Supplemental Information: Leaf carbon and nitrogen stoichiometric variation along environmental gradients

Huiying Xu¹, Han Wang^{1*}, I. Colin Prentice^{1,2,3}, Sandy P. Harrison^{1,4}

¹Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China;

²Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK;

10 Correspondence to: Han Wang (wang han@tsinghua.edu.cn)

Table S1 Abbreviations of genera in Fig. 2.

Leaf habits	Abbreviation	Genus
Deciduous	Ac	Acer
Deciduous	Al	Allium
Deciduous	Ar	Artemisia
Deciduous	Cg	Caragana
Deciduous	Cx	Carex
Deciduous	Ls	Lespedeza
Deciduous	Ln	Lonicera
Deciduous	Pt	Potentilla
Deciduous	Qc	Quercus
Deciduous	Rb	Rubus
Deciduous	Sl	Salsola
Deciduous	Th	Thalictrum
Evergreen	Cm	Camellia
Evergreen	Cs	Castanopsis
Evergreen	Су	Cyclobalanopsis
Evergreen	Fc	Ficus
Evergreen	I1	Ilex
Evergreen	Lt	Lithocarpus
Evergreen	Pn	Pinus
Evergreen	Rh	Rhododendron
Evergreen	Sm	Smilax
Evergreen	Sy	Symplocos

Table S2 Summary of the mixed model relating Nmass to $V_{\rm cmax25}/M_{\rm a}$, with LAI as a random effect on both the slope and the intercept.

	slope	intercept
--	-------	-----------

³Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia;

⁴School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Reading, RG6 6AH, UK.

LAI effect		p = 0.03	p < 0.01
LAI group	0-1	0.32	2.05
	1-2	0.48	1.85
	2-3	0.63	1.86
	3-4	0.65	1.79
	4-5	0.71	1.56
	>5	0.74	1.45

15

25

Fig. S1 The locations and biomes of sites in this study. (a) Each red dot is a site from CPTDv2. (b) Whittaker plot, showing site climates as black dots.

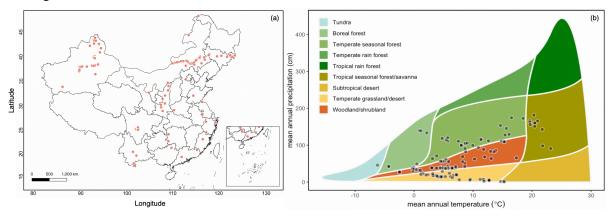


Fig. S2 The relationships between leaf stoichiometric traits and soil C:N ratio. Yellow and green dots are deciduous and evergreen species, respectively.

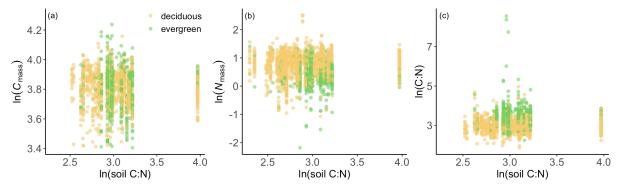


Fig. S3 The relationship between leaf carbon (C_{mass}), nitrogen concentration (N_{mass}) and C:N ratio. Grey lines are isolines of constant C:N ratio. The x and y axes are natural-log transformed. Yellow and green dots are deciduous and evergreen species respectively.

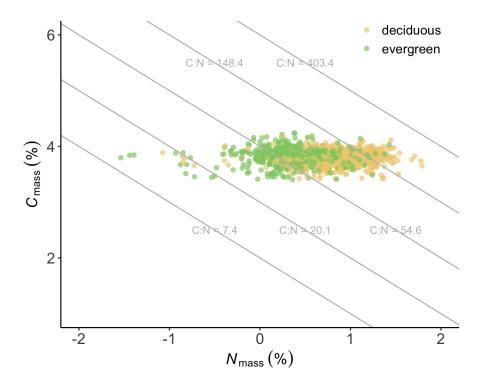
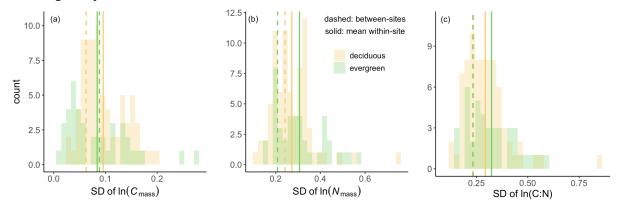



Fig. S4 Histogram of standard deviations (SD) for the within- and between-site variation of each trait. Dashed and solid lines represent between-site and mean within-site SD, respectively. Yellow and green colours distinguish deciduous and evergreen species.

