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S1. Chamber measurement details 

We installed the collars 48 hours prior to the flux measurements to minimise the potential disturbance caused by 

the installation. We sealed the edges of the collars using moist inert quartz sand to secure an air-tight closure. 

We installed two steel collars at each GHG flux plot: one for the CO2 flux measurements, and another one for 

the CH4 and N2O measurements. These two were placed in similar conditions ca. 0.4 to 2 meters away from 

each other. We used separate collars for the two measurements due to destructive sampling conducted in CO2 

flux collars after the measurements. 

Mean air temperatures in the chamber were 22 °C during the CH4 and N2O measurements, and 25 °C during the 

CO2 measurements, and the mean July temperature between 10 am and 5 pm from the temperature loggers (15 

cm above the soil surface) in the study domain was 20 °C.  Mean soil temperatures were 11 °C during CH4 and 

N2O measurements, and 13 °C during the CO2 measurements (range between 3 and 19 °C). Mean July soil 

temperature between 10 am and 5 pm from the temperature loggers in the study domain was 14 °C (range 

between 5 and 27 °C).  

S2. Flux calculation statistics 

The median explanatory power (R2) of linear regression used to estimate CO2 fluxes was 0.91 and root mean 

square error (RMSE) 0.91 ppm CO2. Small fluxes from plots with little biomass had in general lower R2 

estimates but their RMSE was relatively similar to larger fluxes. For example, median R2 for CO2 fluxes 

between -0.5 and 0.5 g C m-2 d-1 was 0.11 and RMSE 0.89 ppm CO2, whereas the same values for fluxes larger 

than those (i.e. more negative and more positive) were 0.94 and 0.91 ppm CO2. We decided to keep all these 

fluxes in our data to guarantee that our measurements cover a broad range of fluxes and environmental 

conditions. The mean R2 of linear regression for CH4 was 0.87, and lower, 0.30 for N2O due to high proportion 

of near-zero fluxes.  
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S3. Microclimate data processing 

Due to logger failures and loggers that were lifted from the soil during the measurement period, some data are 

missing in the temperature time series. This was often caused by reindeer picking the loggers up, but could have 

also been related to frost heave or other disturbance. To fill these gaps we utilized all logger data from the 

broader site (a total of 250 loggers) from the whole measurement period from July 2016 to September 2019 

aggregated to daily mean values and combined these data with corresponding temperature records from nearby 

weather stations. This dataset was used to impute the missing values with the functions of Amelia R library 

(Honaker et al., 2011). Amelia provides multiple imputation for multivariate time series with a bootstrapped 

version of expectation maximisation algorithm to replace the missing values with draws from posterior 

distribution.  

S4. Remote sensing variables 

The remotely sensed data were extracted to our GHG flux and environmental data plots in their original spatial 

resolution, but they were resampled to a 2-meter resolution for the statistical upscaling. 

S4.1 Vegetation classification and NDVI 

For upscaling, we conducted a supervised classification of multitemporal satellite imagery (three PlanetScope 

scenes from dates 2018-07-02, 2018-07-29 and 2018-09-09; four spectral bands at 3-m resolution; georectified 

surface reflectance products). We stacked the images and calculated normalized difference spectral indices 

between all possible combinations of two spectral bands in the image stack resulting in 78 raster layers. As 

training data, we used the locations and vegetation classes of the GHG flux plots and an additional set of 4891 

plots within the study area classified in the field in summer 2016 matched with the five vegetation classes used 

in this study. After merging the plot data, the distribution of observation across the five classes was highly 

unbalanced. Thus, we collected 389 additional points covering mostly the less well covered vegetation classes 

(mainly barren and wetlands) based on the authors’ expertise from the study area and by interpreting high-

resolution aerial imagery provided by the National Land Survey of Finland. We fitted a random forests classifier 

model (Breiman, 2001) with the vegetation classes treated as the response variable and used the spectral and 

index values from the satellite image stack of the corresponding locations as explanatory variables. The 

resulting model was then used to predict a spatially continuous vegetation classification map to the satellite 

imagery covering the entire study area. The internal out-of-bag cross-validation of the Random Forest model 

showed that 65.5% of the observations were correctly classified. The classification accuracy was highest in the 

deciduous shrub and wetland classes and lowest in barren. We used the same three PlanetScope images to 

calculate a Normalized Difference Vegetation Index (NDVI), a commonly used proxy for the amount of 

photosynthetic biomass.  

 

 

https://paperpile.com/c/hzMQzZ/6QwEx
https://paperpile.com/c/hzMQzZ/rcPCw
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S4.2 Snow cover duration 

We used 94 PlanetScope images to construct a snow melting date map for the study area. The imagery is from 

April to September 2017-2018. We manually digitized a cloud mask for each image separately and created a 

training dataset from the masked images by selecting clear pixels manually and labeling them as land, water or 

snow. Then we fitted a Random Forests model (Breiman, 2001) and used the model to classify all the pixels in 

the 94 images and then reclassified the pixels either as snow or no-snow. We also predicted the class 

probabilities for each pixel. Then we stacked the binary snow images and created a pixel-wise binomial 

generalized linear model to determine the average melting date for each pixel separately (for more details on the 

methodology, see (Niittynen and Luoto, 2018)). The predicted class probabilities were used as weights in the 

models to give more weight for observations of high classification certainty. 

S4.3 Topography 

The topography variables were calculated from a digital terrain model (DTM; 2 m resolution) based on light 

detection and ranging (LiDAR) data from the open file service of the National Land Survey of Finland (2019). 

Following Kemppinen et al. (2021) we calculated elevation (m), topographic wetness index (twi), topographic 

position index (tpi), potential incoming solar radiation (kWh/m2), slope (radians), and aspect. 

TWI was calculated using Equation TWI = ln (SCA / local slope), in which the SCA refers to the specific 

catchment area. We calculated the total catchment area (TCA) from a filled DTM using the multiple flow–

direction algorithm (Freeman, 1991; Wang and Liu, 2006). Then we calculated the SCA assuming that flow 

width equals the grid resolution (2 m2) (i.e., SCA = TCA/2). We calculated the local slope and aspect following 

(Zevenbergen and Thorne, 1987). Aspect was transformed from a circular variable to a one-directional variable 

by taking a cosine of the aspect values. The final aspect variable represents northness, and values range from -1 

(at due south) to 1 (at due north). 

TPI describes the position of the plot on a topographic gradient at a given radius (Ågren et al., 2014). Positive 

values indicate that the plot is located on a ridge top, negative values that the plot is in a depression, and values 

close to zero that the plot is on a slope or flat ground. We used an unfilled DTM to calculate TPI using 5 m and 

30 m radii (Kemppinen et al. 2021). 

Radiation was calculated for June, July, and August, which constitute the growing season. We used the 

“Potential incoming solar radiation” tool in SAGA GIS v. 2.3.2. using the sky view–factor option (Böhner and 

Antonić, 2009). The position of the Sun was calculated for every fifth day (4-h interval). The atmospheric 

transmittance was calculated using the lumped atmosphere option. 

S4.4 Surficial deposits 

Surficial deposits were classified following (Kemppinen et al., 2018) and were based on field observations and 

aerial images (0.5 m resolution) provided by the National Land Survey of Finland. The classes represent peat 

and fluvial deposits, glacial till, and boulders and rock outcrops. Finally, the data was rasterized to a 2-meter 

resolution. 

https://paperpile.com/c/hzMQzZ/rcPCw
https://paperpile.com/c/hzMQzZ/Ud3zu
https://paperpile.com/c/hzMQzZ/k8ahZ+Fsh7I
https://paperpile.com/c/hzMQzZ/NBkEf
https://paperpile.com/c/hzMQzZ/dBfLQ
https://paperpile.com/c/hzMQzZ/NwCqt
https://paperpile.com/c/hzMQzZ/NwCqt
https://paperpile.com/c/hzMQzZ/qdhxR
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S4.5 ESA CCI land cover 

ESA CCI land cover product at 300 m was used in Fig. 1 to visualize the cover of key vegetation types across 

the Arctic. To produce the map, we grouped some classes to the four key vegetation types in the tundra. We 

used the following classes to the shrub class: mosaic tree, shrub, or herbaceous cover (100 and 110), shrubland 

(120-122). Bare vegetation was based on sparse vegetation (150-153) and bare area (200-202) classes. 

Grasslands (class 130) were used to represent meadows. Wetlands were defined based on the flooded vegetation 

classes (160-180). 

 

S5. Models 

Light response model details 

All models were run in R with the package brms (Bürkner, 2017), which is an interface to the bayesian 

modelling platform Stan (Carpenter et al., 2017). For the model, we set weakly informative priors on the 

intercept terms based on visual inspection of the scale of variation in our data and typical parameter values 

reported in (Williams et al., 2006). The model was fit with 4 MCMC chains, which were run for 2000 iterations 

each. The first 1000 iterations were discarded as warmup, leaving a total of 4000 samples of each parameter. We 

refer to these standardized variables as NEE, GPP, and ER.  

 

Machine learning model details 

We used several models because they treat the data differently and thus, may individually detect different 

patterns and relationships in the data, and because the best performing models are not always the same for 

different response variables. These models were based on regression trees (generalized boosted regression 

models, GBM; random forest, RF) and kernel methods (support vector machine regression, SVM). GBM splits 

the data internally several times into training and evaluation data, and builds trees recursively using the 

information from the previous ones to improve the accuracy of the current tree in a process called boosting 

(Elith et al., 2008). RF bootstraps the data several times and samples the predictor variables as candidates at 

each split during the tree building, after which it builds an ensemble prediction (Breiman, 2001). SVM projects 

vectors into a high-dimensional space with a kernel function and fits an optimal hyperplane for the final model 

(Drake et al., 2006). The user can control these models by defining different parameters related to the trees, 

splits and variables, or the kernel properties.  

For all the models, we assumed Gaussian error distribution. Parameters for machine learning models were tuned 

separately for each response variable with caret package (Kuhn, 2012) using the leave-one-out cross validation. 

We allowed the GBM to estimate the best model by testing different numbers of trees (50 to 1000), number of 

splits the model has to perform on a tree (5 to 13), learning rate (0.01 to 0.1), and the minimum number of 

observations in the trees’ terminal nodes (2 to 5). For RF, we defined the number of variables randomly sampled 

as candidates at each split from four options (number of predictors divided by three to number of predictors 

https://paperpile.com/c/hzMQzZ/H7oSV
https://paperpile.com/c/hzMQzZ/A2cPP
https://paperpile.com/c/hzMQzZ/thEdj
https://paperpile.com/c/hzMQzZ/15Val
https://paperpile.com/c/hzMQzZ/rcPCw
https://paperpile.com/c/hzMQzZ/QDfXG
https://paperpile.com/c/hzMQzZ/G1EhL
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divided by three plus six). And for SVM, we tested different values between 2^-15 to 2^0 for the kernel width 

and values between 1 to 32 for the cost of constraints violation. The best model with the final set of parameters 

was chosen based on the lowest root mean square error (RMSE) values. 

We used partial dependence plots and estimated variable importance of the predictors from each of the models 

(Section Machine learning models in the main text).The values on the y axis of each partial dependence plot can 

be interpreted as followed: yhat is conditional on other predictors in the model and their relationships with the 

predictor in the plot in question. Therefore, yhat values should not be directly compared with observed or 

predicted values, rather the patterns in yhat should be explored more generally. The x-axis represents the actual 

predictor values and can be used to infer, for example, conditions that lead to drastic changes in yhat (tipping 

points). For the variable importance analyses, we ran the permutation-based importance 100 times and averaged 

the results to reduce the error introduced by the randomness in the permutation procedure. A highly influential 

variable is represented by high variable importance scores. 

We did not consider a cross-validation scheme that would have considered the potential spatial dependence of 

near-by GHG flux patterns as we did not find any spatial autocorrelation in the model residuals (see 

Supplementary Fig. 9) 

 

Uncertainty in GHG flux predictions was derived by bootstrapping (fractional resampling with replacement 

based on vegetation type classes) to subset the model training data into 30 different data sets, all of which had 

the same number of observations as the original data itself. These 30 data sets were then used to produce 30 

individual predictions for a subset of the times with all three machine learning models and their ensemble for 

each response variable. We made these predictions to a subset of the time steps during the study period We 

randomly selected six time periods during each of the 5 weeks; three samples were selected from morning-noon 

(8-14) and three from the afternoon-evening (16-20). Thus, we used 30 out of 231 time periods in our 

uncertainty estimation, producing in total 18,000 files. We calculated an average GHG flux across the time 

periods for each of the bootstrapped model training data set, and then took the 2.5 and 97.5 quantiles across 

these average GHG flux estimates to quantify prediction uncertainty.  We also produced an uncertainty map by 

estimating the prediction interval for each pixel by subtracting the quantiles from each other. This method does 

not consider the uncertainty in predictors, but gives an estimate of how the distribution of the flux data 

influences our conclusions about the GHG budgets.  
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Supplementary Tables and Figures 

Table S1. The number of plots with field measurements for each variable used to explain GHG fluxes varied 

due to practical or analytical reasons. We used the spatial predictions of biomass, soil temperature, soil 

moisture, soil organic carbon stocks, soil C/N, and dissolved organic carbon content to fill the gaps in the model 

training data. Specifically, we had the coordination information for all the plots, and extracted the missing 

information from the maps using the coordination information. 

 

Variable Number of plots 

Chamber CO2, CH4, and N2O flux measurements 101 

Coordinates of the plot 101 

Vegetation type 101 

Biomass 74 

Soil temperature 101 

Annual soil temperature 80 

Soil moisture 101 for CO2 flux measurements, 100 for CH4 and 

N2O flux measurements 

Soil organic carbon stock 99 

Soil C/N 98 

Dissolved organic carbon content 99 
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Table S2. In-situ GHG flux and environmental summaries and areal extents of the vegetation types. Negative 

values in NEE, CH4 flux and N2O flux indicate net sink of CO2 from the atmosphere to the ecosystems. GPP and 

ER are given as positive values. 

 

 

Vegetation type  Barren Deciduous 

shrub 

Evergreen 

shrub 

Gramin

oid 

Wetland 

Number of plots  8 14 38 26 15 

The proportional area of the 

vegetation type in the landscape 

 0.12 0.36 0.48 0.08 0.03 

NEE g C m-2 d-1 Mean -1.18 -1.61 -0.91 -3.06 -2.44 

 Median -1.03 -1.21 -0.75 -3.06 -2.33 

 25th q -1.37 -2.15 -1.94 -3.99 -2.82 

 75th q -0.06 -0.75 0.06 -1.51 -1.79 

GPP g C m-2 d-1 Mean 3.67 5.47 4.32 7.57 5.41 

 Median 2.81 4.72 3.82 7.13 5.42 

 25th q 1.84 4.26 2.83 4.73 4.23 

 75th q 3.94 5.27 5.37 9.74 7.22 

ER g C m-2 d-1 Mean 2.49 3.86 3.41 4.51 2.97 

 Median 1.9 3.35 2.85 4.26 2.92 

 25th q 1.63 3.03 2.31 3.62 2.28 

 75th q 2.58 4.07 4.54 5.85 3.65 

CH4 flux mg C m-2 d-1 Mean -1.27 -2.41 -1.57 -1.09 46.55 
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 Median -1.32 -2.53 -1.35 -0.59 23.16 

 25th q -1.63 -2.88 -1.83 -1.54 3.56 

 75th q -0.45 -2 -0.66 -0.13 43.68 

N2O flux μg N m-2 d-1 Mean -0.24 -26.96 -4.25 -2.5 12.77 

 Median 5.73 -8.27 -3.18 -3.5 7.64 

 25th q -7 -41.05 -19.41 -38.82 -3.82 

 75th q 10.98 2.7 28.8 31.5 25.46 

Soil moisture VWC % Mean 11.6 12.16 14.24 36.45 67.65 

 Median 14.45 10.95 10.75 36.5 65.2 

 25th q 6.15 8.25 7.7 26.9 63.85 

 75th q 16.1 16.12 18.65 44.9 70.25 

Soil temperature °C Mean 11.81 10.14 10.59 11.37 13.77 

 Median 11.6 10.8 11 11.9 14.2 

 25th q 10.1 8.25 8.65 9.85 13.6 

 75th q 13.88 11.8 12.43 13.28 14.75 

Annual soil temperature °C Mean 0.32 1.82 0.9 1.72 1.78 

 Median -0.16 1.81 1.33 1.82 1.78 

 25th q -0.87 1.42 -0.1 1.24 1.7 

 75th q 1.99 2.21 1.84 2.26 1.86 
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Soil organic carbon stock kg C 

m-2 

Mean 3.91 5.76 5.42 10 21.69 

 Median 3.43 5.8 3.92 6.41 20.06 

 25th q 3.2 3.74 2.92 4.13 19.01 

 75th q 4.17 7.09 7.44 13.39 24.56 

Dissolved organic carbon mg C 

g-1 

Mean 1.73 2.01 1.98 1.61 2.84 

 Median 1.95 2 1.86 1.59 2.88 

 25th q 1.07 1.71 1.45 0.99 1.91 

 75th q 2.32 2.72 2.52 1.95 3.45 

Soil C/N Mean 25.3 22.44 24.32 14.49 14.68 

 Median 25.26 21.85 24.66 14.04 14.19 

 25th q 22.4 19.42 20.47 13.39 13.22 

 75th q 29.67 24.67 28.31 15.67 15.23 

Soil pH Mean 4.69 4.54 4.54 5.2 5.55 

 Median 4.77 4.53 4.57 5.11 5.46 

 25th q 4.44 4.38 4.32 4.85 5.3 

 75th q 4.93 4.72 4.8 5.42 5.72 

Soil nitrogen stock kg N m-2 Mean 0.32 0.41 0.37 0.81 1.56 

 Median 0.31 0.43 0.29 0.57 1.52 

 25th q 0.27 0.25 0.19 0.32 1.15 
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 75th q 0.32 0.49 0.55 1.06 1.8 

Biomass g m-2 Mean 231.71 328.73 332.59 105.16 142.36 

 Median 172.59 299.61 242.82 94.79 139.77 

 25th q 86.21 187.82 171.37 69.91 120.31 

 75th q 259.84 421.92 313.58 138.74 150.75 
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Fig. S1. Remotely sensed data used in machine learning models predicting environmental conditions. The first 

seven variables are based on light detection and ranging (LiDAR) data, whereas ndvi and snow are based on 

Planet Imagery and surficial deposits on field observations and high-resolution (0.5 m) aerial images. LiDAR 

data and aerial images are provided by the National Land Survey of Finland (2019). Surface deposits 
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representing soil types are 1=glacial till, 2=boulders, rock outcrops, bare soils, 5=peat or fluvial material. 

Vegetation types are 1=barren, 2=deciduous shrub, 3=evergreen shrub, 4=meadow, 5=wetland. 

 

 

 

 

Fig. S2. Time series of daily day-time (8 am to 8 pm) average GHG fluxes and soil temperature and moisture 

conditions based on the upscaled maps. 

 

Fig. S3. Predictive performance of models used to predict environmental conditions. The soil moisture and 

temperature models represent the performance of the model from July 16th, 2018 at 12 pm, but the performance 

remains somewhat similar throughout the growing season. 
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Fig. S4. The partial dependence plots for GPP and ER.  
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Fig. S5. Uncertainty in GHG flux predictions, estimated by bootstrapping the model training data and creating 

2700 different predictions for each flux. High prediction interval estimates reflect large differences in model 

predictions across the model ensembles. 

 

 

 

 

Fig. S6. Growing season mean and percentile (0.025 and 0.975) GHG flux contributions based on in-situ data 

and upscaled flux predictions, averaged across the entire study period (only daytime variability between 8 am 

and 8 pm considered) and across vegetation types. Note that the scale for the x axis is different for each gas 

species, and that the uncertainties in in-situ versus predicted mean fluxes cannot be directly compared with each 

other. The uncertainty in wetland CH4 continues up to 11.2 but was cropped for visualization purposes. CO2 

equivalents were calculated using the sustained GWP approach. 
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Fig. S7. In-situ net CH4 uptake rates across the upland vegetation classes. This is a zoomed-in figure of Fig. 3.  

 

 

 

 

 

 

 

Fig. S8. A visualization of the fine-scale variation in soil moisture and the upscaled CH4 flux within and across 

vegetation types, and in particular within the wetland class. Some parts of the wetland are wet (i.e. soil moisture 

around 70 % VWC) while others are drier (i.e. close to 50 % VWC), and these differences are important for the 

resulting CH4 flux patterns. These are zoomed-in figures from Fig. 1 and 8.  
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Fig. S9. Spatial autocorrelation of model residuals for ER, as an example. As indicated by the lack of clear high 

or low index values on the y axis, the models did not suffer from spatial autocorrelation that should have been 

acknowledged in the model evaluation phase. 
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