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Abstract. The macromolecular rate theory (MMRT) has been proposed as a mechanistic scheme to describe the temperature 

dependence of enzymatic reactions, and has enjoyed quite some popularity recently. MMRT was motivated by assuming that 

enzyme denaturation is not sufficient to explain the decline of enzyme activity above an optimal temperature, and was derived 

with two experimental assumptions: (1) the half saturation parameter is independent of temperature; and (2) when the substrate 10 

concentration is kept at 10 times of the half saturation parameter at reference temperature, the enzyme assays are substrate 

saturated under all experimental temperatures. We show that thermally reversible enzyme denaturation could be essential to 

consistently interpret the temperature dependence of enzymatic reactions, and due to the temperature-dependence of the half 

saturation parameter, neither of the experimental assumptions of MMRT held. Consequently, the MMRT estimated 

temperature sensitivity of the maximum catalysis rate is inaccurate. It can mischaracterize temperature-related biochemical 15 

behaviors, such as inferring the existence of a unique optimal temperature where biochemical rate peaks, and the shift of this 

optimal temperature as an indicator of thermal acclimation or adaptation. We proposed a chemical kinetics theory that 

explicitly incorporates the observed thermally reversible enzyme denaturation, von Smoluchowski’s diffusion-limited 

chemical reaction theory, and Eyring’s transition state theory to interpret the temperature dependence of enzymatic reactions. 

Since the chemical kinetics theory performed equally successful in fitting the enzyme assay data used in deriving MMRT, and 20 

has incorporated more relevant empirical observations and well-established theories than MMRT, we recommend it as a better 

candidate for mechanistic modeling of the temperature dependence of biogeochemical rates. However, MMRT is still a better 

model than the conventional Q10 and Arrhenius functions for describing the emergent temperature dependence of biochemical 

rates. 

1 Introduction 25 

Recently, the macromolecular rate theory (MMRT) has been proposed to interpret observations of enzyme-catalyzed 

chemical reactions (Hobbs et al., 2013). These rates often show a pattern that first increases gradually, then plateaus, and 

finally decreases rapidly with temperature. The authors of MMRT were motivated by asserting that “denaturation is 
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insufficient to explain the decline in enzymatic rates above 𝑇!"#”, and proposed that the change in heat capacity associated 

with enzyme catalysis and its consequent effect on the temperature dependence of the Gibbs free energy of activation can 30 

describe the temperature dependence of enzyme activity. Following the success of Hobbs et al. (2013) on modeling the 

temperature dependence of single-enzyme catalyzed reactions, Schipper et al. (2014) showed that MMRT is able to better than 

the Arrhenius-like functions for fitting measured relationships between soil biogeochemical rates and temperature, including 

those for aerobic respiration, methane oxidation, nitrification, and denitrification. Later, Alster et al. (2016) demonstrated that 

MMRT was successful at capturing the temperature dependence of extracellular enzyme activities, including those of 𝛽-35 

glucosidase, leucine aminopeptidase, and phosphatase. Following these studies, Liang et al. (2018) recommended that MMRT 

should be used for improved description of the measured relationship between plant leaf respiration and temperature. Recently, 

Alster et al. (2020) advocated that MMRT should be used widely to represent the temperature dependence of many types of 

soil biogeochemical processes. In spite of their success, these studies have not explained clearly what they meant by enzyme 

denaturation and how MMRT can be logically extended from single-enzyme reactions to populations of biological cells that 40 

carry out their metabolism using many enzymes. 

The popularity of MMRT is built upon two observations: (1) MMRT is able to match measured relationships of 

biochemical rates versus temperatures better than the popular Arrhenius-like functions and the Q10 function, and (2) MMRT 

parameters have more mechanistic meaning by involving thermodynamic definitions than other empirical functions that are of 

similarly good descriptive power but with mechanistically less interpretable parameters (e.g., the log-polynomial function 45 

(e.g., O'Sullivan et al., 2017), the four-parameter square root function (Ratkowsky et al., 1983), and see (Grimaud et al., 2017) 

and (Noll et al., 2020) for more examples). Despite these merits, we show here limitations arising from the two experimental 

assumptions used in their enzyme assays for developing MMRT (Hobbs et al., 2013): (1) the half saturation parameter is 

independent of temperature (as implied by their assumption that the ratio of substrate concentration to half saturation parameter 

was kept at two while using the same substrate concentrations under all temperatures for enzyme barnase and its mutant), and 50 

(2) the constant value 10 for the ratio of substrate concentration to half saturation parameter at reference temperature ensures 

that their enzyme assay system is substrate saturated under all experimental temperatures. (We note that Hobbs et al. (2013) 

adopted their second experimental assumption from the enzyme assay protocol in Peterson et al. (2004), who proposed a four-



3 
 

parameter (plus time) thermodynamically based equilibrium model that is able to fit the non-monotonic temperature dependent 

enzyme reactions quite well). Instead, we find that by incorporating the well observed thermally reversible denaturation of 55 

enzymes (i.e. the dynamic transition between their native folded state and the unfolded state as a function of temperature and 

solution conditions (e.g., Oliveberg et al., 1995;Anfinsen, 1973)) into the chemical kinetics, we can satisfactorily explain the 

non-monotonic temperature response of enzyme catalysis rate, while maintaining the logical consistency between theory and 

the supporting empirical data.  

Besides MMRT, a few other models with mechanistically interpretable parameters are also capable of equally well 60 

interpreting the non-monotonic temperature dependence of enzyme modulated reactions, including growth rates. Notably, 

Sharpe and Demichele (1977) proposed a model that incorporates the empirical observation of thermally reversible enzyme 

denaturation and the transition state theory (Eyring, 1935). Specifically, they considered that enzymes are in reversible 

transition between three states, one cold-induced inactive state, one heat-induced inactive state, and one active state which is 

able to carry out the catalysis. By assuming reactions to be substrate unlimited, they obtained a model with five thermodynamic 65 

parameters that is able to almost perfectly fit published temperature dependent growth rates of eight poikilothermic organisms 

(see their Figures 5 and 6).  (The applicability of the Sharpe-Demichele model to growth rates of an organism is based on the 

assumed existence of control or master enzymes (Johnson and Lewin, 1946).) Motivated by the success of Sharpe and 

Demichele (1977) and the work on thermally reversible protein denaturation by Murphy et al. (1990), Ratkowsky et al. (2005) 

grouped the two inactive states into one, and, again assuming no-substrate limitation, derived a model with two thermodynamic 70 

parameters and two enzyme informatic parameters, which was able to very accurately fit 35 sets of observed temperature 

dependent bacterial growth rates. The model by Ratkowsky et al. (2005) was later used by Corkrey et al. (2012) and Corkrey 

et al. (2014) to successfully interpret the temperature dependent growth rates of many more poikilothermic organisms. Ghosh 

et al. (2016) extended the model by Ratkowsky et al. (2005) to include the thermally reversible denaturation of many enzymes 

and proteins informed by proteomics, and were able to satisfactorily interpret the measured temperature-dependent growth 75 

rates of mesophiles and thermophiles.  

The thermally-reversible enzyme denaturation occurs due to the thermal motion of molecules and ions in the solution 

of enzyme proteins (Finkelstein and Ptitsyn, 2016). As thermal motion is ceaseless, according to Boltzmann’s law in statistical 
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mechanics (Feynman et al., 2011), enzyme molecules will be distributed among different configurations that can be quantified 

by their respective energy status. Therefore, under any biologically feasible temperature, some of the enzyme molecules will 80 

not be in their biologically active native states. That is, at any life amenable temperature, only a fraction of enzymes is able to 

catalyze the corresponding biochemical reaction. Consequently, by not explicitly taking into account the thermally-reversible 

enzyme denaturation (or by assuming all enzyme denaturation are irreversible), we believe MMRT may have missed some 

important mechanistic insights on the temperature control of enzymatic reactions. 

In the following, we first present our analysis of the assumptions involved in the development of MMRT. Then we 85 

describe an alternative interpretation of the observed non-monotonic relationship between biochemical rates and temperatures 

that is more consistent with protein physics and the theory of chemical kinetics. Finally, we discuss how our alternative 

formulation will lead to mechanistically more accurate representations of the temperature dependence of biogeochemical 

reaction rates. 

2. Methods 90 

2.1 The enzymatic reaction problem 

The simplest form of enzymatic reactions as, described by MMRT (introduced in section 2.2) and the alternative 

theory (presented in section 2.3), can be formulated as: 

𝐸! + 𝑆
𝑘"#
⇄
𝑘"$

𝐸!𝑆
%$%&&⎯⎯( 𝐸! + 𝑃, (1) 

where 𝐸' is the concentration of free enzymes whose conformation structure is in the native state (i.e., being active and able 

to carry out the catalysis; here and below we will use “native” and “active” interchangeably according to the appropriateness 95 

of the context), 𝑃 is the concentration of product molecules, 𝑆 is concentration of the substrate,  𝐸'𝑆 is concentration of the 

enzyme-substrate complex, and 𝑘() , 𝑘(* , and 𝑣+,-  are temperature (𝑇) dependent kinetics parameters. Although it is not 

necessary for the validity of the Michaelis-Menten kinetics (Briggs and Haldane, 1925), for scaling purpose, 𝑣+,-  (the 

maximum enzymatic catalysis rate) is often assumed to be much greater than 𝑘(*  (Tang and Riley, 2017;Kooijman, 

2009;Holling, 1959;Aksnes and Egge, 1991;Van Slyke and Cullen, 1914). Moreover, throughout this study, we take all 100 

variables to be in ISO units. 
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 By applying the law of mass action and the quasi-steady-state-approximation to equation (1), we obtain the Michaelis-

Menten equation for the overall reaction rate F: 

𝐹 = 𝑣&'(
)./*
+#*

, (2) 

where 𝐾 = 𝑣+,- 𝑘()⁄  is the half saturation parameter, and 𝐸'#  is the total concentration of enzymes that are able to form 

enzyme-substrate complexes. 105 

 We next describe how MMRT and the chemical kinetics theory represent the temperature dependence of 𝐹. 

 
Figure 1: (a) In the macromolecular rate theory (MMRT), the Gibbs free energy of activation ∆𝑮∗  is a nonlinear function of 
temperature, giving rise to the non-monotonic temperature response of catalysis rate; (b) in the chemical kinetics theory, the Gibbs 
free energy of activation is a linear function of temperature, the enthalpy of activation ∆𝑯𝑽 is constant, and the thermally reversible 110 
denaturation of the enzymes leads to the non-monotonic temperature response of catalysis rate. Other variables are defined in the 
main text. 
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2.2 The macromolecular rate theory (MMRT) 

 MMRT (Figure 1a) applies the transition state theory (Eyring, 1935) to describe the maximum reaction rate 𝑣+,- 

(called 𝑘(𝑇) in the MMRT representation) as 115 

𝑘(𝑇) = ,0-
.
𝑒𝑥𝑝 3− ∆0⋆

1-
5, (3) 

where 𝑘2 is the Boltzmann constant, ℎ is the Planck constant, 𝑅 is the universal gas constant, and ∆𝐺⋆ is the Gibbs free energy 

of activation (determined as the difference in Gibbs free energy between the ground state and the transition state). Most 

importantly, motivated by (La Mer, 1933) (as pointed out by an anonymous expert on MMRT who reviewed a previous version 

of this manuscript), MMRT assumes ∆𝐺⋆ to be dependent on temperature nonlinearly, such that  

∆𝐺⋆ = ∆𝐻3 + ∆𝐶4∗(𝑇 − 𝑇3) + 𝑇 3∆𝑆∗ + ∆𝐶4∗𝑙𝑛(𝑇/𝑇3)5, (4) 

where ∆𝐻3  and ∆𝑆∗  are enthalpy and entropy between the ground and transition states at reference temperature 120 

𝑇3, respectively, and ∆𝐶"∗ is (the change in) heat capacity associated with enzyme catalysis. Without invoking the enzyme 

denaturation process, MMRT effectively assumes that all enzymes are in their native state and are capable of forming 

complexes with the substrate molecules, and all enzyme-substrate complexes are active for generating products. It is through 

a negative ∆𝐶"∗  that the temperature dependence of 𝑘(𝑇)  becomes non-monotonic, in which it first increases from low 

temperature and then, after passing a peak reaction rate, falls off at high temperature. (However, recently, based on molecular 125 

dynamics simulations, Aqvist et al. (2020) and Aqvist and Van der Ent (2022) suggested that not all enzyme-substrate 

complexes are active and inferred ∆𝐶"∗ to be zero. Moreover, for thermally reversible protein denaturation, Oliveberg et al. 

(1995) observed a negative heat capacity during their refolding into native states, which coincidently has the same sign as  ∆𝐶"∗ 

in MMRT. We will discuss this in detail later in section 4.) 

 Although Hobbs et al. (2013) did not explicitly state that the affinity parameter 𝐾 (aka 𝐾5) in their fitting of MM 130 

kinetics is temperature independent, their analysis of enzyme assay data effectively assumed so by attributing all temperature 

dependence of 𝐹 to 𝑘(𝑇) and assuming all enzyme assays are substrate saturated. That is, MMRT computes 𝐹 as 

𝐹 = 𝐹661- = 𝑘(𝑇) )/*
+6#*

, (5) 
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where 𝐾3 is 𝐾 empirically determined at the reference temperature 𝑇3, and 𝐸# is the total concentration of the enzyme. 

In the reanalysis using chemical kinetics theory below, we show that the temperature dependence of 𝐾 is related to 

that of 𝑣+,-, so that the MMRT-derived temperature dependence of 𝑘(𝑇) is a function of substrate concentration. In contrast, 135 

in the enzyme assays by Hobbs et al. (2013), for five out of seven enzymes, it was assumed that a substrate concentration of 

~10𝐾3  at the reference temperature is sufficient to ensure each system is substrate saturated (i.e. 𝑆/𝐾 ≫ 1) under all 

temperatures, so that the inferred 𝑘(𝑇) is independent of substrate concentration. Although Hobbs et al. (2013) never stated 

that 𝑘(𝑇) fully captures the temperature dependence of 𝐹, later applications (e.g., Schipper et al., 2014;Liang et al., 2018;Alster 

et al., 2016) recommended MMRT to replace the popular Q10 function or Arrhenius function to represent the temperature 140 

sensitivity of biochemical rates in soils and plants. (We highlight that in those applications, what MMRT, the Q10 and Arrhenius 

functions represent are emergent temperature response dependent on the substrate and plant or soil conditions used in deriving 

the empirical data.) Alster et al. (2020) recognized the possible temperature dependence of 𝐾 , but still considered the 

temperature dependence of 𝑣+,-	to	be	captured	in	𝑘(𝑇). Below we will show that 𝑘(𝑇) as determined by MMRT convolves 

the temperature dependence of  𝑣+,- and 𝐾, so that it fails to capture the temperature dependence of 𝐹. 145 

2.3 The chemical kinetics theory  

Chemical kinetics theory (Figure 1b) incorporates the observation that a fraction (1 − 𝑓7(𝑇)) of the enzymes (𝐸#) are 

in the thermally reversible denatured non-native state (e.g., Finkelstein and Ptitsyn, 2016;Ghosh and Dill, 2009), so that the 

total catalytically active enzymes is 𝑓7(𝑇)𝐸#. (As we argued in the introduction, such reversible transition between native and 

unfold states is ensured by the ceaseless thermal motion of molecules and ions in the enzyme solution.) Further, by 150 

thermodynamics, Jin and Bethke (2003) showed that, besides the catalysis by enzymes, the chemical reaction is also driven by 

a thermodynamic-potential ∆𝐺8 whose effect can be parameterized through a function 𝑓8(𝑇), where ∆𝐺8 is the Gibbs free 

energy of the chemical reaction of converting the reactants into products. These turn equation (2) into 

𝐹 = 𝐹7+- =
%$%&,8:(-))/*

+#*
𝑓1(𝑇), (6) 

where 

𝑣&'( = 𝑣&'(,3𝑓%(𝑇), (7) 
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𝐾 = %$%&
,;
< = 𝐾3𝑓+(𝑇), (8) 

𝑓1(𝑇) = 1 − 𝑒𝑥𝑝 3− ∆0=
1-
5, (9) 

and 𝑣+,-,3 and 𝐾3 are values of  𝑣+,- and 𝐾 evaluated at temperature 𝑇3, respectively. Moreover, following the definition of 155 

𝐾 in equation (2), we adopted the assumption that 𝑣+,- is much greater than 𝑘(* in equation (8). In equation (6), 𝑓8(𝑇) is 

computed by following Jin and Bethke (2003), with ∆𝐺8 dependent on its value at standard conditions and the reaction quotient 

of the chemical reaction. However, except when there is significant product inhibition, 𝑓8 may be set to one, which is adopted 

in the remainder of this paper. We next formulate 𝑓7(𝑇), 𝑓>(𝑇) and 𝑓?(𝑇). 

 A two-state model is used to formulate the temperature dependent function 	𝑓7(𝑇) as 160 

𝑓)(𝑇) =
"

"#<(4=$∆A:=B >
 , (10) 

with 𝑅 being the universal gas constant, and protein-unfolding Gibbs free energy 

∆𝐺) = ∆𝐶4 @(𝑇 − 𝑇?) − 𝑇𝑙𝑛 3
-
-C
5A. (11) 

Here ∆𝐶"  is the heat capacity of protein unfolding, which is negative of the negative heat capacity of refolding used by 

Oliveberg et al. (1995) and is always positive due to proteins’ hydrophobicity (Silverstein, 2020). 𝑇D is the temperature at 

which unfolding enthalpy is zero, and 𝑇E is the temperature at which unfolding entropy is zero. ∆𝐶", 𝑇D and 𝑇E are all functions 

of protein chain length (Ghosh and Dill, 2009), and, usually, 𝑇E is greater than 𝑇D. 165 

 For 𝑣+,-, applying the transition state theory (Eyring, 1935), we have 

𝑣&'( = 𝑣&'(,3𝑓%(𝑇) = 𝑣&'(,3 3
-
-6
5 𝑒𝑥𝑝 B− ∆?F

1-
31 − -

-6
5C, (12) 

where 𝑣+,-,3  is 𝑣+,-  evaluated at reference temperature 𝑇3 , and ∆𝐻G  is the enthalpy of activation and is temperature 

independent.  

 For the temperature dependence of 𝐾, applying the diffusion-limited chemical reaction model by von Smoluchowski 

(1917) indicates that 𝑘() is proportional to diffusivity. Therefore, by using the Stokes-Einstein equation of diffusivity (Miller, 170 
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1924), and considering the Arrhenius-type temperature dependence of dynamic viscosity of water, 𝑘()  will have similar 

functional form of temperature dependence as 𝑣+,- (see (Tang et al., 2021) for more details), resulting in  

𝑓+(𝑇) = 𝑒𝑥𝑝 B− ∆?H
1-

31 − -
-6
5C. (13) 

 Combining equations (6)-(13), we have  

𝐹 = 𝐹7+- = 𝑣&'(,3
8I(-)8:(-))/*
+68H(-)#*

, (14) 

which describes the temperature dependence of the biochemical reaction rates in the absence of significant product inhibition.  

 In particular, by assuming that 𝑆 is much larger compared to 𝐾3𝑓?(𝑇), we obtain 175 

𝐹@ = 𝑣&'(,3𝐸A𝑓%(𝑇)𝑓)(𝑇) = 𝑟3𝑓%(𝑇)𝑓)(𝑇), (15) 

which is the model proposed by Ratkowsky et al. (2005) to describe the temperature-dependent growth of various 

microorganisms (also see Corkrey et al., 2012; Corkrey et al., 2014).  

2.4 The relationship between chemical kinetics theory and MMRT  

 In the analysis by (Hobbs et al., 2013), 𝑘(𝑇) was assumed to be equal to the reaction rates 𝐹 for enzyme assays with 

10 × 𝐾5 at reference temperature (note that they denote 𝐾 with  𝐾5). (They mentioned that enzyme assay data for barnase 180 

and its A43C/S80C mutant, which used substrate concentration of 2 × 𝐾5 , were corrected for possible 𝐾5 dependence with 

𝐾5 determined at two temperatures.) This is equivalent to set 𝐹558J from equation (5) to be equal to 𝐹K?J in equation (14), 

which leads to  

𝑘(𝑇) = 𝑣&'(,3𝑓%(𝑇)𝑓)(𝑇)
"#* +6⁄

8H(-)#* +6⁄ . (16) 

For the ease of parametric fitting (as will be described in section 2.5), taking the logarithm of equation (16) leads to 

ln 𝑘(𝑇) = ln 𝑣&'(,3 + ln(1 + 𝑆 𝐾3⁄ ) + ln 3 8I(-)8:(-)
8H(-)#* +6⁄ 5. (17) 

Equations (16) and (17) show that the temperature dependence of k(T) is determined by 𝑓>(𝑇), 𝑓7(𝑇), 𝑓?(𝑇), and the 185 

normalized substrate availability 𝑆 𝐾3⁄ . When enzyme assays are conducted with known values of 𝑆 𝐾3⁄  and reference 

temperature (where 𝐾3 is defined), the data can be used to derive the parameters ∆𝐻G, ∆𝐶", 𝑇D, 𝑇E, and ∆𝐻?. In our analysis, 
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since the activation enthalpy for the temperature dependence of the self-diffusion of water is almost a constant at 18 kJ mol-1 

(Mills, 1973), we set ∆𝐻? = ∆𝐻G − 18, so that only four parameters need to be derived from parametric fitting, which is one 

parameter more than required by MMRT. 190 

 Equation (16) or (17) can be used to analyze the motivating assumption and the two basic experimental assumptions 

that underlie MMRT. First, Hobbs et al. (2013) suggested that MMRT was motivated by noting that enzyme denaturation 

cannot satisfactorily explain the temperature dependence of catalysis rates. They then assumed that all enzymes are effectively 

in their active state to do catalysis, and attributed the decline in enzyme catalysis rate above an optimum temperature to the 

change of heat capacity associated with the enzyme catalysis. However, thermally reversible enzyme denaturation, as one type 195 

of enzyme denaturation, has been observed by many studies (Sizer, 1943;Alexandrov, 1964;Huang and Cabib, 1973;Maier et 

al., 1955;Weis, 1981), as well as by molecular dynamics simulations (McCully et al., 2008), and is ensured to occur by the 

ceaseless thermal motion of molecules and ions in the enzyme solution. Nonetheless, irreversible denaturation driven by heat 

does occur (Perdana et al., 2012), as it is necessary for the cooking of eggs or meat. Second, equations (16) and (17) clearly 

show that the enzyme assay-derived 𝑘(𝑇)  is affected by substrate abundance, through the ratio (𝑆 𝐾3⁄ ) of substrate 200 

concentration 𝑆 to 𝐾3 . Third, because 𝐾 is temperature dependent, taking 𝑆 𝐾3⁄  to be a relatively large value (e.g., 10 as 

adopted by Hobbs et al. (2013) and Peterson et al. (2004), hoping to “minimize the effect of any possible increase in 𝐾5 with 

temperature”) does not guarantee that the term (1 + 𝑆 𝐾3⁄ )/(𝑓?(𝑇) + 𝑆 𝐾3⁄ ) reduces to a value of one (see section 3.1 for 

more details). Therefore, not only is the validity of their motivating presumption compromised, but also that of their 

experimental assumptions for deriving MMRT. Instead, as we will show later, a proper incorporation of thermally reversible 205 

enzyme denaturation is sufficient to explain the non-monotonic temperature dependence of enzyme catalysis rate, and substrate 

availability and the temperature dependence of 𝐾 can modulate the optimal temperature (𝑇!"#) where biochemical reaction 

rate is maximized.  

2.5 Empirical data reanalysis 

 We extracted the assay data of all seven enzymes from Hobbs et al. (2013) and all five enzymes from Peterson et al. 210 

(2004) to evaluate the validity of chemical kinetics theory. (We did not try to analyze data from soils, as that would involve a 

more comprehensive model, which is beyond the scope of this study.) Since we were not able to extract the reaction rates 
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directly from the figures in these studies, nor obtain the original data, we normalized rates for each enzyme with its own rate 

at a selected reference temperature 𝑇L, based on the criterion that the data point at 𝑇L is crossed by lines of their original 

numerical fitting (where (Hobbs et al., 2013) used MMRT, while (Peterson et al., 2004) used their equilibrium model). In the 215 

logarithm form (i.e., ln𝑘(𝑇)), this normalization ensures that the values of ln 𝑘(𝑇) − ln 𝑘(𝑇L) used as observations at different 

temperatures are independent of the value of ln 𝑣+,-,3 + ln(1 + 𝑆 𝐾3⁄ ) at the reference temperature 𝑇3 of the enzyme essay. 

We obtain the best fitting parameters by using the “fminsearch” function from MATLAB R2020b to minimize the summed 

difference between modeled and measured values of ln 𝑘(𝑇) − ln 𝑘(𝑇L) . Because we were not able to digitally extract 

meaningful uncertainty of the observations from the figures either in Peterson et al. (2004) or in Hobbs et al. (2013), (which is 220 

needed to compute the uncertainty using the Monte Carlo method), we do not compute uncertainties of the estimated 

parameters. (We also tried using finite difference to approximate the Hessian matrix of the cost function at the best parameter 

estimates obtained by “fminsearch”. However, the ill-condition of the approximated Hessian matrix prevents us from 

estimating the parametric uncertainty meaningfully. We did not try the bootstrapping method due to too few data points 

available. However, the already excellent parametric fitting leads us to believe that if more data are available to derive the 225 

uncertainty of the parameters, the conclusions will remain the same.) 

3. Results 

 For the data of all twelve enzyme assays, the chemical kinetics theory obtained almost perfect model-data fitting with 

the “fminsearch” computed best fit parameters (Figure 2). The R2 values for the linear regression between model predictions 

and observations are approaching 0.99 or 1.00 for 10 cases, and the lowest value is 0.85 for Barnase (Figure 2f). The best-fit 230 

heat capacity ∆𝐶"  of the thermodynamically reversible conversion between native and non-native conformations of the 

enzymes are all positive, varying between 1.34 kJ mol-1 K-1 (for Adenosine deaminase in Figure 2i) and 22.74 kJ mol-1 K-1  

(for Aryl-acylamidase in Figure 2k), in agreement with the range reported in Figure 2C by Ghosh and Dill (2009).  
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Figure 2. Fitting of the chemical kinetics theory (solid lines) to the enzyme assay data (red filled circles). Panels (a)-(g) are 235 
measurements from Hobbs et al. (2013) and panels (h)-(l) are from Peterson et al. (2004). 𝑻𝒓 is the reference temperature used in the 
data extracted from published figures (and it is different from the reference temperature 𝑻𝟎 that was actually involved in the enzyme 
assay experiments). 𝑹𝟐  is for the linear regression between the model predictions with best-fit parameters (blue lines) and 
measurements (in red circles). Following their original studies, parametric fitting for panels (f) and (g) used  𝑺 𝑲𝟎⁄ =2, while others 
used 𝑺 𝑲𝟎⁄ =10. 240 
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Figure 3. Examples for the influence of substrate availability on the temperature response of enzymic reaction rates. For substrate 
level c4), the rate curve corresponds to 𝒇𝒗(𝑻)𝒇𝑬(𝑻) from equation (15). 

 For the four example enzymes picked from the estimated parameters from Figure 2, we found the optimal temperature 245 

(i.e., where the reaction rate reaches its maximum) has varying dependence on substrate availability (Figure 3). (We do not 

show temperature response curves of the other eight enzymes, because they respond similarly to substrate availability, and 

thus do not change our conclusions here.) All examples show that as substrate availability increases, the optimal temperature 

increases and the temperature response curve shifts towards higher temperatures. For enzyme aryl-acylamidase, the actual 

physiological optimal temperature under the saturating substrate concentration (i.e. when 𝑆 = ∞, computed by equation (15)) 250 

equals the emergent optimal temperature at a substrate concentration of 10𝐾3, and is 1 K higher than those at substrate 

concentrations of 𝐾3 and 𝐾3 2⁄  . For enzymes V200S and A43C/S80C, the optimal temperature at substrate concentration 10𝐾3 

is 1 K lower than the physiological optimal temperature (Figure 3a, b). However, this difference is 20 K for adenosine 

deaminase (Figure 3c). These results clearly demonstrate that substrate availability plays a potentially important role in the 

emergent temperature response of biochemical reaction rates. Nevertheless, we note that this prediction of substrate abundance 255 
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induced shift of optimal temperature should only be confronted with measurements of single enzyme reactions. As we will 

discuss later, the relationship between optimal temperature and substrate abundance in real soils is much more complicated. 

4. Discussion and conclusion 

Our theoretical analysis suggests that, even for a single-substrate-single-enzyme reaction, its temperature response 

involves contributions from at least four processes: (1) the thermally reversible transition between native and non-native state 260 

enzymes (which is ensured by the ceaseless thermal motions of molecules and ions in the enzyme solution); (2) the binding 

between native-state enzymes and substrates to form enzyme-substrate complexes; (3) the transition state activation of the 

enzyme-substrate complex; and (4) the thermodynamic feasibility for the biochemical reaction to generate product molecules. 

The chemical kinetics theory is able to explicitly account for all four processes, and can be extended to include more processes 

when more complex biochemical reactions are considered (e.g., as discussed in Tang et al. (2021)). In contrast, in spite of its 265 

simpler form, MMRT may have misinterpreted the functional relationship between measured biochemical rates and 

temperatures, in particular, by being unable to account for the modulation of optimal temperature and overall temperature 

response curve due to substrate availability. One consequence is that MMRT may be misinterpreting the inferred optimal 

temperature as the true physiologically optimal temperature (under the saturating substrate concentration), and regarding a 

measured shift of optimal temperature as evolutionary adaption. We find that higher optimal temperatures can be achieved 270 

under higher substrate availability. Further, the inferred temperature dependence by MMRT also includes contributions from 

the temperature sensitivity of affinity parameter, but the rate falloff at high temperature is not determined by the temperature 

sensitivity of the affinity parameter. Therefore, if one is using MMRT to represent reaction rate temperature dependencies and 

also includes a temperature-dependent substrate affinity parameter, the resultant model risks double counting the temperature 

response.  275 

Recently, Numa et al. (2021) and Robinson et al. (2020) observed that adding plant litter or glucose to soil incubation 

samples resulted in lower optimum temperatures of soil respiration (when fitted with MMRT). As adding more substrate is 

most likely increasing the substrate concentration in soil, the lower optimum temperature appeared opposite to what the 

chemical kinetics theory predicts. However, we acknowledge that to apply the chemical kinetics theory to soils requires a 

model that considers the interactions between substrates, microbes and organo-mineral interactions. Since sorption interactions 280 
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between organic matter and soil minerals tend to increase the overall activation energy or enthalpy of carbon use by microbes 

(Tang and Riley, 2015), the newly added substrate most likely is having a lower activation energy than organic substrate that 

is already in soil, and will lead to a decrease in the optimal temperature of soil respiration. We demonstrated this with an 

example in Figure 4, where temperature response curves for a low and high activation energy cases are computed using 

equation (15), and found that lowering the activation energy reduced the optimal temperature by 2 K. Therefore, what Numa 285 

et al. (2021) and Robinson et al. (2020) observed could be well resulted from a shift in substrate type, which can be modelled 

through explicit representation of substrate competition and organo-mineral interactions (which was discussed in (Tang and 

Riley, 2013;Tang and Riley, 2015)).  

 

Figure 4. An example to show that lower activation energy will lead the optimal temperature to shift towards lower values. The curves are 290 
drawn based on equation (15), with the high activation energy case using parameters from V200S, and the low activation energy case reduced 
∆𝑯𝑽 from 78.82 kJ mol-1 to 58.82 kJ mol-1.  

 One outstanding difference between MMRT and the chemical kinetics theory is that MMRT generally infers a 

negative heat capacity (associated with the catalysis process), while the chemical kinetics theory infers a positive heat capacity 

of protein unfolding (associated with thermally reversible enzyme denaturation). Interestingly, if the heat capacity of protein 295 

refolding is substituted for the heat capacity of unfolding in the description of thermally reversible enzyme denaturation, its 
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sign becomes negative (Oliveberg et al., 1995). Some other studies that have used a similar framework of MMRT have 

associated the heat capacity with the enzyme-substrate binding process and have also found its value as being negative (e.g., 

Wang et al., 2009;Buczek and Horvath, 2006;Dullweber et al., 2001). However, using molecular dynamics simulations, Aqvist 

and Van der Ent (2022) inferred the heat capacity to be zero for both catalysis and binding processes for a designer enzyme 300 

1A53-2.5. Moreover, Aqvist and Van der Ent (2022) and Aqvist (2022) suggested that the non-monotonic relationship between 

temperature and catalysis rate can be explained by the existence of an equilibrium between active enzyme substrate complex 

𝐸'𝑆 and inactive enzyme substrate complex (𝐸′'𝑆). To some extent, the conceptual model by Aqvist and Van der Ent (2022) 

is equivalent to the chemical kinetics theory, if the latter allows the inactive enzymes to form inactive enzyme-substrate 

complexes. We acknowledge that the finding of zero heat capacity for both catalysis and binding processes has been debated 305 

in Lear et al. (2023) and Aqvist (2023), but it is concluded that different kinetic models can fit the measured temperature 

dependent catalysis rates equally well. In particular, Aqvist (2023) noted that a kinetic model considering thermally reversible 

enzyme denaturation fits the observations equally well. However, deducing a non-zero heat capacity for both catalysis and 

binding processes seems to require one to ignore the thermally-reversible enzyme denaturation, which is ensured by the 

ceaseless thermal motion of molecules and ions in the enzyme solution. 310 

Combining the transition state theory and the protein denaturation model by Lumry and Eyring (1954), Peterson et 

al. (2004) proposed an equilibrium model that includes both reversible and irreversible enzyme denaturation to explain their 

observed non-monotonic relationship between temperature and catalysis rates. However, because they assumed a constant 

enthalpy for the reversible enzyme denaturation, their Gibbs free energy of enzyme unfolding became a linear function of 

temperature. This linear function contrasts with the nonlinear function (i.e. equation (11)) and the existence of multiple native 315 

protein states that are usually observed in protein physics (Ghosh and Dill, 2009;Silverstein, 2020;Sheng and Pan, 

2002;Finkelstein and Ptitsyn, 2016). Further, their model involves an explicit temporal dependence in the formulated catalysis 

rates, which introduces one more parameter (i.e., time) than the chemical kinetics model. Moreover, Peterson et al. (2004) also 

assumed their enzyme essays are substrate saturated, while we show above that such an assumption could very well be 

invalidated by the temperature dependence of substrate affinity parameter.  320 
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In summary, we contend that the chemical kinetics theory, by incorporating the observed thermally reversible 

transitions of enzymes between their native and non-native states (which occurs even in the absence of substrate molecules 

due to the ceaseless thermal motion of molecules and ions in the enzyme solution) (Anfinsen, 1973;Finkelstein and Ptitsyn, 

2016;Sizer, 1943;Oliveberg et al., 1995), the diffusion-limited chemical reaction theory by (von Smoluchowski, 1917), and 

the transition state theory by (Eyring, 1935), can satisfactorily explain the non-monotonic relationship between temperature 325 

and catalysis rates, and is a better mechanistic representation of the temperature dependence of enzyme-catalyzed biochemical 

rates than MMRT.    

   Can chemical kinetics theory be upscaled to an organism from the single-substrate-single-enzyme examples 

presented here? While it is likely impossible to demonstrate such a scaling analytically, using the Ohm’s law analogy from 

Tang et al. (2021), where the temperature dependence of the emergent kinetic parameters (i.e., the overall 𝑣+,- and 𝐾) for 330 

chains of enzymes are found to follow similar forms as described by the chemical kinetics theory, we can qualitatively assert 

that the answer is true. Indeed, some previous studies (e.g., Ratkowsky et al., 2005;Corkrey et al., 2012;Ghosh et al., 2016) 

have showed that even equation (15) (which excludes substrate dependence) is able to satisfactorily describe temperature 

dependent growth of many organisms. Particularly, the success in capturing the temperature-dependent bacterial growth rate 

in Ghosh et al. (2016), where they extended the thermally reversible enzyme denaturation in equation (15) to include all lethal 335 

proteins sampled from the proteome of mesophilic and thermophilic bacteria, suggesting that the chemical kinetics theory is 

very likely scalable. Therefore, all these successful applications imply that the chemical kinetics theory should have the 

potential to be applied to microbes, animals, and plants.  

 Finally, because almost every microbe, animal, and plant is able to respire on multiple substrates (Madigan et al., 

2009;Cooper and Hausman, 2007) and the natural availability of those substrates usually fluctuate, the chemical kinetics theory 340 

and the equilibrium chemistry approximation kinetics for substrate competition networks (Tang and Riley, 2013) together 

suggest that a given organism will be unlikely to have either a fixed temperature response curve or optimal temperature even 

with a fixed proteome distributions. Rather, they both are likely to be dynamic. 
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