Supplementary figures for “Underestimation of global O₂ loss in optimally interpolated historical ocean observations”

Takamitsu Ito¹, Hernan E. Garcia², Zhankun Wang², Shoshiro Minobe³,⁴, Matthew C. Long⁵, Just Cebrian²,⁶, James Reagan², Tim Boyer², Christopher Paver², Courtney Bouchard², Yohei Takano⁷, Seth Bushinsky⁸, Ahron Cervania¹, Curtis A. Deutsch⁹

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia USA
²NOAA, National Centers for Environmental Information, Silver Springs, Maryland, USA
³Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
⁴Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
⁵Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado, USA
⁶Northern Gulf Institute, Mississippi State University, Stennis Space Center, Mississippi, USA
⁷Los Alamos National Laboratory, Los Alamos, New Mexico, USA
⁸School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
⁹Department of Geosciences, Princeton University, Princeton, NJ, USA

Correspondence to: Taka Ito (taka.ito@eas.gatech.edu)
Supplementary Figures

Supplementary Figure S1. Upper ocean (0-1,000m) column O$_2$ trend from 1967 to 2012. From upper left to lower right panel, observation (World Ocean Database 2018), CanESM5, MPI-ESM1-2-LR, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, NorESM2-LM, and E3SM1-1. The full model output is used to calculate the model-derived O$_2$ trend.
Figure S2. Upper ocean (0-1,000m) column O\textsubscript{2} trend from 1967 to 2012. From upper left to lower right panel, observation (World Ocean Database 2018), CanESM5, MPI-ESM1-2-LR, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, NorESM2-LM, and E3SM1-1. The sub-sampled and optimally interpolated model output is used to calculate the model-derived O\textsubscript{2} trend.
Figure S4. Time series of Subpolar North Atlantic (SPNA) upper ocean (0-1,000m) column O₂ inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S5. Time series of Subtropical North Atlantic (STNA) upper ocean (0-1,000m) column O₂ inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S6. Time series of Equatorial Atlantic (EQAT) upper ocean (0-1,000m) column O₂ inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S7. Time series of Subtropical South Atlantic (STSA) upper ocean (0-1,000m) column O₂ inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S8. Time series of Mediterranean (MED) upper ocean (0-1,000m) column O\textsubscript{2} inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S9. Time series of Subpolar North Pacific (SPNP) upper ocean (0-1,000m) column O\textsubscript{2} inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S10. Time series of Subtropical North Pacific (STNP) upper ocean (0-1,000m) column O\textsubscript{2} inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S11. Time series of Equatorial Pacific (EQPA) upper ocean (0-1,000m) column O\textsubscript{2} inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S12. Time series of Subtropical South Pacific (STSP) upper ocean (0-1,000m) column O_2 inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S13. Time series of Equatorial Indian (EQID) upper ocean (0-1,000m) column O_2 inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S14. Time series of Subtropical South Indian (STSI) upper ocean (0-1,000m) column O_2 inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.

Figure S15. Time series of Southern Ocean (SO) upper ocean (0-1,000m) column O_2 inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S16. Time series of Arctic Ocean (AO) upper ocean (0-1,000m) column O_2 inventory from World Ocean Database 2018 (black solid) and CMIP6 models (color) from (left) full model output and (right) subsampled and optimally interpolated model output.
Figure S17. Time-mean data coverage for each basin at the depths of 100, 200, 400 and 700m.