
Response to reviewer #1 

General comments 

This study applied the STEMMUS-SCOPE model to a typical revegetation plot which consists of shrubs 

and grass, to simulate the impact of revegetated shrubs on surface fluxes (latent heat flux, sensible heat 

flux, and GPP) and soil moisture. While the manuscript describes a lot about the comparison between 

the two scenarios, I more focus on the model and the model configuration, and how this study can 

contribute to model development or deepen our understanding the effect of revegetated shrubs. In 

general, I think this part of work is weak. 

Thanks for your thorough review and detailed comments on our article. Indeed, the model configuration 

is the key to represent the fluxes in mixed vegetated areas. In this study, we employed two sets of 

parametrizations and ran the model separately for two land covers. The accuracy of the composited 

fluxes demonstrated the feasibility of distinguishing the LAI using HANTS and fractional vegetation 

coverage to separate the two land covers (see Section 4. Performance of model calibration in 

Supplement). With this understanding, our goal is to achieve parallel computation of the two land covers 

in the next model version, with more consideration on interaction of root growth and root water uptake. 

Below, we address the specific comments related to the model configuration and interpretation of results. 

 

Specific comments 

1. Line 29, in the introduction section, the scientific question is not clear. Generally, the authors 

thought root water uptake is a critical process in the modeling, and the dynamic root length density 

for estimating root water uptake is necessary. However, no contents about the root water uptake 

were presented in this study. What is the impact of dynamic root length density? What is the 

performance of root water uptake simulation? This is the major limitation of this study. 

Response 1: Thank you for the 

insightful suggestions, which will be 

addressed in the revised manuscript. 

We did calculate the root zone water 

storage in 0-200 cm depth (Eq. S15 

in the Supplement). And we found 

that the replacement of shrubs 

decreased root zone water storage in 

2016 (-27%) and 2019 (-11%), 

respectively. It is a great idea to show 

the simulation of root water uptake 

(see figure on the right side), where 

we compared the root water uptake 

(RWU) of shrubs and grasses in 2016 

and 2019, respectively.  



In general, the RWU of grasses (shrubs) increased from the surface layer and then decreased to zero at 

30 cm (200 cm) depth. This pattern is highly related to their maximum rooting depths, which were 

predefined parameters in our model. Moreover, our model successfully captured hydraulic 

redistribution, as indicated by negative RWU values in the relatively shallow root zone (Kennedy et al., 

2019; Wang et al., 2021). The negative RWU values resulted from the higher root water potential (in 

absolute value) compared to the soil water potential when the surface was too dry in the study area.  

To quantify the change in RWU, we used the RWU of grasses as the control reference, then the Changes 

in RWU (red line) was calculated by (𝑅𝑊𝑈 𝑜𝑓 𝑠ℎ𝑟𝑢𝑏 –  𝑅𝑊𝑈 𝑜𝑓 𝑔𝑟𝑎𝑠𝑠) / 𝑅𝑊𝑈 𝑜𝑓 𝑔𝑟𝑎𝑠𝑠. When 

comparing the Changes in RWU, we noticed that the replacement by shrubs reduced RWU at the 0-30 

cm depth but increased RWU at the 30-200 cm depth. This observation aligns with the pre-defined root 

distribution of shrubs and grasses. However, it is important to note that we currently lack observed data 

to validate the performance of any root simulation in our study. 

Refer to the Comments 7, 8 and 12, we will include the root parameters in the sensitivity analysis and 

optimize them accordingly. Besides, we will analyze the effects of revegetation on root water uptake in 

a more detailed manner in the revised manuscript. Besides, we will include the equations of RWU and 

root growth simulation in the revised supplement.  

 

2. Line 92. The quality control of flux data was missing. Moreover, how did you calculate GPP? 

Response 2: Thank you for your attentive review. If necessary, we will include this section in the 

supplement. The steps to calculate GPP from the raw EC flux are as follows: 

(1) Pre-processing: The raw flux data was first proceeded with EddyPro software.  

(2) Processing: Quality control was conducted. If the value fall in the range as following, it’s the 

invalid value that was set as NA, otherwise the original value was kept. 

- qc = 2  

- NEE ≤ -15 and NEE ≥ 15; 

- LE ≤ -20 and LE ≥ 550; 

- H ≤ -60 and H ≥ 400; 

             Take the CO2 flux as an example,  

Timestep 

(0.5 hour) 
Raw data qc = 0 or 1 

qc = 0 or 1 & 

-15 ≤ NEE ≤ 15 

2016 7344 6602 6496 

2017 3314 2342 2322 

2018 4368 3986 3906 

2019 7344 5297 5159 



(3) Post-processing: Following quality control, NEE is partitioned into GPP using the REddyProc 

package in R, which involves u* filtering, flux partitioning, and gap-filling steps. Solar 

radiation (Rg), air temperature (Tair), relative humidity (Rh), and vapor pressure deficit (VPD) 

were used in this process. The partitioning principle is based on two relationships: (1) at night, 

Ecosystem Respiration = Net Ecosystem Productivity = - Net Ecosystem Exchange because 

Gross Primary Productivity is zero at night; (2) Gross Primary Productivity = Net Ecosystem 

Productivity - Ecosystem Respiration.  

 

3. Line 125. How did you determine the contributions for shrubland and grassland? 

Response 3: The contributions for shrubland and grassland are determined by their fractional vegetation 

cover. Based on a high-resolution image taken by unmanned aerial vehicle (Fig. S2), the Supervised 

Classification Method in ERDAS 2020 was employed to determine the fractional cover of shrubs (35 %), 

grasses (25 %) and bare soil (40 %). Since STEMMUS-SCOPE considers the soil-root-canopy 

continuum, we implicitly included the bare soil in either shrub grids (58.33 %) or grass grid (41.67 %). 

The uncertainties of estimating the fractional cover based on limited image were indicated in Line 370.   

 

4. Line 136, can 500 m-MODIS LAI represent the 30 m fenced area? 

Response 4: Indeed, it might be not representative especially for the sparse and mixed vegetated area 

(Fensholt et al., 2004; Fensholt and Sandholt, 2005). That’s why we tried to reconstruct the MODIS 

LAI using field observations and relevant literature values, in order to ensure this critical input as 

representative as possible. We corrected the MODIS LAI by the correlation ratio that was estimated 

based on relationship between MODIS LAI and field measurement in 2022, and lastly compared the 

corrected values in 2016-2019 with literature values (Line 150, Figure 2). However, the MODIS LAI 

was used as reference because of its availability and relatively high temporal resolution.  

 

5. Line 139-140, how did you determine the values of 2.33 and 1/4? 

Response 5: Sorry if this was unclear in the manuscript and this will be clarified in the revised version. 

First, The MODIS 4-day LAI data during 2016-2019 was smoothed by the Harmonic Analysis of Time 

Series (HANTS) algorithm (i.e., LAIHANTS). Second, the linear relationships were determined between 

LAIHANTS_shrub and two observed LAI for shrub (LAIactual_shrub) in 2022. The correlation ratio (𝑟𝑎𝑡𝑖𝑜 =

 
𝐿𝐴𝐼𝑎𝑐𝑡𝑢𝑎𝑙_𝑠ℎ𝑟𝑢𝑏

𝐿𝐴𝐼𝐻𝐴𝑁𝑇_𝑠ℎ𝑟𝑢𝑏
) were determined as 1.92 and 2.73 for DOY 160.5 and DOY 168.5, respectively. The 

final correction ratio applied in LAIHANTS_shrub ends with value of 2.33, which is the average of 1.92 and 

2.73. For detailed calculations of LAIactual_shrub, please refer to Table S4 in the Supplement. 

For the LAI of grasses (LAIgrass), it was estimated as 1/4 of that of the shrubs (LAIshrub) based on the 

following constraints (Line 140 – Line 145):  

i. 𝐿𝐴𝐼𝑠ℎ𝑟𝑢𝑏(𝑖)  ≈  4 𝐿𝐴𝐼𝑔𝑟𝑎𝑠𝑠(𝑖) (Dan et al., 2020) 



ii. 𝐿𝐴𝐼𝑔𝑟𝑎𝑠𝑠(𝑖) should follow the temporal pattern of 𝐿𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑖) and it was ~0.5 m2 m-2 (Yang 

et al., 2019; Dan, 2020) 

iii. 𝑓𝑠ℎ𝑟𝑢𝑏 ∗ 𝐿𝐴𝐼𝑠ℎ𝑟𝑢𝑏(𝑖) +  𝑓𝑔𝑟𝑎𝑠𝑠 ∗ 𝐿𝐴𝐼𝑔𝑟𝑎𝑠𝑠(𝑖)  +  𝑓𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙 ∗ 𝐿𝐴𝐼𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙  =  𝐿𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑖) 

iv. 𝑓𝑠ℎ𝑟𝑢𝑏 + 𝑓𝑔𝑟𝑎𝑠𝑠 + 𝑓𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙  =  1 

v. 𝐿𝐴𝐼𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙 = 0  

where 𝑓𝑠ℎ𝑟𝑢𝑏, 𝑓𝑔𝑟𝑎𝑠𝑠 and 𝑓𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙  are the fractional cover of shrubs (35%), grasses (25%) and bare 

soil (40%), respectively.  

 

6. Line 151, what is the difference between red and yellow dots? 

Response 6:  

 

Line 150   Figure 1. Reconstructed LAI of shrubland and grassland from 2016 to 2019. 

The yellow dots and purple dots are reference values from literature while the red dots are the actual 

observed value of shrub. In Figure 2 (Line 150), the yellow dots and dotted lines (Ref_LAI_Shrub) 

represent the ranges of measured LAI of the nearby shrublands from the reference of Dan, 2020. The 

red dots (Obs_LAI_Shrub) are the actual LAI of shrubs on DOY 160.5 and DOY 168.5, where we did 

not have real measurement, but we calculated them based on the correlation ratio derived in 2022 (Table 

S4 in the Supplement). 

 

7. Line 176, why were root-related parameters not identified as influential parameters? This is the 

main focus of your study. 

Response 7: Thank you for bringing up this important point! In STEMMUS-SCOPE, the maximum 

rooting depth, fitted extinction coefficient, and root length density are the primary rooting parameters 

in determining root distribution, root growth, and root water uptake (Jackson et al., 1997; Wang et al., 

2021). In the revised version, we will incorporate these parameters into the sensitivity analysis. 

 



8. Line 216, how did the authors optimize the parameters (best-fit trail in Line 196)? How to avoid 

the equifinality for the parameters of shrub and grass? 

Response 8: During the sensitivity analysis, 160 sets of parameters for shrubland were generated 

and while a fixed parametrization was used in grassland simulation. As a result, the shrubland 

simulation generated 160 sets of fluxes, which were aggregated with the fluxes from the grassland 

simulation. By comparing the 160 sets of aggregated fluxes with the observed fluxes, we calculated 

the R2 and RMSE for each flux in each trail. At last, an objective function, the normalized root mean 

square errors 𝑅𝑀𝑆𝐸𝑛 =  
𝑅𝑀𝑆𝐸𝑆𝑊𝐶

𝑂𝑏𝑠̅̅ ̅̅ ̅̅ 𝑆𝑊𝐶
+

𝑅𝑀𝑆𝐸𝐿𝐸

𝑂𝑏𝑠̅̅ ̅̅ ̅̅ 𝐿𝐸
+

𝑅𝑀𝑆𝐸𝐺𝑃𝑃

𝑂𝑏𝑠̅̅ ̅̅ ̅̅ 𝐺𝑃𝑃
was calculated for each trail, where 

𝑂𝑏𝑠̅̅ ̅̅ ̅
𝑆𝑊𝐶/𝐿𝐸/𝐺𝑃𝑃 is the average values of observed SWC, LE and GPP throughout the investigation 

period, respectively. The best-fit trail (i.e., the optimized parametrization for shrubland) is the trail 

with minimal 𝑅𝑀𝑆𝐸𝑛. 

The equifinality for the 160 sets of shrub parameters might be an issue, especially in such a non-

linear system with many physical processes. We mitigated the equifinality problem by considering 

two aspects: (1) For the sensitivity analysis method, we used the Morris method - a global 

sensitivity analysis method. On the one hand, the Morris method samples parameter values from a 

given interval in a large parameter space (i.e., 167 in our case). This systematic sampling approach 

ensures a broad exploration of the parameter space, which can help identify the model’s sensitivity 

to different regions. On the other hand, except for ranking the influence of parameters based on 

elementary effect, the Morris method also quantifies interactions between parameters, which helps 

understand how parameters jointly affect the model output; (2) For the sensitivity analysis result, 

the use of objective function 𝑅𝑀𝑆𝐸𝑛 in requiring RMSE in SWC, LE and GPP can help avoid this 

problem. More samplings and analysis can be done but is beyond the focus of this study.  

 

9. Line 218, does it mean Vcmax of shrub and grass is the same (120)? Why? 

Response 9: Yes, in this work, we assume the maximum carboxylation rate (Vcmax) is the same for 

both shrubs and grasses. In light of the reference values from studies involving similar shrub species, 

Vcmax = 120 for shrub was determined (Wang et al., 2017). For the grassland, the default value for C3 

grassland is 80 in SCOPE model and we did not find any reference value for similar species or in similar 

study area. We assume the same Vcmax for grass as shrub in order to maintain consistency for the 

species grown in the same study area, regarding their adaptability to the arid region. Besides, the 

grassland simulation serves as a reference scenario pre-revegetation. The Vcmax variation in the 

grassland simulation doesn’t impact the primary goal: comparing grassland and shrub-grassland 

scenarios. But indeed, a more representative Vcmax could improve the physical interpretability when 

comparing two scenarios. 

 

10. Line 237, the sensors were installed under the grassland, but the simulated soil water content is the 

average of shrub, grass, and bare soil. So, direct compassion of them may have a large bias. 



Response 10: We fully agree on this and will point out the bias in the discussion in a more detailed 

manner. Since the soil water content is a state variable, which is not reasonable to aggregate/average 

from shrub, grasses and bare soil simulation in current modelling scheme. Therefore, we ended up with 

comparing the observed soil moisture with the simulated soil moisture from the grassland simulation. 

 

11. Line 373, why did not the author attempt to modify the model to simulate evaporation from the bare 

soil? 

Response 11: We did not simulate the evaporation or soil moisture from bare soil individually because 

STEMMUS-SCOPE considers the soil-root-canopy continuum, and quantifies the amount of energy 

received and water evaporated based on the leaf area index, gap fraction and leaf inclination. The key 

idea of this study is to compare the difference in the fluxes between grassland and shrubs-grassland 

scenario, in order to represent the effects of planting shrubs. Hence, we thought the current modelling 

scheme adequately represents fluxes in a mixed vegetated area. However, it's worth noting that the 

STEMMUS model itself can simulate evaporation from bare soil effectively (Zeng et al., 2011), while 

STEMMUS-SCOPE is more adaptable for vegetated areas (LAI > 0). To address this issue, future 

model improvements will aim to allow the option of switching on/off the vegetation module as needed. 

 

12. Line 403. Why cannot the model capture the wet deep soil layer? Is it related to root water uptake? 

More analysis and simulation should be performed. 

Response 12: Sorry if this was unclear in the manuscript. According to the observed dry surface (i.e., 

low SWC at 10 cm) and a higher observed LE and GPP compared to the simulations, we assumed that 

the shrubs could switch their root water uptake strategy by either accessing the deep soil water and/or 

accessing water by lateral roots. If the former assumption is met, our model does not have this option 

for the plant to switch RWU under specified condition but only simulate the root length growth and 

RWU by root parameters mentioned in Response 7. For the latter assumption of lateral roots, our model 

is a 1-D vertical model therefore we overlook this process, which is an important survival strategy of 

shrubs in the study area.  

For the RWU simulation, the uncertainties were raised from (1) the setting of the initial soil profile. As 

shown in the (user-defined) initial conditions (Table S2), the soil moisture under 10 cm was estimated 

without support from observations during 2016-2019. In the STEMMUS-SCOPE, the initial SWC 

profile not only determines the pattern of soil water storage but also indicates the pattern of root water 

uptake in the soil column. That’s why we mentioned “the model might not capture the wet deep soil 

layer”; (2) The uncertainties in reconstructed LAI; (3) The uncertainties in estimated Vcmax and root 

parameters.  

However, these are just plausible assumptions because of the lack of observed data from underground. 

Future analysis will be conducted by investigating the root parameters and modules, to gain more 

insights and clarifications in the revised manuscript. 



References 

Dan, Y.: Effects of Planted Shrub Encroachment on Evapotranspiration in Desert Steppe ——A Case 

Study in Yanchi County, Ningxia Hui Autonomous Region (In Chinese), Ningxia University, 

https://doi.org/10.27257/d.cnki.gnxhc, 2020. 

Dan, Y., Du, L., Wang, L., Ma, L., Qiao, C., Wu, H., and Meng, C.: Effects of planted shrub 

encroachment on evapotranspiration and its components in desert steppe: A case study in Yanchi county, 

Ningxia Hui Autonomous Region, Shengtai Xuebao/ Acta Ecol. Sin., 40, 5638–5648, 

https://doi.org/10.5846/STXB201910032066, 2020. 

Fensholt, R. and Sandholt, I.: Evaluation of MODIS and NOAA AVHRR vegetation indices with in 

situ measurements in a semi-arid environment, Int. J. Remote Sens., 26, 2561–2594, 

https://doi.org/10.1080/01431160500033724, 2005. 

Fensholt, R., Sandholt, I., and Rasmussen, M. S.: Evaluation of MODIS LAI, fAPAR and the relation 

between fAPAR and NDVI in a semi-arid environment using in situ measurements, Remote Sens. 

Environ., 91, 490–507, https://doi.org/10.1016/j.rse.2004.04.009, 2004. 

Jackson, R. B., Mooney, H. A., and Schulze, E. D.: A global budget for fine root biomass, surface area, 

and nutrient contents, Proc. Natl. Acad. Sci. U. S. A., 94, 7362–7366, 

https://doi.org/10.1073/PNAS.94.14.7362, 1997. 

Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., and 

Gentine, P.: Implementing Plant Hydraulics in the Community Land Model, Version 5, J. Adv. Model. 

Earth Syst., 11, 485–513, https://doi.org/10.1029/2018MS001500, 2019. 

Wang, H., Harrison, S. P., Prentice, I. C., Yang, Y., Bai, F., Togashi, H. F., Wang, M., Zhou, S., and 

Ni, J.: The China Plant Trait Database, PANGAEA, https://doi.org/10.1594/PANGAEA.871819, 2017. 

Wang, Y., Zeng, Y., Yu, L., Yang, P., Van der Tol, C., Yu, Q., Lü, X., Cai, H., and Su, Z.: Integrated 

modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in 

the soil-plant-Atmosphere continuum (STEMMUS-SCOPE v1.0.0), Geosci. Model Dev., 14, 1379–

1407, https://doi.org/10.5194/gmd-14-1379-2021, 2021. 

Yang, W., Wang, Y., He, C., Tan, X., and Han, Z.: Soil Water Content and Temperature Dynamics 

under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral 

Ecotone in Northwest China, Sustain. 2019, Vol. 11, Page 4188, 11, 4188, 

https://doi.org/10.3390/SU11154188, 2019. 

Zeng, Y., Su, Z., Wan, L., and Wen, J.: Numerical analysis of air-water-heat flow in unsaturated soil: 

Is it necessary to consider airflow in land surface models?, J. Geophys. Res. Atmos., 116, D20107, 

https://doi.org/10.1029/2011JD015835, 2011. 

 

 


