al., 2019; Tramontana et al., 2016). These 271 

three approaches are non-parameteric and can handle linear and non-linear relationships and different data 272 

distributions. We chose RFs and GBMs because they utilize several decision trees in an ensemble model 273 

framework and thus avoid overfitting, have high accuracy, are highly adaptable, and are not significantly 274 

impacted by outliers. We chose SVMs because they are good at generalizing the relationships in the data. Based 275 

on these models, we visualized the partial dependence plots characterizing the relationships between the 276 

response and predictor variables while accounting for the average effect of the other predictors in the model 277 

using the pdp package (Greenwell, 2017). Further, we calculated variable importance using the vip package 278 

(Greenwell et al., 2020). Variable importance scores were estimated by randomly permuting the values of the 279 

predictor in the training data and exploring how this influenced model performance based on the adjusted R2 280 

values, with the idea that random permutation would decrease model performance (Breiman, 2001). We used 281 

100 simulations to calculate 100 importance scores which were averaged. A standard deviation across these 282 

https://paperpile.com/c/HKvgR0/Zys2+PMB8+OmUj
https://paperpile.com/c/HKvgR0/Y7ND
https://paperpile.com/c/HKvgR0/pCbL
https://paperpile.com/c/HKvgR0/Fpmt
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scores was used as an uncertainty estimate, together with the differences in average importance across models. 283 

For more details, see Sect. S5. 284 

We used ten topography, snow, vegetation, and surficial deposits variables to construct landscape-wide 285 

predictors matching the in-situ environmental conditions that we used to model the GHG flux values. These 286 

variables were the following: elevation, topographic wetness index, topographic position index at 5 and 30 m 287 

radii, aspect, slope, potential incoming solar radiation, normalized difference vegetation index, snow cover 288 

duration, and surface deposits. Soil organic carbon stocks, dissolved organic carbon, soil C/N, biomass, and 289 

annual soil temperature models were calibrated only once and a single prediction was made to the landscape. 290 

Soil temperatures and moisture vary throughout the growing season, thus, we calibrated each model at each time 291 

step and created 231 predictions over the study period (every 2 hours between 8 am and 8 pm from July 1st until 292 

August 2nd). For each variable, an ensemble prediction was produced by calculating a median prediction over 293 

the three predictions from the different modeling methods. Soil organic carbon stock was log+1 and biomass 294 

were log-transformed prior to tuning the models, and after making the predictions, values were transformed 295 

back to the original scale. 296 

We examined the relationship between the five primary response variables (GPP, ER, NEE, CH4 flux, N2O flux) 297 

and environmental predictors that describe (i) soil resources and conditions (soil moisture, soil C/N, soil pH) 298 

which are relevant to, for example, the growth of organisms (Nobrega and Grogan, 2008; Happonen et al., 299 

2022); (ii) soil C and N stocks and dissolved organic carbon which are one of the main sources for the GHG 300 

emissions (Bradley-Cook and Virginia, 2018); (iii) soil temperatures which regulate enzymatic processes (St 301 

Pierre et al., 2019; Mauritz et al., 2017); and (iv) biomass and vegetation type which describe resource-use 302 

strategies, carbon inputs to soils and plant photosynthetic capacity, and integrate multiple environmental 303 

properties into one variable (Magnani et al., 2022). We excluded soil pH and soil nitrogen stock from modeling 304 

analyses due to high correlations (Pearsons’s r>0.7) with soil moisture and soil organic carbon stock, 305 

respectively. Further, dissolved organic carbon was excluded due to its low importance in all the models. We 306 

did not use air temperature as a predictor as we already controlled for it in CO2 fluxes in the light-response 307 

model, and we assumed that soil microbes regulating CH4 and N2O cycling are most importantly driven by soil 308 

temperatures (Kuhn et al., 2021). The final predictors for our models were soil moisture, soil temperature, 309 

annual soil temperature, soil organic carbon stock, soil C/N, biomass, and vegetation type. The machine learning 310 

parameters tuned for each model can be found from Sect. S5.  311 

We used the machine learning models to predict GHG fluxes across the landscape for each 2-hour time step 312 

from July 1st until August 2nd. Similar to the environmental predictions, an ensemble prediction was produced 313 

by calculating a median prediction over the three predictions from the different modeling methods. As our focus 314 

was on understanding the spatial patterns in the mean growing season fluxes, we averaged GHG flux predictions 315 

over the study period. However, a visualization of the predicted mean daily patterns in soil moisture and 316 

temperatures, and the consequent GHG fluxes is provided in the supplementary material (Fig. S2).  317 

To compare the magnitude of all three important GHGs, namely CO2, CH4, and N2O, we calculated the radiative 318 

forcing strength of the three GHGs over a 100-year period from our measurements and ensemble predictions. 319 

We used the Global Warming Potential (GWP; 27 for CH4 and 273 for N2O (IPCC 2021)) and sustained GWP 320 

https://paperpile.com/c/HKvgR0/XNit+mkhL
https://paperpile.com/c/HKvgR0/XNit+mkhL
https://paperpile.com/c/HKvgR0/oebn
https://paperpile.com/c/HKvgR0/L1yp+YpIi
https://paperpile.com/c/HKvgR0/L1yp+YpIi
https://paperpile.com/c/HKvgR0/7Uu7
https://paperpile.com/c/HKvgR0/1ONa
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(45 for CH4 and 270 for N2O (Neubauer 2015), which are, to our knowledge, the best and most widely used 321 

approaches that exist to compare flux magnitudes. We acknowledge that these approaches are designed to 322 

quantify an effect of a change in emission to the radiative forcing, and are thus not fully suitable to be used to 323 

quantify the climatic effect of natural continuous fluxes in our study (Mathijssen et al., 2022; Frolking et al., 324 

2006). 325 

 326 

For all of our models, we used a leave-one-plot-out cross validation scheme in which each plot was iteratively 327 

left out from the data set, and the remaining data were used to predict fluxes for the excluded plot to assess the 328 

predictive performance of the models (Bodesheim et al., 2018). Estimates of bias were calculated as an average 329 

of the absolute error (MAE) between prediction and actual observation. Coefficient of determination (R2) was 330 

used to determine the strength of the linear relationship between the observed and predicted fluxes.  331 

The root mean squared error (RMSE) was used to estimate the model error. The same evaluation metrics were 332 

also calculated based on the prediction to the full model training data to represent model fit (Virkkala et al. 333 

2021); see table S3 which presents these for the individual models. Uncertainty in GHG flux predictions was 334 

derived by bootstrapping (fractional resampling with replacement based on vegetation type classes). We subset 335 

the model training data into 30 different data sets, all of which had the same number of observations as the 336 

original data itself. These 30 data sets were then used to produce 30 individual predictions for a subset of the 337 

times with all three machine learning models and their ensemble for each response variable (Sect. S5). The 338 

uncertainty estimates represent how different distributions of the input data as well as model parameters 339 

influence the upscaled flux maps.  340 

 341 

3 Results 342 

3.1 Environmental conditions and GHG fluxes across vegetation types 343 

We observed large variability in GHG fluxes and environmental conditions within and across vegetation types 344 

(Fig. 3, Table S2). The variability within the vegetation types differed depending on the flux and environmental 345 

variable considered (e.g., meadow class had large variability in GPP and evergreen shrub class in soil C/N). 346 

Frequently, wetlands differed clearly from the other vegetation types. While wetlands had high CH4 emissions, 347 

all the other vegetation types with significantly lower soil moisture showed CH4 uptake. Meadows were a 348 

significantly larger net CO2 sink than evergreen shrub sites, while other vegetation types had intermediate NEE 349 

values. The N2O fluxes were low from all vegetation types, and varied between small sinks and small sources. 350 

 351 

 352 

https://paperpile.com/c/HKvgR0/9UCX+m9Vo
https://paperpile.com/c/HKvgR0/9UCX+m9Vo
https://paperpile.com/c/HKvgR0/K86e
https://paperpile.com/c/HKvgR0/K86e
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 353 

Figure 3: The vegetation types considered in this study (a), the distribution of GHG 354 

fluxes (b), and environmental conditions (c) across the vegetation types. Lines 355 

represent Tukey’s test results (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001). The box 356 

corresponds to the 25th and 75th percentiles, and the line within the box represents the median. The lines denote 357 

the 1.5 IQR of the lower and higher quartile, where IQR is the inter-quartile range, or distance between the first 358 

and third quartiles. 359 

 360 

3.2 The performance of environmental and greenhouse gas flux models 361 

The predictive performance of the ensemble environmental variable models was rather high but varied 362 

depending on the variable (R2: 0.26-0.71; Fig. S3). The predictive performance of the GHG models was for 363 

most variables lower (R2: 0.00-0.52), with N2O flux models being close to random and GPP models performing 364 

the best (Fig. 4). Model fit was significantly higher than predictive performance for all the fluxes (Table S3). 365 

The scatterplots of observed and cross-validation-based predicted GHG fluxes suggest that the highest flux 366 

estimates are often predicted most poorly, but the mean fluxes in each vegetation type were predicted 367 

accurately, as expected. 368 

 369 

 370 
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 371 

Figure 4: The correlation between observed and predicted values based on the ensemble model predictions (i.e., 372 

median of the three machine learning model outputs). Model predictive performance is described with mean 373 

absolute error (MAE), R2 (Rsquared), and RMSE (root mean square error). 374 

3.3 Drivers of greenhouse gas fluxes 375 

The most important controlling variables and the response shapes differed depending on the GHG flux (Fig. 5, 376 

Fig. 6 and Fig. S4), and sometimes also depending on the machine learning model type applied. CO2 fluxes 377 

were driven by annual average soil temperature, biomass, and vegetation type. In addition, soil organic carbon 378 

stocks were an important predictor for ER. Soil moisture and vegetation type were the most important predictors 379 

for CH4 fluxes, and soil C/N and soil moisture for N2O fluxes. In general, warmer and wetter conditions 380 

increased net emissions of CH4 and N2O and net uptake of CO2. Some fluxes were further positively correlated 381 

with soil organic carbon stocks (ER, CH4 flux) and negatively with soil C/N (GPP, ER, N2O). The importance 382 

for variables explaining the N2O flux is low because the model predictive performance is close to random. 383 

 384 

 385 



14 

 386 

Figure 5: The variable importance of the environmental variables used to predict GHG fluxes. The models were 387 

generalized boosted regression models (GBM), random forest (RF),  and support vector machine regression 388 

(SVM). 389 



15 

 390 

Figure 6: Partial dependence plots showing the relationships between GHG fluxes and environmental 391 

conditions across the three models (generalized boosted regression models, GBM; random forest, RF; and 392 

support vector machine regression, SVM). The y-axis of the plot (yhat) represents the marginal effect of the 393 
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predictor on the response and should not be directly compared with observed or predicted values, rather the 394 

shape and direction of the response instead. RFs and GBMs are based on decision trees, where trees are split 395 

based on a certain threshold in the data, which can be seen as thresholds in the partial dependence plots as well. 396 

SVMs map the data into a high-dimensional space where a hyperplane is fit to separate them, creating smoother 397 

response shapes. Partial dependence plots for GPP and ER are found in Fig. S4.  398 

3.4 Spatial patterns and contributions in greenhouse gas flux predictions 399 

The model predictions show large spatial variability in GHG fluxes across the landscape (Fig. 7, Fig. S5). Net 400 

CO2 uptake as well as GPP and ER were highest in the warm and productive meadow locations of the valley 401 

whereas CH4 and N2O fluxes were highest in the eastern parts of the landscape that is dominated by wetlands. 402 

The prediction suggests small but widespread net CH4 uptake across the entire upland region. CO2 was the most 403 

important flux contributing to the net GHG sink (Fig. 8). Mean fluxes calculated based on the upscaled flux 404 

maps differ from the in-situ based ones, particularly for wetland CH4 emissions (Fig. 8, Fig. S6). 405 



17 

 406 
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Figure 7: Ensemble predictions of growing season GHG fluxes, averaged over the 1st of July to the 2nd of 407 

August (only daytime variability between 8 am and 8 pm considered) and photographs summarizing the main 408 

sink-source patterns in the landscape. Note that the southwestern corner of the study design has mountain birch 409 

forest for which we did not have any data; we did not have measurements from the northeastern corner either. 410 

 411 

 412 

 413 

 414 

 415 

Figure 8: Growing season mean and percentile (0.025 and 0.975) GHG fluxes in CO2 equivalents based on in-416 

situ data and upscaled flux predictions, averaged across the entire study period (only daytime variability 417 

between 8 am and 8 pm considered) and across vegetation types. Note that the scale for the x axis is different for 418 

each gas species, and that the uncertainties in in-situ versus predicted mean fluxes cannot be directly compared 419 

with each other. The uncertainty in in-situ wetland CH4 continues up to 6.7 but was cropped for visualization 420 

purposes. The same graph using the sustained GWP approach can be found in the Supplement Fig. 6 and 421 

demonstrates the potentially larger role of CH4 fluxes over a 100-year horizon in this landscape. 422 

4 Discussion 423 

4.1 CO2 fluxes driven by both biotic and abiotic variables 424 

Our results show the importance of several environmental variables for CO2 fluxes, demonstrating the strong 425 

dependence of GPP and ER on a wide range of soil microclimatological, hydrological, soil biogeochemical, and 426 

ecological processes (Sørensen et al., 2019; Dagg and Lafleur, 2011; Nobrega and Grogan, 2008; Cahoon et al., 427 

2016). Overall, the relationships with environmental conditions and GPP and ER were rather similar. Biomass 428 

was a more important predictor than vegetation type for all the CO2 fluxes, indicating that the quantity of plant 429 

material producing and emitting carbon was potentially more important than the different types of plants 430 

associated with CO2 cycling in this study setting (Happonen et al., 2022). The high importance of plant-related 431 

variables (e.g., leaf area index) as drivers of spatial variability in CO2 fluxes has been previously found in other 432 

tundra landscapes (Marushchak et al. 2013 and references therein).  433 

 434 

Our models also show that annual soil temperatures have a different and stronger relationship with CO2 fluxes 435 

than instantaneous growing season soil temperatures, and these two soil temperature variables are indeed 436 

negatively correlated in this study design. This is because annual soil temperatures are driven by winter soil 437 

https://paperpile.com/c/HKvgR0/Ecbc+NsAD+XNit+X6XS
https://paperpile.com/c/HKvgR0/Ecbc+NsAD+XNit+X6XS
https://paperpile.com/c/HKvgR0/mkhL
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temperatures which increase with thicker snow cover that is found particularly in the valley and in 438 

microtopographic depressions, which are colder in the summer. Moreover, annual soil temperatures integrate 439 

many other environmental conditions from the entire year: they reflect growing season length and temperature 440 

conditions, regulate C and N availability, and control vegetation and microbial community composition and 441 

functioning over long time scales. These conditions have been shown to be important drivers of CO2 fluxes 442 

across a range of Arctic sites (Zona et al., 2022; Lund et al., 2010). Similar to these previous studies, we 443 

observed that plots with warmer annual soil conditions have larger growing season GPP and ER fluxes and 444 

stronger net uptake. Our results also show other logical relationships between environmental conditions and CO2 445 

fluxes. For example, GPP and ER increased with soil moisture (Nobrega and Grogan, 2008). However, at 446 

around 50-60 % VWC this relationship plateaued and turned negative. This was likely due to the lack of oxygen 447 

for plant roots restricting growth of non-aerenchymous plants and for microbes, allowing only anoxic metabolic 448 

pathways, such as CH4 productions in methanogenesis, where CO2 production is low (Bridgham et al., 2013). 449 

Further, soil organic carbon stock was an important predictor for ER, but not so much for GPP. This was likely 450 

related to the higher soil carbon contents boosting decomposition (Schlesinger and Andrews, 2000). 451 

4.2 Small but consistent net CH4 uptake mostly driven by soil moisture 452 

Net CH4 flux was strongly controlled by soil moisture due to its effect on regulating the anoxic and oxic soil 453 

conditions, and therefore CH4 production (methanogenesis) and CH4 consumption (CH4 oxidation, or 454 

methanotrophy) (Kelsey et al., 2016; Christensen et al., 1996; Treat et al., 2018b). Our results demonstrate that 455 

the rate of CH4 emissions increases sharply in water-logged soil conditions, i.e. at soil moisture levels of > 60 456 

VWC% (Vainio et al. 2021). In drier conditions (VWC < 60%), soils contain more oxygen, which prevents CH4 457 

production and increases net CH4 uptake. This result supports findings from recent studies that show that drier 458 

upland tundra areas can be habitats for methane oxidizing bacteria which can use CH4 from the atmosphere as 459 

their main energy source, transforming these environments to net CH4 sinks (Christiansen et al. 2015; Juncher 460 

Jørgensen et al. 2015; Lau et al. 2015; Emmerton et al. 2014; Wagner et al. 2019; St Pierre et al. 2019; Voigt et 461 

al. 2023). Given the large area of the Arctic, even minor fluxes such as those observed here for CH4 uptake can 462 

be of global importance. This CH4 uptake can strengthen the GHG sink of the Arctic and prevent CH4 from 463 

entering the atmosphere.  464 

 465 

Our results show that net CH4 uptake increases not only in drier conditions but also in soils with low C/N, soil 466 

dissolved organic carbon, and carbon stocks. This is likely due to microbes needing and getting C and energy 467 

from the atmosphere due to limited soil C supply  (Lau et al., 2015; Juutinen et al., 2022), and the capability of 468 

methanotrophs to effectively compete against classical heterotrophs dependent on larger organic 469 

macromolecules in these environments. The models did not clearly identify a particular vegetation type 470 

controlling net CH4 uptake, however some individual models demonstrated deciduous shrubs and meadows to 471 

be more closely related to net CH4 uptake (Larmola et al., 2010). Overall, our results indicate that net CH4 472 

uptake potential is present in any kind of upland tundra vegetation type (Fig. S7) as long as the abiotic 473 

conditions for microbes responsible for atmospheric CH4 consumption are favourable.  474 

https://paperpile.com/c/HKvgR0/D88K+ykMN
https://paperpile.com/c/HKvgR0/XNit
https://paperpile.com/c/HKvgR0/Dy96
https://paperpile.com/c/HKvgR0/9pW5
https://paperpile.com/c/HKvgR0/hsJl+g7EI+oszu
https://paperpile.com/c/HKvgR0/EUpg
https://paperpile.com/c/HKvgR0/opqc+dCCQ+bYiM+rczG+ibh8+L1yp+iVlQ
https://paperpile.com/c/HKvgR0/opqc+dCCQ+bYiM+rczG+ibh8+L1yp+iVlQ
https://paperpile.com/c/HKvgR0/opqc+dCCQ+bYiM+rczG+ibh8+L1yp+iVlQ
https://paperpile.com/c/HKvgR0/bYiM+16KY
https://paperpile.com/c/HKvgR0/BYeu
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Methane fluxes had a rather uniform distribution across the mineral upland regions (i.e., small but consistent net 475 

uptake). High CH4 emissions were located in wetland regions dominated by high soil organic carbon stocks and 476 

moisture levels. Our observations demonstrated similar, or even higher net CH4 uptake than previous studies. 477 

For example, dry tundra was CH4 neutral in a recent Arctic-Boreal CH4 flux synthesis (mean=3.83, median= -478 

0.01 mg CH4 m-2 d-1; primarily based on growing season daytime fluxes; (Kuhn et al., 2021) whereas our study 479 

showed higher uptake rates for the non-wetland plots (mean=-2.05, median=-1.81 mg CH4 m-2 d-1). However, 480 

studies focusing on individual sites have recorded similar CH4 flux magnitudes as observed here (Emmerton et 481 

al., 2014; Lau et al., 2015), but to the best of our knowledge, such extensive spatial patterns in CH4 flux uptake 482 

using fine spatial resolution models as presented here have not been published so far. 483 

4.3 N2O fluxes remain neglectable and unpredictable 484 

We observed moderate, and to a large extent unpredictable variability in N2O fluxes in this landscape. The 485 

differences in average fluxes between the vegetation types were small. Based on our observations, most 486 

vegetation types were on average N2O sinks or neutral but deciduous and evergreen shrubs and meadows had 487 

some variability from moderate N2O sinks (up to -300 μg N m-2 d-1) to moderate N2O sources (up to 400 μg N 488 

m-2 d-1). Overall, our average N2O fluxes were close to zero and thus low in the light of the recent review (Voigt 489 

et al., 2020), which demonstrated that vegetated soils in permafrost regions are often small but evident sources 490 

of N2O during the growing season (~30 μg N m-2 d-1), and that barren or sparsely vegetated soils serve as 491 

substantial sources of N2O (~455 μg N m-2 d-1). The relatively small N2O fluxes observed here can be explained 492 

by the nitrogen-limited nature of the studied soils and the strong competition between plants and microbes for 493 

nutrients: with shallow soils and low stocks of soil organic nitrogen, nitrogen release in labile forms by 494 

mineralization remains low (Voigt et al., 2020). Most of the data in the synthesis came from ecosystems that are 495 

not as much nitrogen-limited as our site (e.g., peatlands, grasslands).  496 

 497 

We were unable to explain the patterns in N2O fluxes with the predictors used here. This was likely related to 498 

the relatively low variability in N2O fluxes in most of the plots in general, and the complexity of the soil 499 

microbial N cycle, where N2O is produced (nitrification, denitrification, DNRA) and consumed (denitrification) 500 

by multiple co-occurring processes, differently regulated by environmental variables (Butterbach-Bahl et al., 501 

2013). Nevertheless, the most important driver of N2O flux was soil C/N, and the models suggested that lower 502 

C/N ratios were linked to higher net N2O emissions. This is expected as the excess soil N in soils with low C:N 503 

ratio allows more rapid N mineralization, nitrification and denitrification as compared to microbial 504 

immobilisation which accelerates N2O emissions (Klemedtsson et al., 2005; Liimatainen et al., 2018). Further, 505 

N2O emissions were highest in the wetlands, similar to (Ma et al., 2007) who explained this by high ammonia or 506 

nitrate levels boosting N2O production. The uppermost soil layers were also likely not fully saturated by water at 507 

the time of the wetland measurements, which can induce higher N2O emissions in oxic but still moist conditions, 508 

which allow aerobic nitrification and anaerobic denitrification to co-occur (Voigt et al., 2020; Takakai et al., 509 

2008). In contrast to C fluxes, vegetation type did not play an important role for N2O fluxes. This might be 510 

related to our study having no measurements in the previously observed, clear N2O flux hot spots located in 511 

barren permafrost peatlands, such as peat plateaus or palsas, with thick organic layers and high inorganic N 512 

content (Repo et al., 2009; Voigt et al., 2017a).  513 

https://paperpile.com/c/HKvgR0/1ONa
https://paperpile.com/c/HKvgR0/rczG+bYiM
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4.4 The sub-Arctic tundra landscape is a strong growing season GHG sink 514 

Our results demonstrate a high level of spatial heterogeneity in the growing season GHG fluxes across the 515 

landscape, with areas acting as both net CO2, CH4, and N2O sinks and sources in some parts of it. Areas acting 516 

as GHG sinks covered most of the landscape (CO2: 91 %, CH4: 87 %, N2O: 73 %; 62 % of the area was a sink 517 

for all the three GHGs). We observed clear differences in flux magnitudes driven by key environmental 518 

conditions. Moist, and carbon and nitrogen-rich meadows and deciduous shrub heaths were strong GHG sinks. 519 

Wet sedge-dominated fens were GHG sinks with CH4 emissions being compensated by net CO2 uptake. Barren 520 

lands and evergreen shrubs were more resource-limited and closer to GHG neutral. These results are interesting 521 

in the light of the shrubification patterns observed across the entire Arctic (Myers-Smith et al., 2011; Parker et 522 

al., 2015; Vowles and Björk, 2018), and indicate that deciduous or evergreen shrub expansion may increase or 523 

decrease the growing season GHG sink. If shrubs expand to meadows, the GHG sink may decrease, whereas if 524 

they invade barren areas, the GHG sink may increase. However, our results did not quantify this change over 525 

time, or cover the entire year to confirm the net annual effect. 526 

 527 

Our results indicate that this heterogeneous Arctic landscape was a cumulative net GHG sink during the 528 

measurement period during daytime (8 am to 8 pm) in July 2018. The July budget for CO2 was -4.7 g C m-2 529 

month-1, for CH4 0.73 mg C m-2 month-1 and for N2O -10.0 μg N m-2 month-1. The CO2 sink is relatively small, 530 

likely due to the high cover of patchy and sparsely vegetated areas that were often CO2 sources. This small sink 531 

value is an overestimation of the sink activity considering the whole course of the day as we did not have 532 

measurements from the night time and did thus not upscale fluxes in night-time conditions when ecosystems are 533 

net CO2 sources due to the lack of light required for photosynthesis. It also overestimates the importance of CO2 534 

as a radiative forcing agent, since ecosystem CO2 production during autumn and winter contributes substantially 535 

to the annual C balance (Celis et al., 2017; Commane et al., 2017), thereby reducing the CO2 sink strength on an 536 

annual basis. Further, CH4 uptake might continue even in rather cold conditions as long as soils remain dry and 537 

unfrozen (Emmerton et al., 2014). Nevertheless, our results demonstrate that net CO2 uptake plays the most 538 

important role for the net growing season GHG budget. CH4 emissions from wetlands are almost balanced by 539 

the net CH4 uptake of other ecosystems. The role of N2O fluxes for the net GHG budget across the entire 540 

landscape is negligible for the growing season.  541 

4.5 Methodological considerations in GHG flux modeling 542 

Our study creates new understanding about high-resolution upscaling of GHG fluxes by incorporating more 543 

chamber measurements, predictors, models, and environmental gradients compared to earlier efforts (Fox et al., 544 

2008; Dinsmore et al., 2017; Räsänen et al., 2021; Juutinen et al., 2022; Vainio et al., 2021).  For example, we 545 

included chamber measurements from 101 plots whereas earlier local-scale upscaling studies have usually had 546 

circa 30 plots. Further, we included eight different environmental predictors while other studies have often used 547 

only one or two, focusing on predictors describing vegetation type or soil moisture. Finally, we studied a tundra 548 

landscape that consists of almost all the main vegetation types of the entire Arctic, whereas earlier studies have 549 

investigated a narrower range of vegetation conditions, with a focus on wet ecosystems. However, at the same 550 

time, our models showed some signs of overfitting as demonstrated by the high model fit statistics and the 551 

mismatch between model fit and predictive performance statistics (Supplementary Text S5.3). This is a common 552 

https://paperpile.com/c/HKvgR0/wtkB+OW7p+RUrh
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issue in upscaling (Kemppinen et al. 2018; Shi et al. 2022), and could indicate that the models have potentially 553 

learned to fit some noise or specific patterns unique to the training set instead of broadly generalizable 554 

relationships. Nevertheless, the relationships we observed were logical and comparable to those observed in 555 

other studies - both based on spatial and time series study designs (e.g., positive soil moisture-CH4 flux or soil 556 

temperature-ER relationships (Euskirchen et al. 2014; Davidson et al. 2016; Zona et al. 2023)). Moreover, our 557 

study is based on a dataset focusing on spatial variation in GHG fluxes and correlations between variables. 558 

Therefore, the dataset should not directly be used to infer causal relationships or estimates of flux change over 559 

time (Damgaard 2019), and we advise caution when extrapolating these results to areas outside our study 560 

domain or different time periods. 561 

 562 

Our study showed that using means of in-situ GHG fluxes in each vegetation class to derive a landscape-level 563 

GHG budget might produce significantly different results compared to the upscaled budget. This was apparent 564 

particularly for CH4 fluxes, where the in-situ based average wetland CH4 emission was more than twotimes 565 

larger CH4 compared to the upscaled one. This mismatch is likely explained by the heterogeneity of 566 

environmental conditions and CH4 fluxes within the wetland class that the chamber measurements alone could 567 

not cover (Fig. S7). A multivariate machine learning modeling approach with variables describing not only 568 

vegetation type but also soil moisture and other conditions were likely able to characterize the resulting CH4 569 

flux variability in a more representative way. For example, our soil moisture maps showed high variation in soil 570 

moisture between ca. 50 and 70 VWC% within the wetland areas, and high CH4 emissions were observed only 571 

in areas with 60 VWC%. Overall, this result suggests that simple land cover-based upscaling efforts might lead 572 

to biased budget estimates, especially when spatial variability within land cover types is high, emphasizing the 573 

need for multivariate models in flux upscaling.  574 

 575 

The performance of our models varied from good (GPP, CH4 flux), moderate (ER and NEE) to low (N2O). CH4 576 

fluxes - both sources and sinks - were most accurately modeled, providing important support for future studies 577 

predicting not only the large CH4 emissions but also the previously unquantified CH4 uptake in Arctic 578 

landscapes. The lower predictive performance of the models for other GHG fluxes might be explained by the 579 

dynamic nature of fluxes not being represented in our spatial study design with no temporal chamber replicates 580 

in the plots, our models lacking important predictors, or our model structure not being ideal. The performance of 581 

the models could potentially be improved by describing plant functional composition using plant traits 582 

(Happonen et al., 2022), and including more detailed information about soil nutrients (e.g., soil nitrate or 583 

ammonium concentrations as soil C/N captures only very roughly how much N is available) or microbial 584 

communities (e.g., communities or genes associated with nitrification or methanogenesis or methanotrophy; 585 

(Pessi et al., 2022).  586 

 587 

Rainfall events are another source of uncertainty in our upscaling because they might increase soil moisture 588 

levels and activate processes related to methanogenesis, photosynthesis and respiration as well as nitrogen 589 

cycling. While our soil moisture predictions should capture these variations in soil wetness, we only made 590 

measurements once per plot under clear conditions and do not have information about how GHG fluxes might 591 
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respond to rainfall events. We might thus underestimate some of the instantaneous and longer-term changes in 592 

GHG fluxes during and after rain (see Text S1 and Fig. S10 for details). 593 

 594 

We chose to use in-situ environmental data as predictors of GHG fluxes in our upscaling framework instead of 595 

linking remotely sensed variables with GHG fluxes directly. This was done to increase understanding about the 596 

mechanistic and ecological relationships but required us to first produce spatially continuous maps of 597 

environmental conditions, which might have added an additional layer of uncertainty into our framework. 598 

However, the most important environmental variables (i.e., soil moisture, temperature, biomass) had a high 599 

predictive performance. Nevertheless, future studies could explore the performance and information derived by 600 

upscaling GHG fluxes using high-resolution satellite or drone-derived remotely sensed indices directly (Siewert 601 

and Olofsson, 2020; Vainio et al., 2021; Berner et al., 2018).  602 

 603 

Overall, the performance of our machine learning models predicting spatial variability in GHG fluxes was 604 

weaker than in other studies focusing on temporal variability (e.g., (López-Blanco et al., 2017; Celis et al., 605 

2017), even though we had a comprehensive set of environmental measurements. Our results thus highlight the 606 

need for more focus on the spatial patterns in GHG fluxes. While the temporal variability is widely 607 

acknowledged as a source of uncertainty in GHG budget estimates (Baldocchi et al., 2018), the spatial 608 

variability may be just as important but remains insufficiently studied (Treat et al., 2018c). Study designs 609 

focusing on spatial variation in GHG fluxes using a combination of intensive measurement campaigns, remotely 610 

sensed datasets, and modeling approaches are informative although they do not produce direct information on 611 

the trends and drivers of GHG flux change following climate change. They provide new knowledge about the 612 

heterogeneity in GHG fluxes and their environmental drivers which is highly important for understanding flux 613 

magnitudes from local to global scales. Further, they can be used as a space-for-time substitution to understand 614 

ecosystem functions in locations that are assumed to be at different stages of development. Moreover, this 615 

knowledge is valuable for designing representative field studies in the future.  616 

 617 

5 Conclusions 618 

This study showed that predicting fluxes in heterogeneous tundra landscapes at high spatial resolutions is 619 

possible for CH4, GPP, and to some extent also NEE and ER fluxes but remains a challenge for N2O fluxes. This 620 

is a promising result for future high spatial resolution modeling studies that aim to understand the fine-scale 621 

biogeochemistry of the rapidly changing Arctic environments. Our study further demonstrates high spatial 622 

variability of GHG fluxes which is driven by a multitude of vegetation, soil microclimatological, hydrological, 623 

and biogeochemical conditions. The upscaling shows the importance of net CO2 uptake for the peak growing 624 

season net GHG budget, and suggests that annual soil temperature and vegetation parameters are the most 625 

important drivers. Most importantly, it reveals small but widespread CH4 uptake across the entire upland tundra 626 

in our domain that almost surpasses the high wetland CH4 emissions. This provides more evidence to the 627 

relatively unquantified but important CH4 sink in the Arctic GHG budget. 628 

 629 
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