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Abstract. One notable observation of enzymatic chemical reaction is that, for a given abundance of enzymes and substrates, 

temperature increases cause reaction rates to first increase consistent with the Arrhenius relationship, then plateau, and finally 

fall off quickly to zero at high temperatures. While many mathematical functions have been used to describe this pattern, we 

here propose a chemical kinetics theory which successfully replicates this observation and provides insights into the processes 10 

responsible for these dynamics. The chemical kinetics theory combines the law of mass action, von Smoluchowski’s diffusion-

limited chemical reaction theory, and Eyring’s transition state theory. This new theory reveals that the thermally reversible 

enzyme denaturation ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution explains the plateau 

and subsequent decrease of chemical reaction rates with increasing temperature. The temperature-dependent affinity parameter 

(K) that relates enzymes and substrates through their binding also affects the shape of the emergent temperature response. We 15 

demonstrate that with an increase in substrate availability, K shifts the optimal temperature, where reaction rates plateau, 

towards higher values. Further, we show that the chemical kinetics theory accurately represents 12 sets of published enzyme 

assay data, and includes the popular mechanistic model by Ratkowsky et al. (2005) as a special case. Given its good 

performance and solid theoretical underpinning, we believe this new theory will facilitate the construction of more 

mechanistically-based environmental biogeochemical models. 20 

1 Introduction 

When an enzyme-catalysed chemical reaction is monitored under a range of temperatures, one often observes that the 

reaction rate first increases with temperature in a manner following the Arrhenius function, peaks at some temperature, and 

then falls off quickly to zero when the temperature is too high for the enzyme to function (Sharpe and DeMichele, 1977; 

Peterson et al., 2004). As enzymes catalyse almost every chemical reaction relevant to life, this temperature response has also 25 

been observed for growth and respiration rates that emerge from the interactions among myriads of chemical reactions in an 

organism (Precht et al., 1973).  
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In order to describe this non-monotonic relationship between enzymatic reaction rates and temperature, many 

empirical and mechanistically-based functions have been proposed. Sharpe and DeMichele (1977) proposed a model that 

incorporates the empirical observation of thermally reversible enzyme denaturation (e.g., Sizer, 1943; Alexandrov, 1964) and 30 

the transition state theory (Eyring, 1935). They assumed that enzymes undergo reversible transitions between three states: a 

cold-induced inactive state, a heat-induced inactive state, and an active state capable of catalysis. By assuming reactions to be 

substrate unlimited, they obtained a model with five thermodynamic parameters that is able to almost perfectly fit published 

temperature-dependent growth rates of eight poikilothermic organisms (see their Figures 5 and 6). We note that the 

applicability of the Sharpe-DeMichele model to growth rates of an organism is based on the assumed existence of control by 35 

master enzymes (Johnson and Lewin, 1946). Motivated by the success of Sharpe and DeMichele (1977) and the work on 

thermally reversible protein denaturation by Murphy et al. (1990), Ratkowsky et al. (2005) grouped the two inactive states into 

one, and, again assuming no substrate limitation, derived a model with two thermodynamic parameters and two enzyme 

informatic parameters, which was able to very accurately fit 35 sets of observed temperature-dependent bacterial growth rates. 

The model by Ratkowsky et al. (2005) was later used by Corkrey et al. (2012) and Corkrey et al. (2014) to successfully interpret 40 

the temperature-dependent growth rates of many more poikilothermic organisms. Ghosh et al. (2016) extended the Ratkowsky 

et al. (2005)  model by including the thermally reversible denaturation of many enzymes and proteins informed by proteomics, 

and were able to satisfactorily interpret the measured temperature-dependent growth rates of mesophiles and thermophiles.  

Recently, Hobbs et al. (2013) argue that enzyme denaturation is not necessary to interpret the non-monotonic 

dependence of enzymatic reaction rates on temperature. Instead, they proposed the macromolecular rate theory (MMRT), 45 

which assumes that the change in heat capacity associated with enzyme catalysis and its consequent effect on the temperature 

dependence of the Gibbs free energy of activation can describe the temperature dependence of enzyme activity. Following the 

success of Hobbs et al. (2013) on modeling the temperature dependence of single-enzyme catalyzed reactions, Schipper et al. 

(2014) showed that MMRT better fits measured relationships between soil biogeochemical rates and temperature, including 

those for aerobic respiration, methane oxidation, nitrification, and denitrification, than Arrhenius-like or Q10 functions. Later, 50 

Alster et al. (2016) demonstrated that MMRT was successful at capturing the temperature dependence of extracellular enzyme 

activities, including those of 𝛽-glucosidase, leucine aminopeptidase, and phosphatase. Following these studies, Liang et al. 
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(2018) recommended that MMRT should be used for improved description of the measured relationship between plant leaf 

respiration and temperature. Recently, Alster et al. (2020) advocated that MMRT should be used widely to represent the 

temperature dependence of many types of soil biogeochemical processes.  55 

Besides the mechanistically-based models mentioned above, there are quite a number of empirically-based models 

described in the literature,  e.g., the log-polynomial function (O'Sullivan et al., 2017), the four-parameter square root function 

(Ratkowsky et al., 1983), the Zwietering model (Zwietering et al., 1991), the Cardinal temperature model with inflection 

(Lobry et al., 1991), and others. More examples can be found in Grimaud et al. (2017) and Noll et al. (2020). 

While the mechanistically-based and empirically-based models described above have been quite successful in fitting 60 

the relationship between measured rates and temperature, they do not account for the fact that the overall temperature response 

may be affected by substrate availability. This issue is acknowledged, for example, when Sharpe and DeMichele (1977) put 

forward their model and may be a barrier for developing biogeochemical models that strive to resolve the temperature 

dependence of biogeochemical rates mechanistically. 

In the following, we develop the chemical kinetics model to deliver a comprehensive description of the non-65 

monotonic relationship between temperature and enzymatic reaction rates. The model incorporates the observation that 

thermally-reversible enzyme denaturation always occurs due to the thermal motion of molecules and ions in the solution of 

enzyme proteins (Finkelstein and Ptitsyn, 2016), and three well-established theories of chemical reactions: (1) law of mass 

action (Koudriavtsev, 2011), (2) von Smoluchowski’s diffusion-limited chemical reaction theory (von Smoluchowski, 1917), 

and (3) Eyring’s transition state theory (Eyring, 1935). We evaluated the theory with 12 datasets of enzyme essays and then 70 

discuss how this new theory provides mechanistic explanations and accurate representations of the temperature dependence of 

biogeochemical reaction rates. We leave out the temperature-dependent irreversible enzyme denaturation, but note that it needs 

to be included in a dynamic model (Tang and Riley, 2015;Alvarez et al., 2018). 

2. Methods 

2.1 The enzymatic reaction problem 75 

We consider the simplest form of enzymatic reactions: 
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where 𝐸$ is the concentration of free enzymes whose conformation structure is in the active state and able to carry out the 

catalysis, 𝑃 is product concentration, 𝑆 is substrate concentration, 𝐸$𝑆 is enzyme-substrate complex concentration, and 𝑘%&, 

𝑘%', and 𝑣()* are temperature (𝑇) dependent kinetics parameters. Although it is not necessary for the validity of Michaelis-

Menten kinetics (Briggs and Haldane, 1925), for scaling purposes, 𝑣()*  (the maximum enzymatic catalysis rate) is often 80 

assumed to be much greater than 𝑘%' (Tang and Riley, 2017; Kooijman, 2009; Holling, 1959; Aksnes and Egge, 1991; Van 

Slyke and Cullen, 1914). Throughout this study, we take all variables to be in ISO units, and provide a list of all variables and 

their explanations in the Appendix. 

 
Figure 1: In the chemical kinetics theory, the Gibbs free energy of activation ∆𝑮𝑽 is a linear function of temperature, i.e. ∆𝑮𝑽 =85 
∆𝑯𝑽 − 𝑻∆𝑺𝑽, with the enthalpy of activation ∆𝑯𝑽 and the entropy of activation ∆𝑺𝑽 both being constant. This behavior of ∆𝑮𝑽, along 
with the thermally reversible denaturation of the enzymes (as depicted by the inactive and active states here), leads to the non-
monotonic temperature response of catalysis rate. Other variables are defined in the main text. 

 By applying the law of mass action and the quasi-steady-state-approximation (Borghans et al., 1996) to equation (1), 

i.e. 𝑘%&𝐸$𝑆=(𝑣()* + 𝑘%')𝐶, with 𝐶 being the concentration of enzyme-substrate complex 𝐸$𝑆, we obtain Michaelis-Menten 90 

equation for the overall reaction rate F: 

𝐹 = 𝑣&'(𝐶 = 𝑣&'(
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+#*
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where 𝐾 = 𝑣()* 𝑘%&⁄  is the half saturation parameter (by taking the usual assumption 𝑣()* ≫ 𝑘%' (Tang and Riley, 2017)), 

and 𝐸$- is the total concentration of enzymes that are able to form enzyme-substrate complexes, i.e. 𝐸$- = 𝐸$ + 𝐶. 

 We next describe how the chemical kinetics theory represents the temperature dependence of 𝐹. 

2.2 The chemical kinetics theory  95 

In studying proteins in an aqueous solution, it was observed that proteins may spontaneously unfold into inactive 

states, which for enzymes means losing their catalysis capability (Nojima et al., 1977; Finkelstein and Ptitsyn, 2016). By taking 

advantage of the thermal motion, the unfolded inactive enzyme proteins can also refold into their active state, regaining their 

catalysis capability (Oliveberg et al., 1995). Therefore, as thermal motion is ceaseless for all temperatures that are 

physiologically amenable to enzymatic reactions, it is safe to assert that at any time, even without irreversible denaturation, 100 

some enzymes are in inactive states not capable of catalysing their specialized chemical reactions.  

Chemical kinetics theory (Figure 1) incorporates the observation of thermally reversible denaturation by considering 

that a fraction (1 − 𝑓.(𝑇)) of the enzymes (𝐸-) are in the thermally reversible denatured inactive state (e.g., Finkelstein and 

Ptitsyn, 2016; Ghosh and Dill, 2009), so that the catalytically active enzyme concentration 𝐸$-  is 𝑓.(𝑇)𝐸- . Further, by 

thermodynamics, Jin and Bethke (2003) showed that, in addition to enzyme catalysis, the chemical reaction is driven by a 105 

thermodynamic potential parameterized through a function 𝑓/(𝑇), which is a function of ∆𝐺/, the Gibbs free energy of the 

chemical reaction of converting the reactants into products. These turn equation (2) into 

𝐹 = %!"#,0(.)),*
+#*

𝑓0(𝑇), (3) 

where 

𝑣&'( = 𝑣&'(,2𝑓%(𝑇), (4) 

𝐾 = %!"#
31
2 = 𝐾2𝑓+(𝑇), (5) 

𝑓0(𝑇) = 1 − 𝑒𝑥𝑝 8− ∆53
0.
9, (6) 

and 𝑣()*,5 and 𝐾5 are values of  𝑣()* and 𝐾 evaluated at temperature 𝑇5, respectively.  
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For equation (6), 𝑓/(𝑇) can be computed following Jin and Bethke (2003), with ∆𝐺/ dependent on its reference value 110 

at standard conditions and the reaction quotient of the chemical reaction under the given environmental condition 

(characterized by pressure, temperature, salinity, pH, etc.). However, except when there is significant product inhibition, 𝑓/ 

may be set to one, which is adopted in the remainder of this paper. We next derive expressions for 𝑓6(𝑇), 𝑓7(𝑇) and 𝑓.(𝑇). 

 For 𝑣()*, applying the transition state theory (Eyring, 1935), we have 

𝑓%(𝑇) = 8 .
.8
9 𝑒𝑥𝑝 :− ∆69

0.
81 − .

.8
9;, (7) 

where 𝑇5  is the reference temperature when 𝑣()*  equals 𝑣()*,5 , and ∆𝐻:  is the temperature-independent enthalpy of 115 

activation. In deriving equation (7), the Gibbs free energy ∆𝐺:  of transition state theory is taken as a linear function of 

temperature, i.e. ∆𝐺: = ∆𝐻: − 𝑇∆𝑆:, with entropy ∆𝑆: being constant, and incorporated into 𝑣()*,5.  

To derive the temperature dependence 𝑓7(𝑇) for 𝐾, we follow the definition of 𝐾 in equation (2), and adopt the 

assumption that 𝑣()* is much greater than 𝑘%' in equation (5). Applying the diffusion-limited chemical reaction model by von 

Smoluchowski (1917) indicates that 𝑘%& is proportional to diffusivity. Therefore, by using the Stokes-Einstein equation of 120 

diffusivity (Miller, 1924), and considering the Arrhenius-type temperature dependence of water’s dynamic viscosity, 𝑘%& will 

have a similar functional form of temperature dependence as 𝑣()* (see (Tang et al., 2021) for more details), resulting in  

𝑓+(𝑇) = 𝑒𝑥𝑝 :− ∆6;
0.

81 − .
.8
9;. (8) 

In application, considering the activation enthalpy of self-diffusion of water as constant, e.g., 18 kJ mol-1 (Konya and Nagy, 

2018), one may compute ∆𝐻7 = ∆𝐻: − 18.  

A two-state model (e.g., Zwanzig, 1997) is used to formulate the temperature dependent function 	𝑓.(𝑇) as 125 

𝑓)(𝑇) =
"

"#7(89$∆=03> :
 , (9) 

with 𝑅 being the universal gas constant, and protein-unfolding Gibbs free energy 

∆𝐺) = ∆𝐻) − 𝑇∆𝑆) = ∆𝐶8(𝑇 − 𝑇6) − 𝑇∆𝐶8𝑙𝑛 8
.
.?
9. (10) 
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Here ∆𝐶@ is the heat capacity of protein unfolding (computed as 𝜕∆𝐻. 𝜕𝑇⁄ = 𝑇 𝜕∆𝑆. 𝜕𝑇⁄ ), which is of opposite sign of the 

negative heat capacity of refolding measured by Oliveberg et al. (1995) and is always positive due to proteins’ hydrophobicity 

(Silverstein, 2020). 𝑇A  is the temperature at which unfolding enthalpy ∆𝐻.  is zero, and 𝑇B  is the temperature at which 

unfolding entropy ∆𝑆. is zero. ∆𝐶@, 𝑇A and 𝑇B are all functions of protein chain length (Ghosh and Dill, 2009), and, usually, 130 

𝑇B is greater than 𝑇A. 

 When equations (3)-(8) are combined, we have  

𝐹 = 𝑣&'(,2
,C(.),0(.)),*
+8,;(.)#*

, (11) 

which describes the temperature dependence of biochemical reaction rates in the absence of significant product inhibition. 

When equation (11) is applied to represent the temperature dependence of an enzymatic reaction, once the reference 

temperature 𝑇5 is chosen, one needs to estimate four parameters: 𝑇A, 𝑇B , ∆𝐻: and ∆𝐶@. 135 

 In particular, by assuming that 𝑆 is much larger than 𝐾5𝑓7(𝑇), we obtain the substrate unlimited rate equation 

𝐹; = 𝑣&'(,2𝐸<𝑓%(𝑇)𝑓)(𝑇) = 𝑟2𝑓%(𝑇)𝑓)(𝑇), (12) 

which is the four-parameter model proposed by Ratkowsky et al. (2005) to describe the temperature-dependent growth of 

various microorganisms (also see Corkrey et al., 2012; Corkrey et al., 2014).  Since the Ratkowsky model has been successfully 

applied to hundreds of published datasets, the more generic chemical kinetics theory should be equally accurate under 

substrate-unlimited conditions, and can provide further insights to the non-monotonic relationship between enzymatic reaction 140 

rates, temperature, and substrate availability.   

To facilitate parametric fitting (as will be described in section 2.3), taking the logarithm of equation (11) leads to 

ln 𝐹(𝑇) = ln 𝑣&'(,2 + ln(1 + 𝑆 𝐾2⁄ ) + ln 8 ,C(.),0(.)
,;(.)#* +8⁄ 9. (13) 

2.3 Empirical data reanalysis 

 We extracted the assay data of all seven enzymes from Hobbs et al. (2013) and all five enzymes from Peterson et al. 

(2004) to evaluate the chemical kinetics theory. We did not try to analyze data from soils, as that would involve a more 145 

comprehensive model (considering both the production and destruction of enzymes), which is beyond the scope of this study. 

Since we were not able to extract the reaction rates directly from the figures in these studies, nor obtain the original data, rates 
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for each enzyme were normalized with its own rate at a selected reference temperature 𝑇D, based on the criterion that the data 

point at 𝑇D is crossed by lines of their original numerical fitting ((Hobbs et al. (2013) used MMRT and Peterson et al. (2004) 

used their equilibrium model). In the logarithm form (i.e., ln𝐹(𝑇)), this normalization ensures that the values of ln 𝐹(𝑇) −150 

ln 𝐹(𝑇D) used as observations at different temperatures are independent of the value of ln 𝑣()*,5 + ln(1 + 𝑆 𝐾5⁄ )  at the 

reference temperature 𝑇5 of the enzyme essay. We obtain the best-fit parameters by using the “fminsearch” function from 

MATLAB R2020b to minimize the summed difference between modeled and measured values of ln 𝐹(𝑇) − ln𝐹(𝑇D). In the 

process of parameter estimation, we found that “fminsearch” estimated the same parameter values corresponding to the global 

minimum of the cost function even when starting from differential initial guesses, indicating that the parametric fitting is 155 

robust. However, this robustness leads to some difficulty in estimating the uncertainty of the parameter fitting process. 

Specifically, because we were not able to digitally extract meaningful uncertainty of the observations from the figures either 

in Peterson et al. (2004) or in Hobbs et al. (2013), we could not apply the Monte Carlo method to compute uncertainties of the 

estimated parameters. We also tried using finite difference to approximate the Hessian matrix of the cost function at the best 

parameter estimates obtained by “fminsearch”. However, the ill-condition of the approximated Hessian matrix prevents us 160 

from estimating the parametric uncertainty meaningfully. We could not apply the bootstrapping method because too few data 

points were available. Nonetheless, the excellent parametric fitting indicates that the results are robust. 
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Figure 2. Fitting of the chemical kinetics theory (solid lines) to the enzyme assay data (red filled circles). Panels (a)-(g) are 
measurements from Hobbs et al. (2013) and panels (h)-(l) are from Peterson et al. (2004). 𝑻𝒓 is the reference temperature used in the 165 
data extracted from published figures (and is different from the reference temperature 𝑻𝟎 that was actually involved in the enzyme 
assay experiments). 𝑹𝟐  is for the linear regression between the model predictions with best-fit parameters (blue lines) and 
measurements (in red circles). Following their original studies, parametric fitting for panels (f) and (g) used  𝑺 𝑲𝟎⁄ =2, while others 
used 𝑺 𝑲𝟎⁄ =10. 

 170 

3. Results 

 For the data of all twelve enzyme assays, the chemical kinetics theory obtained almost perfect model-data fitting with 

the “fminsearch” computed best fit parameters (Figure 2). The R2 values for the linear regression between model predictions 

and observations are above 0.97 for 11 cases, and 0.85 for 1 case (Barnase) (Figure 2f). The best-fit heat capacity ∆𝐶@ of the 

thermodynamically reversible conversion between active and inactive conformation states of the enzymes are all positive, 175 

varying between 1.34 kJ mol-1 K-1 (for Adenosine deaminase in Figure 2i) and 22.74 kJ mol-1 K-1  (for Aryl-acylamidase in 

Figure 2k), in agreement with the range reported in Figure 2C by Ghosh and Dill (2009).  
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Figure 3. Substrate availability strongly affects the temperature sensitivity of the enzymatic reaction rates, as shown for 4 example 
enzymes chosen from parameters inferred in Figure 2. For substrate level c4, the rate curve corresponds to 𝒇𝒗(𝑻)𝒇𝑬(𝑻) from 180 
equation (12). The bulge in Figure 3d is due to the special combination of the inferred parameters. 

 For the four example enzymes chosen from the estimated parameters from Figure 2, we found the optimal temperature 

(i.e., where the reaction rate reaches its maximum) has varying dependence on substrate availability (Figure 3). We show 

temperature response curves of the other eight enzymes in Supplemental Material, and note that they show similar patterns as 

those in Figure 3. All examples show that as substrate availability increases, the optimal temperature increases and the 185 

temperature response curve shifts towards higher temperatures. For enzyme aryl-acylamidase (Figure 3d), the true 

physiological optimal temperature under the saturating substrate concentration (i.e., when 𝑆 = ∞, computed by equation (12)) 

equals the emergent optimal temperature at a substrate concentration of 10𝐾5, and is 1 K higher than those at substrate 

concentrations of 𝐾5 and 𝐾5 2⁄ . For enzymes V200S and A43C/S80C, the optimal temperature at substrate concentration 10𝐾5 

is 1 K lower than the physiological optimal temperature (Figure 3a, b). However, this difference is 20 K for adenosine 190 

deaminase (Figure 3c). These results clearly demonstrate that substrate availability plays a potentially important role in the 

emergent temperature response of biochemical reaction rates. Nevertheless, we note that this prediction of substrate 
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abundance-induced shift in optimal temperature is appropriate for single enzyme reactions. As we discuss below, the 

relationship between optimal temperature and substrate abundance in real soils is much more complicated. 

4. Discussion and conclusion 195 

Our theoretical analysis suggests that, even for a single-substrate-single-enzyme reaction, its temperature response 

involves contributions from at least four processes: (1) the thermally reversible transition between active and inactive enzymes 

(which is ensured by the ceaseless thermal motions of molecules and ions in the enzyme solution); (2) the binding between 

active enzymes and substrates to form enzyme-substrate complexes; (3) the transition state activation of the enzyme-substrate 

complex; and (4) the thermodynamic feasibility for the biochemical reaction to generate product molecules. The chemical 200 

kinetics theory explicitly accounts for these four processes, and can be extended to include more processes when more complex 

biochemical reactions are considered (e.g., as discussed in Tang et al. (2021)). In particular, this theory demonstrates that 

substrate availability affects the functional relationship between biochemical rates and temperature (equation (11)). Ignoring 

this effect may lead to misinterpretation of observed optimal temperatures, and confound analyses of, e.g., microbial thermal 

adaptation. Specifically, we find that higher optimal temperatures can be achieved under higher substrate availability for a 205 

single-enzyme-single-substrate reactions. Such a shift in optimal temperature with substrate abundance also appears to align 

with the findings in Alvarez et al. (2018), although their interpretation attributes it to irreversible enzyme denaturation. 
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Figure 4. An example demonstrating that lower activation energy causes the optimal temperature to shift towards lower values. The 
curves are drawn based on equation (12), with the high activation energy case using parameters from V200S, and the low activation 210 
energy case reduced ∆𝑯𝑽 from 78.82 kJ mol-1 to 58.82 kJ mol-1.  

Recently, Numa et al. (2021) and Robinson et al. (2020) observed that adding plant litter or glucose to soil incubation 

samples resulted in lower inferred optimal temperatures of soil respiration (when fitted with MMRT). Since adding more 

substrate most likely increased substrate concentrations, the lower optimal temperature appeared to contradict predictions by 

the chemical kinetics theory. However, applying the chemical kinetics theory to soils requires consideration of interactions 215 

between substrates, microbes, and organo-mineral interactions. Since sorption interactions between organic matter and soil 

minerals tend to increase the overall activation energy or enthalpy of carbon use by microbes (Tang and Riley, 2015), and 

newly added substrates most likely have lower activation energy than existing soil organic substrates, we expect a decrease in 

the optimal temperature of soil respiration. We explore this effect by computing temperature response curves for low and high 

activation energy cases computed using equation (12) that assumes no substrate limitation. This example shows that lowering 220 

the activation energy reduced the optimal temperature by ~2 K (Figure 4). Therefore, what Numa et al. (2021) and Robinson 

et al. (2020) observed could have resulted from a shift in substrate type and availability, which should be modelled through 

explicit representation of substrate competition and organo-mineral interactions (as discussed in (Tang and Riley, 2013;Tang 
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and Riley, 2015)). In particular, we argue that the change in optimal temperature is not a simple indication of microbial 

physiological adaption, but an emergent consequence due to interactions among many factors, including substrate availability, 225 

soil conditions, enzyme dynamics, and among others, microbial physiology.  

One important feature of the chemical kinetics theory is that it infers a positive heat capacity of protein unfolding 

(i.e., ∆𝐶@ associated with thermally reversible enzyme denaturation), and a constant enthalpy of activation  ∆𝐻: of the forward 

conversion of the enzyme-substrate complex. This positive ∆𝐶@  is consistent with the negative heat capacity of enzyme 

refolding found by Oliveberg et al. (1995) and with many previous studies (Ghosh and Dill, 2009; Murphy et al., 1990; 230 

Finkelstein and Ptitsyn, 2016). Recently, using molecular dynamics simulations, Aqvist and Van der Ent (2022) inferred the 

heat capacity to be zero for both catalysis and binding processes for a designer enzyme 1A53-2.5, supporting a constant ∆𝐻: 

(note that heat capacity equals to 𝜕𝐻: 𝜕𝑇⁄ ). Moreover, Aqvist and Van der Ent (2022) and Aqvist (2022) suggested that the 

non-monotonic relationship between temperature and catalysis rate can be explained by the existence of an equilibrium 

between active enzyme substrate complex 𝐸$𝑆 and inactive enzyme substrate complex (𝐸′$𝑆). To some extent, the conceptual 235 

model by Aqvist and Van der Ent (2022) is equivalent to the chemical kinetics theory, if the latter allows the inactive enzymes 

to form inactive enzyme-substrate complexes. The finding of zero heat capacity for both catalysis and binding processes has 

been debated in Lear et al. (2023) and Aqvist (2023), but they concluded that different kinetic models can fit the measured 

temperature dependent catalysis rates equally well. In particular, Aqvist (2023) noted that a kinetic model considering 

thermally reversible enzyme denaturation fits the observations equally well. However, deducing a non-zero heat capacity for 240 

both catalysis and binding processes seems to require one to ignore the thermally-reversible enzyme denaturation, which is 

inconsistent with the ceaseless thermal motion of molecules and ions in the enzyme solution. 

Combining the transition state theory and the protein denaturation model by Lumry and Eyring (1954), Peterson et 

al. (2004) proposed an equilibrium model that includes both reversible and irreversible enzyme denaturation to explain their 

observed non-monotonic relationship between temperature and catalysis rates. However, because they assumed a constant 245 

enthalpy for the reversible enzyme denaturation, their Gibbs free energy of enzyme unfolding became a linear function of 

temperature. This linear function contrasts with the nonlinear function (i.e. equation (10)) and the existence of multiple native 

protein states that are usually observed or inferred in studies of protein physics (Ghosh and Dill, 2009; Silverstein, 2020; Sheng 
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and Pan, 2002; Finkelstein and Ptitsyn, 2016). Further, their model involves an explicit temporal dependence in the formulated 

catalysis rates, which introduces one more parameter (i.e., time) than the chemical kinetics model. Moreover, Peterson et al. 250 

(2004) also assumed their enzyme essays are substrate saturated, which is not always the case in real systems, and can affect 

the temperature dependence of the substrate affinity parameter and thereby the overall reaction rate.  

In summary, we show here that the chemical kinetics theory, by incorporating (1) the observed thermally reversible 

transitions of enzymes between their active and inactive states (which occurs even in the absence of substrate molecules due 

to the ceaseless thermal motion of molecules and ions in the enzyme solution) (Anfinsen, 1973; Finkelstein and Ptitsyn, 2016; 255 

Sizer, 1943; Oliveberg et al., 1995); (2) law of mass action (Koudriavtsev, 2011); (3) the diffusion-limited chemical reaction 

theory by von Smoluchowski (1917); and (4) the transition state theory by (Eyring, 1935), can satisfactorily explain the non-

monotonic relationship between temperature and catalysis rates, and is a more comprehensive mechanistic representation of 

the temperature dependence of enzyme-catalyzed biochemical rates.    

   Can chemical kinetics theory be upscaled to an organism from the single-substrate-single-enzyme examples 260 

presented here? While it is likely impossible (and certainly beyond the scope of this paper) to demonstrate such a scaling 

analytically, Tang et al. (2021) showed, with an Ohm’s law analogy, that the temperature dependence of the emergent kinetic 

parameters (i.e., the overall 𝑣()* and 𝐾) for chains of enzymes followed a similar form as described by the chemical kinetics 

theory. Indeed, some previous studies (e.g., Ratkowsky et al., 2005; Corkrey et al., 2012; Ghosh et al., 2016) have showed that 

even equation (12) (which excludes substrate dependence) is able to satisfactorily describe temperature dependent growth of 265 

many organisms. Particularly, the success in capturing the temperature-dependent bacterial growth rate in Ghosh et al. (2016), 

where they extended the thermally reversible enzyme denaturation in equation (12) to include all lethal proteins sampled from 

the proteome of mesophilic and thermophilic bacteria, suggests that the chemical kinetics theory may be scalable to organisms. 

Further work is required to evaluate whether the chemical kinetics theory has the potential to be applied directly to microbes, 

animals, and plants. 270 

 Finally, because almost every microbe, animal, and plant is able to respire on multiple substrates (Madigan et al., 

2009; Cooper and Hausman, 2007) and the availability of those substrates fluctuates at multiple time scales, the chemical 

kinetics theory and the equilibrium chemistry approximation kinetics for substrate competition networks (Tang and Riley, 
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2013) together suggest that a given organism will be unlikely to have either a fixed temperature response curve or optimal 

temperature even with a fixed proteome distributions. Rather, the temperature response curve, and therefore the optimal 275 

temperature, is likely to be dynamic, motivating inclusion of these concepts in biogeochemical models. 

 

Appendix 

Nomenclature 

Symbol Unit Meaning 

∆𝐶8 kJ mol-1 K-1 Heat capacity of protein unfolding. 

∆𝐺0 kJ mol-1 Gibbs free energy of the chemical reaction. 

∆𝐺) kJ mol-1 Gibbs free energy of protein unfolding. 

∆𝐻+ kJ mol-1 Enthalpy of activation of parameter K. 

∆𝐻% kJ mol-1 Enthalpy of activation of 𝑣&'(. 

∆𝐻) kJ mol-1 Enthalpy of protein unfolding. 

∆𝑆) kJ mol-1 Entropy of protein unfolding 

𝐶 mol m-3 Enzyme-substrate complex concentration. 

𝐸! mol m-3 Free active enzyme concentration. 

𝐸!< mol m-3 Total active enzyme concentration. 

𝐸< mol m-3 Total enzyme concentration. 

𝐹 mol m-3 s-1 Biochemical reaction rates. 

𝐹; mol m-3 s-1 Biochemical reaction rates when substrate is unlimited. 

𝐾2 mol m-3 Half saturation parameter at reference temperature  𝑇2. 
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𝐾 mol m-3 Half saturation parameter at temperature 𝑇. 

𝑃 mol m-3 Product concentration. 

𝑅 J K-1 Universal gas constant. 

𝑆 mol m-3 Free substrate concentration. 

𝑇 K Thermodynamic temperature. 

𝑇6 K Temperature when ∆𝐻) is zero. 

𝑇* K Temperature when ∆𝑆) is zero. 

𝑓+(𝑇) None Temperature dependence of parameter 𝐾. 

𝑓0(𝑇) None Thermodynamic potential of the chemical reaction at 𝑇. 

𝑓%(𝑇) None Temperature dependence of 𝑣&'(. 

𝑘"# m3 mol-1 s-1 Specific forward binding rate between active enzymes and substrates. 

𝑘"$ s-1 Specific enzyme-substrate complex dissociation rate. 

𝑟2 mol m-3 s-1 Biochemical reaction rate at temperature 𝑇2. 

𝑣&'(,2 s-1 Maximum specific catalysis rate at reference temperature 𝑇2. 

𝑣&'( s-1 Maximum specific catalysis rate at reference temperature 𝑇. 

 280 
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