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Abstract. Leaf stoichiometric traits are central to ecosystem function and biogeochemical cycling, yet no accepted theory 10 

predicts their variation along environmental gradients. Using data in the China Plant Trait Database version 2, we aimed to 

characterize variation in leaf carbon and nitrogen per unit mass (Cmass, Nmass) and their ratio, and to test an eco-evolutionary 

optimality model for Nmass. Community-mean trait values were related to climate variables by multiple linear regression. 

Climatic optima and tolerances of major genera were estimated; Pagel’s λ was used to quantify phylogenetic controls, and 

Bayesian phylogenetic linear mixed models to assess the contributions of climate, species identity and phylogeny. 15 

Optimality-based predictions of community-mean Nmass were compared to observed values. All traits showed strong 

phylogenetic signals. Climate explained only 18% of C:N ratio variation among species but 45% among communities, 

highlighting the role of taxonomic replacement in mediating community-level responses. Geographic distributions of 

deciduous taxa separated primarily by moisture, evergreens by temperature. Cmass increased with irradiance, but decreased 

with moisture and temperature. Nmass declined with all three variables. C:N ratio variations were dominated by Nmass. The 20 

coefficients relating Nmass to the ratio of maximum carboxylation capacity at 25 ˚C (Vcmax25) and leaf mass per area (Ma) were 

influenced by leaf area index. The optimality model captured 68% and 53% of variation between communities for Vcmax25 

and Ma respectively, and 21% for Nmass. We conclude that stoichiometric variations along climate gradients are achieved 

largely by environmental selection among species and clades with different intraspecific trait values. Variations in leaf C:N 

ratio are mainly determined by Nmass, and optimality-based modelling shows useful predictive ability for community-mean 25 

Nmass. These findings should help to improve the representation of C:N coupling in ecosystem models.  

1 Introduction 

Nitrogen (N) has long been recognized as a key nutrient that influences photosynthesis, plant biomass and carbon (C) allocation, 

and therefore the terrestrial C cycle (Fernández-Martínez et al., 2014; Terrer et al., 2019). Many land surface models (LSMs) 

have recently incorporated representations of coupled C and N cycling, the intention being to increase the realism of model 30 

predictions of C cycling under climate change (Wiltshire et al., 2021). The  leaf C:N ratio plays an essential role in this coupling; 

however it is often assigned a constant value per plant functional type (PFT), due to the lack of data and/or theory that would 

predict more realistic, continuous stoichiometric variation along environmental gradients (Meyerholt et al., 2020). One aspect 

of model uncertainty could be reduced if such variation were better understood and quantified (Boonman et al., 2020; Niu et 

al., 2023).   35 

 Many studies on leaf C and N along climate gradients have been carried out, but there is still no consensus on the 

major controls of such leaf traits at individual and community levels, hindering our understanding of trait-environment 

relationships (Anderegg, 2023). There is evidence for leaf stoichiometry being affected by many factors, including species 

identity, phylogeny, climate and soil properties (Elser et al., 2010; Ma et al., 2018; Tang et al., 2018; Yang et al., 2016). The 
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demonstrated roles of species identity and phylogeny indicate that leaf C and N contents (Cmass, Nmass) and their ratios are 40 

phylogenetically conservative (Sardans and Penuelas, 2014; Vallicrosa et al., 2021; Zhang et al., 2012). Differences among 

life forms and vegetation types have also been widely noted (Ma et al., 2018; Tang et al., 2018). On the other hand, few studies 

have examined the differences between evergreen and deciduous leaves, which are expected to diverge as they represent 

alternative life-history strategies, expressed in different responses of leaf mass per area (Ma) to climate (Kikuzawa et al., 2013; 

Wang et al., 2023). The patterns of stoichiometric response to environment remain inconsistent across studies. A potential 45 

contributory problem is their reliance on annual average climate variables, such as mean annual temperature – which does not 

accurately reflect actual growing-season conditions, especially in regions with cold winters (Körner, 2021) – and mean annual 

precipitation, which is generally not a good metric for plant-available moisture because it does not take account of the large 

variations in potential evapotranspiration (driven by solar radiation and temperature) across the world. 

 Many land surface models (LSMs) treat leaf C:N ratios as fixed parameters for PFTs (Boonman et al., 2020; Zaehle 50 

et al., 2014); some allow the C:N ratio to vary, within a prescribed range, based on C and N allocation to different tissues 

(Ghimire et al., 2016; Meyerholt and Zaehle, 2015; Smith et al., 2014; Wang et al., 2010). But the fixed-PFT schemes fail to 

capture the observed range of leaf stoichiometry within each PFT, while the dynamic schemes have not been extensively tested 

against observations. Responses of N use efficiency and net primary production (NPP) to elevated CO2 vary considerably 

among models, and are not always realistic (Zaehle et al., 2014). Here eco-evolutionary optimality (EEO) principles may help 55 

by providing a route towards testable, general trait predictions (Caldararu et al., 2020; Dong et al., 2022; Harrison et al., 2021; 

Xu et al., 2021). Caldararu et al. (2020) applied an optimality-based approach (maximizing carbon export and growth) to 

improve leaf Nmass prediction, but this analysis did not consider the large and potentially confounding effect of Ma variation 

with environment (Wang et al., 2023). We infer that there is still a need to investigate the eco-evolutionary basis of leaf C:N 

ratio variations, and to reconsider how they are treated in LSMs (Sistla and Schimel, 2012). 60 

 In this study, we applied EEO principles to predict Nmass from a trait-correlation perspective. We assumed that the 

metabolic and structural components of leaf N are proportional to carboxylation capacity (Vcmax25, at a reference temperature 

of 25˚C) and Ma, respectively. The coordination hypothesis provides predictions of Vcmax25: it is assumed that the light- and 

Rubisco-limited assimilation rates under daytime conditions tend to equality, thus minimizing both maintenance respiration 

and the metabolic component of leaf N (Chen et al., 1993). An EEO-based hypothesis for the leaf economics spectrum provides 65 

predictions of Ma: it is assumed that the average net carbon gain by a leaf during its life cycle is maximized. The sum of the N 

in metabolic and structural components then determines the optimal leaf N content (Nmass). We set out (1) to analyse the 

contributions of climate, species identity and phylogeny to leaf Cmass, Nmass and their ratio, (2) to characterize geographic 

patterns in these traits along environmental gradients, (3) to test the extent to which variation in Nmass among communities 

could be captured by the EEO principles outlined above. Using a dataset comprising 1705 samples at 79 sites throughout China, 70 

we quantified the phylogenetic signal in species’ traits and fitted a Bayesian mixed-effects model to partition individual trait 

variation into effects of climate, species identity and phylogeny. We examined trait relationships with bioclimate variables 

(which improve on annual mean quantities by accounting for seasonality and latitude) and gridded data on soil C:N ratios by 

multiple regression. 

2 Materials and methods 75 

2.1 Trait and environmental data 

Our analyses are based on trait data in the China Plant Trait Database version 2 (CPTDv2, Wang et al. (2022)). The CPTDv2 

contains morphometric, chemical and photosynthetic leaf trait data on 1529 species at 140 sites representing the different 

biomes in China, as well as climate information for each site. In CPTDv2, a stratified sampling strategy was consistently used 

at each site to ensure that the dominant species in each canopy layer were sampled (detailed in Wang et al. (2018)) and avoid 80 
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bias of different sampling strategies. A total of 25 trees, five shrubs, five lianas or vines, and five understorey species (grasses 

and/or forbs) were sampled at each site. When the number of trees was less than 25 at a site, all the tree species were sampled 

and additional samples from the other life forms were supplemented up to a maximum of 40 species. Thus, the species sampled 

at each site can be considered as a representative sample of the plant community and average trait values at each site. We 

extracted leaf carbon concentration (Cmass, %), nitrogen concentration (Nmass, %), leaf mass per area (Ma, g biomass m–2), stable 85 

carbon isotope ratios (d13C, ‰) and Vcmax25 (μmol C m–2 s–1) data from the CPTDv2. Although Ma data are available from 124 

sites, Cmass, Nmass and d13C data are only available at 79 (Cmass, Nmass) and 74 sites, respectively. However, these sites are well 

distributed across the temperature and aridity gradients (Supplementary data Fig. S1). Although Vcmax25 data are available only 

at 32 sites from southwestern, northeastern China and along an elevational transect in Gongga Mountains, there are 960 

measurements from these sites. 90 

 Xu et al. (2021) and Wang et al. (2018) provided full details of the species sampled and trait measurements made at 

each site. Ma was estimated from measurements of leaf area and dry weight following standard protocols (Cornelissen et al., 

2003). Leaf area was taken as the projected area of a randomly selected leaf, or leaflet for compound leaves, using a LiDE 220 

Scanner (Canon Inc., Huntington, NY, USA). The dry weight was measured after oven-drying at 75 ˚C for 72 h to constant 

weight. The average of three measurements made on leaves from different individuals was taken as the Ma value of one species 95 

at each site. We used a portable infrared gas analyser system (LI-6400; Li-Cor Inc., Lincoln, NE, USA) to make leaf gas-

exchange measurements in the field. Terminal branches from the outer canopy were collected and re-cut under water 

immediately prior to measurement. The relative humidity and chamber block temperature were set close to that of the ambient 

environment at the time of measurement with a constant airflow rate (500 μmol s–1). Vcmax was calculated from the light-

saturated rate of CO2 fixation at ambient CO2 using the one-point method (De Kauwe et al., 2016) and adjusted to a standard 100 

temperature of 25˚C with the Arrhenius equation (Bernacchi et al., 2001). Due to the time-consuming measurement of leaf-

gas exchange, photosynthetic traits of one sample were measured for each species. For each species at a site, leaf C content, 

N content and d13C were measured using pooled samples of leaves from at least three individuals of the same species with an 

Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc., Carlsbad, CA, USA). Carbon isotope ratios were used to 

calculate isotopic discrimination (D), and then to estimate the ratio of leaf-internal to ambient CO2 partial pressure (c) using 105 

the method of Cornwell et al. (2018) with a standard formula using the recommended values of a’ and b’ of 4.4 ‰ and 27 ‰, 

respectively (Cernusak et al., 2013; Farquhar et al., 1989): 

 𝜒 = !	–	$’
&’	–	$’

                                                                                                                 (1) 

The bioclimate variables available for each site include an annual plant-available moisture index (αp, an estimate of the ratio 

of annual actual evapotranspiration to potential evapotranspiration), mean temperature of the coldest month (MTCO, ˚C), 110 

mean temperature during the thermal growing season, defined as the period with temperatures above 0 ˚C (mGDD0, ˚C), and 

leaf area index- (LAI-) weighted photosynthetic photon flux density (Iabs, mol m–2 s–1) during the thermal growing season. The 

climate variables were interpolated to each site from 1814 weather stations in China using ANUSPLIN (Hutchinson and Xu, 

2004). The LAI during the sampled month and year for each site from both datasets was extracted from the MODIS LAI 

product (MCD15A3H: https://modis.gsfc.nasa.gov/) to provide a measure of canopy cover. We used the C:N ratio in topsoil 115 

(0-30 cm) extracted from the gridded soil data set of Shangguan et al. (2013) as an inverse index of soil fertility.  

2.2 Trait prediction 

The maximum capacity of carboxylation (Vcmax) was predicted using an EEO model based on the coordination hypothesis (Eq. 

2), which states that plants coordinate Rubisco-limited and light-limited photosynthesis rates to be equal under daytime 
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conditions so that the available light is used without incurring futile maintenance costs (Prentice et al., 2014; Wang et al., 120 

2017): 

 𝑉'($) ≈
*!+"#$('%-./)

'%-.12∗
                                                                                                               (2)  

 φ3 =
3.561	.	3.3178	–	3.33359	8'

:
                                                                                                    (3) 

where φ0 is the intrinsic quantum efficiency of photosynthesis (μmol C μmol–1 photon), which can be estimated for C3 plants 

using Eq. (3) (Bernacchi et al., 2003), ca is the ambient partial pressure of CO2 (Pa), c is the ratio of leaf-internal to ambient 125 

CO2 partial pressure (Pa Pa–1), K is the effective Michaelis-Menten coefficient of Rubisco (Pa), G* is the photorespiratory 

compensation point (Pa), and T is temperature (˚C). We used mGDD0 as the temperature input. 

 Ma was predicted using an eco-evolutionary optimality model that predicts the relationship between Ma and leaf 

longevity, based on the assumption that leaves maximize net carbon gain during their life cycle (Wang et al., 2023). The 

predicted environmental effects on Ma differ between evergreen and deciduous species: 130 

 ln(Ma,de) = ln(f) + ln(Iabs) – 0.052 T – 0.27 ln(αp) + 2.65                                                             (4) 

 ln(Ma,ev) = 0.25 ln(f) + 0.5 ln(Iabs) – 0.013 T – 0.51 ln(αp) + 3.53                                               (5) 

where Ma,de and Ma,ev are the predicted Ma for deciduous and evergreen species respectively, and f is the ratio of thermal 

growing season length (days) to the number of days in the year. 

 Dong et al. (2017) proposed a model for Narea as the sum of components proportional to Ma and Vcmax25 respectively. 135 

A simple manipulation of this model gives: 

    𝑁($;; = 𝑎 + &	<()%*'+
=%

                                                                                                              (6) 

where a (unitless) and b (g biomass g N s μmol C–1) are empirical coefficients fitted across all species. To test whether nitrogen 

allocation varied within the canopy (Charles-Edwards et al., 1987), the random effect of binned LAI on the intercept (a) and 

slope (b) was tested using a mixed-effects model. The fitted values of a and b can be found in Supplementary data Table S1. 140 

 The C:N ratio was estimated as the ratio of predicted Cmass from Eq. (7) and Nmass from Eq. (6) (Fig. 6). We also 

calculated C:N ratios using observed Cmass and predicted Nmass (Fig. 6a) to check whether Cmass values influence the prediction 

of C:N ratios. Due to the lack of an existing theoretical basis to predict Cmass, we fitted the following linear regression using 

all observed trait data and three climate variables: 

ln(Cmass) = 3.06 ln(Iabs) – 0.18 T – 0.48 ln(αp)                                                                                (7) 145 

2.3 Data analysis 

Statistical analyses were carried out in R4.1.1 (R Core Team 2021). The relative importance of Cmass and Nmass in controlling 

the leaf C:N ratio was evaluated using the relaimpo package (Groemping, 2006). Within- and between-site variability in traits 

was measured by the standard deviation (SD). Bioclimatic effects on leaf stoichiometry at community level (i.e., with 

unweighted community-mean values as the data points) were examined using standard multiple (fixed-effects) linear 150 

regression (lm) and partial effects of each climate variable were visualized using visreg (Breheny and Burchett, 2017). To 

account for potential effect of spatial processes on trait variation, we performed multiple regression on distance matrices 

(MRM) to separate the spatial and bioclimatic effects using ecodist package (Lichstein, 2006). Phylogenetic analyses were 
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carried out on all species (including 561 genera in 175 families and 57 orders). Phylogenetic trees were constructed and 

coloured with species-averaged trait values using the S.PhyloMaker and ggtree packages (Qian and Jin, 2016; Yu et al., 2017). 155 

Phylogenetic signal was calculated for each trait, using Pagel’s λ, which measures the extent to which related species tend to 

have similar trait values. Pagel’s λ varies from 0 to 1, indicating low to high phylogenetic signal. It was calculated using the 

phytools package (Münkemüller et al., 2012; Revell, 2012). The significant values obtained indicate that values of these traits 

tend to be conserved within lineages. A Bayesian phylogenetic linear mixed model was applied at species level (i.e. each 

occurrence of each species was treated as a data point), with species identity and phylogeny as random effects, using the 160 

MCMCglmm package (Hadfield, 2010). The model was repeated using three different phylogenetic hypotheses to account for 

the uncertainty of phylogenetic trees generated in these scenarios. Marginal (climate effects alone as fixed effects, without 

random effects) and conditional r2 (with species and phylogeny as random effects) were compared (Nakagawa et al., 2017; 

Nakagawa and Schielzeth, 2013). The phylogenetic comparative method, which implicitly attributes overlapping effects of 

phylogeny and climate entirely to phylogeny (Westoby et al., 1995), was used to estimate trait variations explained by climate 165 

alone using the ape package (Paradis et al., 2004).  

 The temperature and moisture optima and tolerances of frequently-occurring genera were calculated as follows (Meng 

et al., 2015). Each bioclimatic variable was binned and the mean abundance was calculated for the sites within each bin. The 

frequency distributions of abundance for each species and bioclimatic variable were obtained by selecting widths of the bins. 

The optimum was estimated as the average of the bioclimatic variable in the bins where a species was present, weighted by its 170 

mean abundance in the bins. Similarly, the tolerance was estimated as the abundance-weighted standard deviation of the 

bioclimatic variable. Frequently occurring species were defined as those that occurred more than 25 times for deciduous and 

more than ten times for evergreen species, respectively. 

 We used trait-gradient analysis to access the intraspecific variation along environmental gradient (Ackerly and 

Cornwell, 2007). The individual trait values were plotted against community-mean trait values which were strongly determined 175 

by external filters at large scale, such as abiotic factors. By definition, the slope of the relationship between individual and 

community-mean trait values is unity. To characterize the plasticity (here including both genetic and phenotypic variation) of 

one species, the regression of individual trait values among one species against community-mean values represents its within-

species ability to shift along environment. The steep slope indicates plastic species and large contribution of intraspecific trait 

variation to overall trait gradient. Species that measured at more than five sites were selected to estimate the slope.  180 

3 Results 

3.1 Roles of phylogeny and species in stoichiometric variation 

In general, related species tended to have similar stoichiometric traits; Pagel’s λ was significant for all traits (Fig. 1). The 

mixed model produced higher conditional r2 values when species and phylogeny were included as random effects, with species 

contributing 21–35% and phylogeny contributing 16–18% on average (Table 1). No significant relationships were found 185 

between leaf stoichiometric traits and soil C:N ratio (Supplementary data Fig. S2). 

 These findings are consistent with species turnover (taxonomic replacement) being a principal mechanism accounting 

for the observed trends in stoichiometry along environmental gradients. Figure 2 illustrates the turnover of major woody genera 

along the climatic gradients. The deciduous genera covered a wide range in moisture (αp from 0.2 to 1) and light (Iabs from 7 

to 16 mol m–2 s–1) but showed limited temperature tolerance ranges (Fig. 2a). Conversely, evergreen genera occupied a wide 190 

range on the temperature axis (from 6 to 21 ˚C) but occurred only in wetter areas with αp > 0.6 (Fig. 2b). Growing-season 

(mGDD0) and coldest-month (MTCO) temperatures were positively correlated (not shown). The distribution of deciduous 

genera along the MTCO axis was similar to their distribution along the mGDD0 axis (Fig. 2c), whereas evergreen genera were 
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more separated on the mGDD0 gradient than by MTCO – with the exception of Pinus, which showed a wide cold-tolerance 

range from around –30 to 0 ˚C (Fig. 2d). 195 

 Trait-gradient analysis showed that in addition to species turnover, intraspecific trait variation played a role in 

determining trait shifts at a regional scale (Fig. 3). The intraspecific slopes for Cmass, Nmass and their ratio were calculated for 

19, 19 and 42 species respectively. Only 9, 8 and 16 of these species showed significant slopes. The intraspecific slopes for 

Nmass and C:N ratio ranged from 0.7 to 2.1 and 0.6 to 1.9, respectively. The slopes for Cmass ranged from 0.8 to 1.4 except for 

one species (Asparagus dauricus) that had a negative slope.  200 

3.2 Leaf stoichiometric trait responses to climate 

At community level, climatic variables explained 10%, 13% and 45% of variation in Cmass, Nmass and C:N ratio respectively. 

At species level, climatic variables explained 8%, 3% and 18% according to the mixed model. Smaller amounts of variation 

(2%, 2% and 10%) were captured by climate according to the phylogenetic comparative method (Table 1). MRM analysis also 

showed that trait variations were strongly explained by climatic factors, but not significantly related to geographic distance – 205 

indicating that the purely spatial effect on trait values was weak (Supplementary data Table S2).  

 Stoichiometric trait responses to climate were generally similar in deciduous and evergreen species (Fig. 4). Cmass 

was significantly positively related to light and negatively related to moisture and growing-season temperature in both 

deciduous and evergreen species (Fig. 4a-c). Nmass significantly decreased with increasing light and moisture in both deciduous 

and evergreen species. Nmass also decreased with temperature in deciduous species, but showed no significant relationship with 210 

temperature in evergreen species (Fig. 4d-f). The response of leaf C:N ratio to climate was a combination of the Cmass and Nmass 

responses, but was dominated by climate effects on Nmass. Leaf C:N ratio was positively related to light and moisture in both 

deciduous and evergreen species. It was also positively related to temperature for deciduous species, but marginally negatively 

related to temperature for evergreen species (Fig. 4g-i).  

3.3 Eco-evolutionary optimality models for leaf traits 215 

Cmass was relatively constant at different values of leaf C:N ratio (grey lines, Supplementary data Fig. S3), while Nmass showed 

much greater variability. This pattern held for both deciduous and evergreen species. The analysis of relative importance 

showed that Nmass explains on average 90% of variation in the leaf C:N ratio.  

 Leaf Nmass was positively related to its theoretical predictor (Vcmax25/Ma) (Fig. 5). We found a significant LAI effect 

on the slope (b) and intercept (a) of this relationship, the slope increasing and intercept decreasing towards greater LAI. The 220 

r2 of Eq. (6) was improved from 0.14 to 0.21 at species level after including the LAI effect. The optimality models captured 

68% and 53% of the community-level variation in Vcmax25 and Ma, respectively (Fig. 6a,b). Vcmax25 was somewhat 

underestimated at most sites, with the largest bias when observed Vcmax25 was at alpine sites above 4000 m. Ma was distributed 

evenly near the 1:1 line, with the largest bias occurring at a semi-arid site with very high observed Ma. The optimality model, 

with LAI effect included, explained 21% of Nmass variation using predicted values of Vcmax25 and Ma (Fig. 6c). The predicted 225 

leaf C:N ratios fell within observed range in each PFT and outperformed fixed values prescribed in LSMs for most PFTs (Fig. 

7). The prediction of leaf C:N ratio using constant Cmass (45.6%) was similar to that using observed Cmass. 

4 Discussion 

We have demonstrated that across-site variations in leaf stoichiometric traits along climate gradients are driven mainly by 

species turnover; and that an optimality-based model can predict 30% of Nmass variation, highlighting the potential of applying 230 
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EEO principles to leaf stoichiometry. Predicted leaf C:N ratios are within the range of observations. These findings provide a 

potential avenue for improving the representation of leaf stoichiometry in LSMs.  

4.1 Climate effects mediated by compositional shifts and intraspecific variation 

For Cmass and Nmass separately, the contribution of climate variables in the multiple regression was modest (10–13%) while the 

mixed model attributed larger fractions of variation to species identity and phylogeny than to climate (Table 1). For the C:N 235 

ratio, climate explained 45% of variation in the multiple regression, while the mixed model attributed similar fractions (19–

20%) of variation to species identity, phylogeny and climate (Table 1). The phylogenetic comparative method (Table 1) 

attributed only 2% of variation in Cmass and Nmass, and 10% of variation in C:N ratio, to climate alone. The trait-gradient analysis 

also indicated an important role of intraspecific variation in trait shift at a regional scale. These results are consistent both with 

strong phylogenetic control of leaf stoichiometry, and with strong patterns of variation (especially for C:N ratio) in community-240 

mean values determined to a substantial degree by environmental selection among species and clades characterized by different 

trait values (Liu et al., 2022), and emphasize the contribution of within-species variation which was often neglected in 

community ecology (Violle et al., 2012). 

Within-site variations – unconstrained by macroclimate – were usually larger than between-site variations 

(Supplementary data Fig. S4). This large within-site variability might explain why no significant effect of climate on leaf 245 

stoichiometry was detected in some previous regional studies (Yang et al., 2016; Zhang et al., 2017; Zhao et al., 2018). Zhang 

et al. (2019) showed a weak phylogenetic signal for the leaf C:N ratio evaluated by Blomberg’s K. We used Pagel’s λ due to 

its better performance and reliability with large number of species (Münkemüller et al., 2012). The significant phylogenetic 

signals for leaf stoichiometric traits confirmed that species with similar evolutionary history tend to have similar leaf 

stoichiometry, indicating that leaf stoichiometric traits of extant species at a site may not remain adaptive under a changing 250 

environment (He et al., 2010; Li et al., 2021; Yang et al., 2016). It has been suggested that a high phenotypic plasticity of the 

leaf C:N ratio would be associated with a high mortality risk, supporting the idea that tight regulation of leaf stoichiometry 

within species helps to ensure plant survival (Luong et al., 2021). Within-site diversity may help communities to maintain their 

function in the face of climate variability and extremes. 

Plant species may occupy different “biogeochemical niches”, to ensure the full use of available resources and avoid 255 

competition (Sardans and Penuelas, 2014; Sardans et al., 2021). At community level, climate variables captured more of the 

observed leaf stoichiometric variations, due to the averaging of data from co-occurring species and intraspecific variability 

(Vallicrosa et al., 2021). Systematic variation in community-mean leaf stoichiometric traits along climate gradients can be 

achieved through progressive species replacement at a macroclimatic scale, and intraspecific trait variability at a regional scale 

(Liu et al., 2019; Yang et al., 2016).  260 

The distributions of common deciduous genera were shown to be more sensitive to moisture, while the distributions 

of evergreen genera were mainly driven by temperature. This distinction may be related to the different adaptation strategies 

represented by differences in leaf longevity (LL). Kikuzawa et al. (2013) indicated that temperature is the best predictor of LL 

for evergreen species, while consideration of an additional moisture factor was expected to improve the explanatory power of 

climate for LL in deciduous species. According to Kikuzawa’s optimality model, LL of evergreen species is higher at low 265 

temperatures, in order to compensate for low total carbon gain during the short growing season. For deciduous species, 

however, LL should not exceed the length of the growing season – which can be affected by moisture as well as temperature 

in semi-arid and arid areas. Thus, our study suggests that climate shapes leaf stoichiometric variation at a macroclimatic scale 

via environmental selection among taxa, and emphasizes the neglected role of phenology in biogeochemical cycles (He et al., 

2006; Vallicrosa et al., 2021; Xiong et al., 2021). 270 

 Although some studies have shown an important role of soil fertility in determining plant stoichiometry, published 

studies have shown inconsistent results (Fang et al., 2019; Fyllas et al., 2009; He et al., 2010; Ordoñez et al., 2009; Xiong et 
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al., 2021). Soil fertility as indexed by the soil C:N ratio had no significant effect on leaf stoichiometry in our analysis, indicating 

a decoupling of soil and leaf stoichiometry (Delgado-Baquerizo et al., 2017; Elser et al., 2010). Plant-soil interactions may 

affect whole-plant stoichiometry nonetheless, through effects on C allocation to different tissues. Allocation of N to leaves 275 

shows stronger homeostasis than other tissues, possibly as a consequence of the need to maintain the crucial functions of 

photosynthesis and leaf respiration; the stoichiometry of other tissues may adjust to soil conditions in order to support leaf-

level function (Chen et al., 2013; Delgado-Baquerizo et al., 2017; Zhang et al., 2017). Uncertainty in our soil fertility data may 

was inevitably introduced due to our reliance on a gridded soil map (Shangguan et al., 2013). More studies including in situ 

soil measurements are needed to more comprehensively investigate the effect of soil properties on plant stoichiometry.  280 

4.2 Trait responses reflect plant strategies 

Leaf stoichiometry integrates traits that reflect different plant functions, resulting in a potentially complex response to climate. 

In contrast with many previous studies, we have considered (and found significant effects of) functionally significant 

bioclimatic variables, including light, on leaf-level stoichiometry. Our analyses indicate general relationships that are quite 

similar between evergreen and deciduous plants. 285 

Higher leaf Cmass was observed in cold and dry areas with high radiation (Fig. 4). Chen et al. (2021) found that leaf 

Cmass is positively related to vein density, which relates to the efficiency of water transport. At high light plants tend to have a 

higher photosynthetic rate, requiring more water for transpiration to maintain open stomata – which could be achieved by high 

carbon investment in venation (Sack and Scoffoni, 2013). In dry areas, high vein density is a common adaptation to drought, 

allowing plants to respond quickly to available water for carbon fixation, and to keep leaves cool in the face of high air 290 

temperature (Scoffoni et al., 2011; Yao et al., 2021). Meanwhile, plants may accumulate NSCs to adjust osmotic potential and 

avoid leaf desiccation (Bartlett et al., 2014). The leaf Cmass response to temperature as observed here however is opposite to 

some previous reports (Ma et al., 2018; Xing et al., 2021). Global analysis showed an overall positive response to temperature 

with range from –10 to 30 ˚C, whereas leaf Cmass decreased when mean annual temperature was lower than 20 ˚C (Ma et al., 

2018). Ma, which is positively related to leaf Cmass (Xing et al., 2021), is generally negatively correlated with temperature 295 

(Wright et al., 2004). Higher starch concentration is observed at low temperatures, due to conditions that allow photosynthesis 

but not growth (Hoch and Körner, 2012). This suggests that leaf Cmass response to temperature may not be monotonic, owing 

to different functions dominating at the extremes. 

 The components of leaf N variation adapt to the climate in different ways (Dong et al., 2017; Peng et al., 2020; Xu et 

al., 2021). Nmass is also constrained by the trade-offs inherent in the leaf economics spectrum. Leaves with high Ma (and LL) 300 

have low photosynthetic rates per unit mass, and low nutrient contents by mass (Wright et al., 2004). Thus, climate drives 

Nmass variation both directly and indirectly. Moisture has a negative effect on Nmass (Yang et al., 2016; Zhang et al., 2019; Zhao 

et al., 2018). It has been reported that N-containing compounds (such as amides) accumulate in plants in order to adjust osmotic 

pressure under drought (Raggi, 1994). In addition, N-rich leaf defence compounds increase towards more arid climates, at the 

expense of C-based defences such as spines and thorns (de Oliveira et al., 2020; Ghimire et al., 2017; Meloni et al., 2012). In 305 

the existing optimality model Narea should be positively related to radiation, since light has a positive effect on Ma and Vcmax25 

(Smith et al., 2019; Wang et al., 2023). However, when N is expressed on a mass basis (Nmass), light has a negative effect, 

suggesting a lower sensitivity of Vcmax25 to light than Ma. The negative effect of temperature on Nmass has been observed across 

vegetation types (Han et al., 2005; He et al., 2008; Tang et al., 2018; Weih and Karlsson, 2001). This is consistent with the 

hypothesis that more nutrients are required to compensate for low enzyme activity at low temperatures (Reich and Oleksyn, 310 

2004). Although the leaf C:N ratio response to climate is a combination of the responses of both C and N, it is dominated by 

the variation of N. Thus, understanding of Nmass variation should help elucidate variation in C:N ratios (Reich, 2005). Positive 

effects of temperature and moisture on leaf C:N ratios have also been observed in previous studies, implying higher N use 

efficiency in hot and wet areas (Fang et al., 2019; Zhang et al., 2019). 
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4.3 Leaf nitrogen content predicted by optimality models 315 

C:N ratios couple C and N cycling, thus influencing the estimation of carbon assimilation and plant growth in LSMs (Wang 

et al., 2010; Zaehle et al., 2014). Fixed leaf C:N ratios assigned to PFTs, as for example in CLM4 and ED2.1, may result in 

inaccurate representations of this coupling (Bonan and Doney, 2018; Lawrence et al., 2011; Medvigy et al., 2009). Although 

model outputs such as ecosystem responses to elevated CO2 are more consistent with observations in models where flexible 

C:N ratios are allowed (Lawrence et al., 2019; Meyerholt and Zaehle, 2015), large differences between models persist (Du et 320 

al., 2018). 

Meyerholt and Zaehle (2015) highlighted the potential of optimality theory to improve the representation of N cycling 

in LSMs. Caldararu et al. (2020) showed that models that implement dynamic leaf stoichiometry schemes based on EEO 

principles can perform better than those with fixed-PFT schemes. Here we have shown that leaf Nmass covariation with Vcmax25 

and Ma as predicted by EEO principles can provide further insights. Since Nmass is the key to determining the leaf C:N ratio, 325 

given the relative constancy of Cmass (Reich, 2005), we focused on the predictability of Nmass. The variation of leaf N per unit 

area (Narea) can be represented as the sum of two components, proportional to leaf mass per area (Ma) and the maximum 

capacity of carboxylation at 25 ˚C (Vcmax25) respectively (Dong et al., 2017); and now both Ma and Vcmax25 can be predicted 

from EEO principles (Smith et al., 2019; Wang et al., 2023; Xu et al., 2021). Community-level variations in Ma, Vcmax25 and 

Narea can indeed be largely captured (r2 = 0.53, 0.68, and 0.62 respectively) using climate variables as predictors. We also 330 

showed a tendency for the relationship between Nmass and the ratio Vcmax25/Ma to become steeper with increasing LAI. This 

finding is consistent with N redistribution within the canopy, as an acclimation to light conditions that maximizes total carbon 

gain (Hirose and Werger, 1987; Niinemets et al., 2015). The strong vertical light gradient in high-LAI canopies implies a large 

advantage for optimized N distribution, in contrast with more open canopies (Field, 1983). The same model framework as 

Narea, with this additional LAI effect included, showed good predictive skill for Nmass (and better than that of Boonman et al. 335 

(2020), obtained using an ensemble modelling approach) based on climate. However, our predicted Nmass was constrained 

within a narrow range, despite the well-captured variations in Ma and Vcmax25. The predicted Nmass in tropical forest with high 

LAI were systematically underestimated due to the low intercept (Supplementary data Table S1). We recognize that our 

method to predict Nmass may overlook additional functions of N in leaves, such as chemical defences, perhaps causing greater 

variation than predicted. This requires further investigation. Some species in this study apparently adjusted their leaf 340 

stoichiometry along major environmental gradients, possibly via genetic adaptation over multigenerational timescales. Due to 

the lack of intraspecific data within communities, we could not assess the degree of variation among conspecific plants in the 

same environment. Intraspecific variation within communities may however increase functional diversity and promote species 

coexistence (Westerband et al., 2021) and potentially provide a buffer against climatic variation and change (Ahrens et al., 

2021). Further studies are needed to better understand intraspecific trait variation (Moran et al., 2016) in order to assign 345 

appropriate timescales for the dynamic responses of traits to environmental changes in Earth system models. 

Predicted C:N ratios, whether using observed or constant Cmass, lie within the range of observed data, supporting the 

dominant role of Nmass in driving leaf C:N ratios (Fig. 6). The target (PFT-specific) values used in several LSMs such as CLM4, 

ORCHIDEE and YIBs (Fig. 7) are based on datasets nearly 20 years old and fail to represent continuous trait variations that 

can now be inferred from much larger data sets. Our EEO-based approach thus suggests a way forward to improve the dynamic 350 

representation of leaf stoichiometry in LSMs. 

5 Conclusion 

This study shows that leaf C:N ratio is mainly driven by mass-based leaf nitrogen content which can be estimated via the sum 

of metabolic and structural components of leaf nitrogen using eco-evolutionary optimality-based models. This provides another 

perspective to improve dynamic representation of stoichiometry in Earth System models. The variations in leaf stoichiometric 355 
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traits at individual level are mainly controlled by species identity and phylogeny, thus, the shift of leaf stoichiometry variations 

at community level along climate gradient is achieved via species turnover and intraspecific variability. This allows the 

prediction of community-mean values of leaf stoichiometric traits using EEO-based models. We show that the coefficient 

representing nitrogen allocation to metabolic and structural components is related to leaf area index, which highlights the 

importance of nitrogen allocation in its prediction. The unexplained variation in leaf nitrogen content may attribute to other 360 

unclear physiological processes which requires further effort to improve the prediction of leaf C:N ratio.  
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Table 1 Regression models for each trait. The multiple linear regression (MLR) model was fitted at community level, using 

only climate predictors. The Bayesian phylogenetic linear mixed model (BPLMM) was fitted at species level. The marginal r2 

includes climate effects only; the conditional r2 also includes species identity and phylogeny as random effects. The 

phylogenetic comparative method (PCM), also fitted at species level, quantifies the variation attributed to climate alone, after 

factoring out effects of phylogenetic relatedness. The standard deviations of r2 in BPLMM come from three different scenarios 655 

of phylogeny.  

Trait 
BPLMM PCM MLR 

marginal r2 conditional r2 species r2 phylogeny r2 r2 r2 

Cmass 0.08 0.54±28 0.29±0.27 0.17±0.05 0.02 0.10 

Nmass 0.03 0.54±0.34 0.35±0.31 0.16±0.06 0.02 0.13 

C:N 0.18 0.57±0.17 0.21±0.17 0.18±0.02 0.10 0.45 
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Figure 1 Phylogenetic tree and signal for (a) leaf carbon content (%), (b) nitrogen content (%) and (c) carbon to 660 

nitrogen ratio. The red-to-blue colours of phylogenetic trees indicate low to high trait values. The phylogenetic signal is 

indicated by statistic metric of Pagel’s λ with its significance level (***, p < 0.001). Orders with more than five species in the 

data set are labelled. 
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 665 
Figure 2 Optima and tolerances of major genera in climate space. αp is a moisture index, mGDD0 is the mean temperature 

during the thermal growing season, MTCO is the mean temperature of the coldest month, and Iabs is the leaf area index-

weighted photosynthetic photon flux density. Colours of circles represent the values of leaf C:N ratio and sizes of circles 

represent Iabs. The grey triangles are sampling sites. Also shown are abbreviated names of genera: Ac, Acer; Al, Allium; Ar, 

Artemisia; Cg, Caragana; Cx, Carex; Ls, Lespedeza; Ln, Lonicera; Pt, Potentilla; Qc, Quercus; Rb, Rubus; Sl, Salsola; Th, 670 

Thalictrum; Cm, Camellia; Cs, Castanopsis; Cy, Cyclobalanopsis; Fc, Ficus; Il, Ilex; Lt, Lithocarpus; Pn, Pinus; Rh, 

Rhododendron; Sm, Smilax; Sy, Symplocos. 
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Figure 3 Distribution of site-mean trait values and within-species regression lines for leaf stoichiometric traits. The 675 

black dots are individuals and black dashed line is the regression of all individuals with slope equal to one by definition. The 

red lines represent significant regressions within species that were sampled at more than five sites.  
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Figure 4 Empirical partial relationships between leaf traits and climate. Iabs is the leaf area index-weighted 680 

photosynthetic photon flux density, αp is a moisture index, and mGDD0 is the mean temperature during the thermal growing 

season. Yellow dots: deciduous species, green dots: evergreen species. The Nmass scale is inverted, so that the slopes of the 

regression lines in panels (a)-(c) and (d)-(f) should add up to the slopes in panels (g)-(i). The significance of each regression 

was list in the panels. ***, p < 0.001; **, p < 0.01; *, p < 0.05. 
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Figure 5 The relationship between Nmass and Vcmax25/Ma along the leaf area index (LAI) gradient. Colour saturation 

represents different levels of LAI. Lines are separate regressions for sites within each LAI bin.  
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Figure 6 Optimality-based predictions versus observations of leaf traits at site level. Grey lines are ordinary least-

squares regressions. The black dashed line is the 1:1 line.  
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Figure 7 Comparison of observed and predicted C:N ratios with target values in LSMs. The blue boxes represent 

predicted C:N ratios using observed Cmass (a), and using constant mean Cmass (b). The green boxes represent observed C:N 

ratios. Red crosses show target values in LSMs (adopted from CLM4). 
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