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Abstract. Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human ac-
tivities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite,
provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observa-
tion (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time; reflecting seasonal
vegetation patterns and trends in vegetation productivity metrics. Such metrics include e.g., gross primary produc-5

tivity, net primary productivity, biomass or yield. To summarize current knowledge, in this paper, we systematically
reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for
different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence
(SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this
relatively recent sensor modality. We define three methodological categories to derive productivity metrics from10

remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land
surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based
dynamic vegetation models (DVM). Although the majority of used TS data streams originate from data acquired
from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity
monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics15

and information from TS data. We further discuss validation strategies of the RS-data derived productivity metrics:
(1) using in situ measured data, such as yield, (2) sensor networks of distinct sensors, including spectroradiometers,
flux towers, or phenological cameras, and (3) inter-comparison of different productivity metrics. Finally, we address
current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated
DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements20

of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response
to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.

1 Introduction

Vegetation productivity, the rate at which solar energy is converted into biomass through photosynthesis, is the
origin of all fuel, fiber, and food by which humanity and many other species live, and should therefore be closely25

2



monitored. The total amount of photosynthesis on Earth defines the planetary boundary of production, which is
a measure of how much of the planet’s productivity humans have appropriated (Ryu et al., 2019). According to
the United Nations (UN), the global population is expected to reach 9.7 billion by 2050; presenting a significant
challenge for ensuring sufficient future food production. The productivity of plants is a crucial factor in meeting this
challenge, as it directly affects the amount of food that can be produced. Plant productivity thus fundamentally30

delineates the habitability of our planet (Running et al., 2000).
The intensification and spatial expansion of human activities in recent centuries have profoundly altered the world’s

natural and cultural landscapes (Winkler et al., 2021), and have had a significant impact on ecosystem processes, and
their functions in society. An integrative proxy of this global change is the altered regime of vegetation productivity.

As a key characteristic of ecosystem conditions, global vegetation productivity reflects both, the spatial distribu-35

tion and change of the vegetation coverage (EEA, 2021). The key climatic drivers of vegetation productivity are
temperature, water supply and solar radiation (Madani et al., 2018), which interact to constrain the magnitude and
temporal dynamics of ecosystem productivity depending on soil conditions. In the twenty-first century, it is expected
that vegetation productivity will decrease due to the impacts of climate change in the Northern Hemisphere, and
may negatively affect the global land carbon (C) sink with unknown feedback effects (Zhang et al., 2022b).40

Due to variations in vegetation composition, climate, soil properties, and management practices among others,
vegetation productivity is heterogeneous across space. In addition, this variation occurs at all timescales, from diurnal
over seasonal to inter-annual. Thus, to achieve accurate global estimates of plant productivity that explicitly account
for spatial and temporal variation, it is essential to acquire continuous spatial observations over time using optical
Earth observation (EO) satellites. Remotely sensed time series (TS) from those EO data streams provide the basis45

for phenological monitoring, which is unequivocally related to productivity (e.g., Zhu et al., 2016). Phenological
monitoring is the study of the timing of recurrent, annual biological events (e.g. budburst, flower blossoming, leaf
senescence), and shifts in the timing of seasonal phenological events have been shown to be related to inter-annual
variations in annual productivity (e.g., Park et al., 2019). Consequently, among the objectives of the EO satellite
missions launched in the last five decades, primary importance has been given to observing the productivity and50

health of natural and cultivated vegetation land covers (e.g., Chevrel et al., 1981; Huete et al., 2002; Zhang et al.,
2003; Atzberger, 2013). Novel satellite systems are launched constantly and significant improvements in data-driven,
as well as physically based data analysis techniques are made (Baret and Buis, 2008).

These developments demand a systematic overview of the state-of-the-art TS studies related to vegetation produc-
tivity, presenting the unprecedented availability of continuous multi-sensor data streams, constantly updated data55

repositories, and the latest processing techniques and toolboxes. Recent review papers focused on global land surface
phenology (LSP) research (Zeng et al., 2020; Caparros-Santiago et al., 2021), but lacked the relationship to vegeta-
tion productivity. Other reviews were restricted to specific ecosystems (Berra and Gaulton, 2021) or sensors (Eitel
et al., 2016). Microwave-based studies were covered by Teubner et al. (2018); Wild et al. (2022).
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Therefore, we formulate for this review the following main research question: What are the state-of-the-art60

methods for estimating vegetation productivity using remotely sensed TS data streams, and what
are the key gaps, challenges, and opportunities for further improvement?

To address this question, our main emphasis is on the precise EO-based estimation of productivity with consider-
ation of the trend towards the increasing availability of higher spatial resolution EO data. Global change is resulting
in a landscape that is more fragmented, scattered, and characterized by small-scale patterns. One example is the65

upcoming trend of agroforestry to make agriculture more resilient. As a consequence, the analysis of productivity
needs to integrate high-resolution EO data. Hence, we will focus on the literature that uses remotely sensed opti-
cal TS and derived proxies for quantifying productivity, with a greater emphasis on the spatial scale than on the
minimum number of time steps.

The review is divided into seven sections, where Sect. 1 provides a tangible definition of productivity, and introduces70

the main productivity metrics and methods. Sect. 2 describes the available optical sensor platforms. Sect. 3 provides
the methods in detail and toolboxes for processing, analysing, and modelling TS data streams. In Sect. 4 we outline
three different strategies for validating productivity products. The outcomes of the systematic literature review are
provided in Sect. 5. In Sect. 6 we provide an outlook on future challenges to assess vegetation productivity from TS
data, followed by a conclusion (Sect. 7).75

1.1 Definition of productivity adopted for this review

Productivity in ecosystems quantifies the rate at which autotrophic organisms, such as green plants, convert energy
into organic metabolic assimilates (Scurlock and Olson, 2002; Larcher, 2003). Vegetation productivity is controlled
by two processes; (i) the assimilation of CO2 substrate through photosynthesis (source activity) and (ii) tissue
growth from the accumulated carbohydrates into stored biomass (sink activity) (Körner, 2015). Plant photosynthesis80

is driven by incoming photosynthetic active radiation, CO2 concentrations, temperature, and water and nutrient
availability (e.g., Ryu et al., 2019).

Vegetation productivity is commonly defined in four measures: gross primary productivity (GPP), net primary
productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP). The interplay of these
main productivity measures is illustrated in Fig. 1.85

Over small spatial extents (< 1km2), NEP is usually directly estimated through eddy-covariance (EC) methods,
where the vertical, turbulent fluxes of CO2 are measured within the atmospheric boundary layer using CO2 con-
centration measurements from an infrared gas analyzer (IRGA) along with high-frequency sonic anemometer wind
velocity measurements. NEP is subsequently partitioned into GPP and ecosystem respiration (Re), where estimated
Re values are commonly derived from nighttime fluxes (i.e. NEP = Re) when GPP is zero and extrapolated to90

daytime fluxes. The ratio of NPP to GPP is termed the carbon use efficiency and represents the capacity to which
plants are able to transform assimilated CO2 into stored biomass, after carbon losses through autotrophic respiration
(Ra). The carbon use efficiency of vegetation varies according to factors such as plant species, nutrient availability,

4



light, temperature, and water availability. However, the ratio of NPP to GPP is typically thought to be around
0.45, according to empirical studies, satellite products and process-based models (He et al., 2018), indicating that95

55% of the carbon captured by plants is directed towards respiration and thus cannot be utilized for net production
and growth (Field et al., 1998). NBP is the net amount of carbon dioxide that is assimilated by an ecosystem over
a period of time, after accounting for all losses of carbon dioxide through respiration, decomposition, and other
processes. NBP is thus a measure of the overall health and productivity of an ecosystem, and it is an important
factor in the global carbon cycle. Input and losses of NBP are on a rather long time scale for natural landscapes and100

for agriculture it refers to harvest (e.g., Prescher et al., 2010; Turner et al., 2007).
Although NPP and GPP are common metrics to express the productivity of any ecosystem, in the literature

different definitions or terms can be found. For instance, in agroecosystems, productivity often refers to aboveground
(and below-ground) biomass (AGB) and yield (Chopping et al., 2011; Mariotto et al., 2013). In forestry, productivity
is also often related to AGB or harvestable wood (Battles, 2022). For natural ecosystems, AGB, (e.g., Ramoelo et al.,105

2015; Lumbierres et al., 2017) but also directly NPP and GPP are commonly used to express productivity (see e.g.
reviews by Anav et al. 2015; Liao et al. 2023). In the current review, we refer to all these productivity metrics, which
are summarized in the blue box.
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Definitions of productivity metrics

Productivity is the rate at which a quantity (e.g., energy) is accumulated by producers (e.g., plants) over
time within a given area. Here we give an overview of metrics for productivity adopted in our review:

– Gross primary productivity (GPP) is the total amount of C photosynthesized by plants (Myneni
et al., 1995) in a given time (g C/m2/day) and describes also the largest carbon flux between the
biosphere and the atmosphere (approximately 130 Gt C per year) (Krause et al., 2022).

– Net primary productivity (NPP) denotes the remaining C from photosynthesis after respiration
losses from plants (Ra) (g C/m2/day), which is invested for the maintenance of cells and the growth of
tissues (Roxburgh et al., 2005).

– Net ecosystem productivity (NEP) is defined as NPP minus soil heterotrophic respiration (Rh) by
microorganisms (g C/m2/day), i.e., C loss from the decomposition of woody detritus, soil organic matter,
vegetation mortality, grazing, etc. (Landsberg and Gower, 1997). It reflects the temporal change in C
that can be stored in an ecosystem (Harmon et al., 2011). NEP thus quantifies the loss or accumulation
of C within an ecosystem and defines if it is acting as a sink or source of C.

– Net biome productivity (NBP) on a regional scale represents the net change in carbon within
ecosystems. It is calculated by adjusting NEP for lateral carbon transfers to neighbouring biomes,
which may occur through various processes such as harvest, organic matter export in rivers, or losses
from disturbances such as wildfires (e.g., Schulze et al., 2021; Prescher et al., 2010).

– Aboveground biomass (AGB) is the total amount of plant matter on the soil surface in a given
area or ecosystem that has accumulated over time, as a result of photosynthesis and plant metabolism
(kg C/m2). AGB plays a crucial role in quantifying the productivity of forests etc. as it specifies the
amount of stored carbon per unit area and subsequently the capacity for water filtration, soil retention,
and biodiversity conservation (Powell et al., 2010; Goetz et al., 2009).

– Crop yield is defined as the amount of the harvested product (e.g., kg grain) per unit cropped area
(kg/ha), and is a measure of productivity referring to the part of biomass that can be used for the
nutrition of humans, feeding of livestock, the production of fuel or construction materials (Carletto
et al., 2015).

– Harvestable wood refers to productivity in forests, typically given in cubic meters of harvestable
wood grown per year on a forested site (m3/ha) (FAO, 2010).
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GPP (gross primary productivity)

NPP (net primary productivity)
=GPP-Ra

Rh (heterotrophic 
respiration)

NEP (net ecosystem 
productivity)= NPP-Rh

Ra (autotrophic 
respiration)

NBP (net biome productivity)

Figure 1. Distinction and interplay between GPP, NPP, NEP and NBP, with autotrophic (plants) and heterotrophic respi-
ration. Inspired by Mancini et al. (2016).

1.2 Measuring productivity with optical Earth observation data110

The presence of strong absorption features in optical wavelengths, which relate to biochemical properties such
as pigment and water content, has led to a large body of research using optical sensors to monitor vegetation
productivity, mitigating the need for direct measurements (e.g., Boisvenue et al., 2016; Brinkmann et al., 2011; Cai
et al., 2021; Dusseux et al., 2022; Erasmi et al., 2021; Hill and Donald, 2003). Given the employment of optical
sensors routinely recording data at different scales, generated data streams have gradually become a well-established115

source of information in a wide array of vegetation monitoring applications, such as assessing climate change impact
and carbon modelling (e.g., Campbell et al., 2022; Wocher et al., 2022), drought monitoring (e.g., Atzberger et al.,
2013) or biodiversity assessment (e.g., Lausch et al., 2020).

Traditionally, spectral vegetation indices (VIs) have been used to derive plant productivity metrics (e.g., Erasmi
et al., 2021; Fiore et al., 2020). Advanced studies focused on dynamically integrating vegetation traits within more120

complex data-driven and process-based models to estimate GPP (e.g., Ardö, 2015; Pei et al., 2022). For instance,
light use efficiency (LUE) schemes (Monteith, 1972) can model GPP as a function of the amount of incoming
photosynthetically active radiation (PAR) and the fraction of absorbed PAR (fAPAR) along with an LUE term (e.g.,
Zhao et al., 2005; Wang et al., 2017). See also the extensive review by Pei et al. (2022) and seminal papers by Moulin
et al. (1998) and Delécolle et al. (1992). VIs that are sensitive to fAPAR and related vegetation traits (e.g. chlorophyll125

7



content, leaf area index: LAI) have been integrated into LUE-based approaches to represent physiological constraints
on GPP (e.g., Gitelson et al., 2003; Cheng et al., 2014b; Xie et al., 2019). Data-driven RS-based approaches may
include the establishment of statistical relationships through empirical approaches or, more recently, with machine
learning (ML) algorithms (see review by Liao et al. 2023). Over the last decade, solar-induced fluorescence (SIF)
from space measurements has become increasingly popular, giving a more direct measure of photosynthetic activity130

and thus serving as perhaps the most straightforward remotely sensed proxy for GPP (e.g., Frankenberg et al., 2011;
Guanter et al., 2012).

In the most complex modeling approaches, GPP is inferred using process-based dynamic vegetation models
(DVM) (e.g., Krinner et al., 2005; Sitch et al., 2003; Liu et al., 2014). DVMs can be both diagnostic and prog-
nostic tools, able to simulate responses to climatic change including prognoses of carbon budgets (e.g., Rayner et al.,135

2005; Ardö, 2015). Ardö (2015) suggested that the integration of the realistic processes simulated by DVMs with
high-resolution RS observations (i.e., in the form of VIs, and traits) may support more accurate productivity metrics
estimation. These approaches are discussed in more detail in Sect. 3.

Overall, the development of methodologies is further accelerated by a vast increase in the long-term vision of EO
data, the availability of historical data, and enhanced facilities through numerous data repositories. Subsequently,140

data analytics and data-driven ML methods have helped the spread and penetration of these (big) data into data-
based services worldwide (Liu, 2015; Gorelick et al., 2017).

2 Sensor platforms for vegetation productivity monitoring

Over the last two decades, the optical EO domain has seen an increasing number of space missions with various
sensors aboard, complemented by airborne campaigns and in situ measurements from widespread ground-based145

networks. This increase in the abundance of EO data has contributed to the establishment of consistent global
databases with quality-checked optical data, which can be used to estimate vegetation productivity metrics, such as
GPP, NPP, AGB, yield, among others (see also blue box) at almost any spatial and temporal scales (Kuenzer et al.,
2015). The relevant sensor platforms serving to collect observations for deriving vegetation productivity information
are graphically illustrated in Fig. 2 and described in the following sections.150

2.1 Time series from EO satellites

In recent years, the availability of free satellite data has dramatically increased, amounting to petabytes of data. This
expansion is due to the decreasing costs of data acquisition and the constant reduction of required computational
resources and storage infrastructure. The review by Ustin and Middleton (2021) provides a detailed description of
this trend. The availability of such data reinforces the usefulness of satellite data streams for capturing vegetation155

dynamics at various spatial scales, from monitoring local ecological habitats to conducting global studies (Cavender-
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HigherHigh (optional)
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x
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Figure 2. Overview of near and RS platforms used for vegetation productivity related TS analysis, i.e., flux towers with
an exemplary footprint, phenocams, UAVs, aircraft, and satellites. The platforms are arranged in order from left to right,
starting with the highest spatial resolution and progressively decreasing (i.e., from high to low), although EC footprint sizes
may vary. In terms of temporal resolution, the leftmost platforms, i.e., phenocams, typically offer higher optional temporal
resolutions. Moving towards the right, the temporal resolution decreases (e.g., with aircraft platforms), and then it increases
again as we transition towards EO satellite platforms. Figure elements are own creations, except for the flux tower and EC
footprint (Kljun et al., 2015).

Bares et al., 2020). Fig. 3 summarizes the available optical (main) sensors starting from the 1970s with their spatial
resolution and revisit time.

Low Elevation Orbit (LEO) satellites have aboard sensors scanning at moderate (i.e., hecto- to kilo-metric)
spatial resolutions, such as the Advanced Very High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging160

Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), PROBA-V (Project for On-Board
Autonomy - Vegetation), and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3. They provide high
frequency and long-term TS and thus support a deep investigation of the land surface phenology and trends along
with a thorough monitoring of vegetation productivity of the entire Earth (see reviews by Zeng et al. (2020);
Pipia et al. (2022a)). On the other hand, Geostationary Earth Observation (GEO) satellites offer an opportunity to165

capture rapid changes in vegetation dynamics thanks to their high revisit frequency, spanning over a few minutes. For
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Figure 3. Optical EO sensors providing TS data starting from the 1970s. Different colours indicate the revisit time, and the
spatial resolution for each sensor is given within the corresponding bars.

instance, mapping vegetation on an hourly basis by means of GEO satellites was explored by Fensholt et al. (2006),
using the SEVIRI instrument onboard Meteosat Second Generation (MSG). Another mission of interest is NASA’s
Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space Climate Observatory (DSCOVR) (Yang
et al., 2017). The EPIC team’s primary responsibility is to develop and validate algorithms that produce a series of170

products, including the vegetation green LAI (GLAI) and its sunlit portion, at a spatial resolution of 10 km. GLAI
and its sunlit portion are critical state parameters in many ecosystem productivity models (e.g., Bonan et al., 2003;
Bi et al., 2022).

Launched in 2018, the ECOSTRESS mission onboard the International Space Station (ISS) delivers nominally
daily land surface temperature (LST) products in taking advantage of the fast orbiting ISS (note that the real revisit175

period for a given location is variable and depends on the instrument’s orbital cycle on bord the ISS). The spatial
resolution of the products is 70 m except for two products of 30 m, due to the low altitude (Li et al., 2021b). In
addition to the opening of the Landsat archives in 2008, further momentum was gained through the European Sentinel
missions (Berger et al., 2012). From 2015 onward, Sentinel-2 (S2) optical imagery has been offering unprecedented
perspectives on the temporal variability of plant productivity of different ecosystems, e.g. grasslands (Dusseux et al.,180

2022) or forests (Lin et al., 2019) and its divergence over fine spatial scales. Compared to earlier land satellite
missions, such as MODIS or Landsat, S2 provides improvements in revisit time (5 days at the equator), spatial
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resolution (10-20 m) and spectral configuration (more and narrower vegetation-related bands) (Drusch et al., 2012).
A 5-day revisit time may still pose limitations in acquiring a satisfactory number of cloud-free scenes required to
construct a comprehensive composite product for productivity modelling in a dynamic ecosystem. This constraint185

becomes particularly crucial during transitional phases such as bud-burst and senescence, as well as (a)biotic stress
events or following rainfall in water-limited ecosystems like drylands. It is worth mentioning that the near-polar
orbit of S2 allows for a higher number of acquisitions when approaching the poles. For instance, over the high
arctic archipelago Svalbard, S2 images can be obtained twice a day, allowing for regional-scale mapping of plant
productivity via LSP metrics (Karlsen et al., 2021). For continental Europe, continuous phenological mapping using190

S2 is today operational in the Copernicus pan-European High-Resolution Vegetation Phenology and Productivity
product suite (HR-VPP) project (Tian et al., 2021). The exploitation of Sentinel-3 OLCI data even ensures a daily
global coverage although at a moderate spatial resolution (300 m), but with a higher number of bands, allowing the
derivation of essential vegetation traits for productivity monitoring studies (e.g., Yang et al., 2021b; Reyes-Muñoz
et al., 2022).195

Until recently, a fine temporal revisit time was at the expense of fine spatial resolution. However, a new generation
of satellite constellations is breaking these formerly restrictive inter-dependencies (see Fig. 3) with, for instance, the
PlanetScope satellites that offer multispectral images at 3 m spatial resolution in daily revisit intervals (Roy et al.,
2021).

2.2 Time series from piloted aircraft and unoccupied aerial vehicles200

Aircraft constitute flexible and adaptable platforms to explore new protocols of measurements, support applied
studies (e.g., Cheng et al., 2014a; Atzberger et al., 2015), and therefore provide data for the derivation of productivity
metrics. However, in contrast to orbital platforms, the regular acquisition of TS using an aircraft is a logistical and
financial burden. This may explain why we could identify only a few studies that employed piloted aircraft to acquire
optical TS for the estimation of vegetation productivity metrics, such as Damm et al. (2015) focusing on SIF. In205

this study, the authors conducted a thorough evaluation of the correlation between far-red SIF measured at 760
nm and GPP across three ecosystems, namely perennial grassland, cropland, and mixed temperate forest, using
multi-temporal Airborne Prism EXperiment (APEX) acquisitions. The authors concluded that RS of SIF more
consistently correlated to GPP than conventional greenness-based indices.

To capture time trends on a smaller patch scale, Unoccupied Aerial Vehicles (UAV) have emerged as a more210

efficient and cheaper option than aircraft. Theoretically, UAVs meet most requirements for TS acquisitions regarding
covering high spatial, spectral, and temporal resolutions (Berni et al., 2009; Aasen et al., 2018). UAVs are flexible
and in contrast to satellite systems may be deployed whenever weather conditions are favourable for a desired
measurement. Also, UAVs offer the necessary flexibility to sample diurnal cycles, which are relevant to capturing
trends in productivity. To date, a range of multi-spectral and a few science-grade hyperspectral sensors have become215

available on the commercial market (Aasen et al., 2018), allowing for even faster system integration. In terms of TS
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analysis for productivity, so far UAV measurements have been mainly employed to fill gaps in satellite observations
caused by cloudiness or sparse data (Dash et al., 2018; Alvarez-Vanhard et al., 2021). A recent phenotyping UAV
study, however, collected UAV data from a soybean field trial at unprecedented temporal resolution (Borra-Serrano
et al., 2020) which allowed fitting growth curves with high accuracy (>90%) to derive relevant traits but also seed220

yield.

2.3 Multi-sensor and multi-scale synergies for time series

As data from different platforms and sensor modalities provide complementary information in terms of spatial,
spectral, and temporal domains, the fusion of RS observations is increasingly coming into focus. For example, in the
review study by Berger et al. (2022), the synergistic usage of multiple optical spectral domains was described to detect225

the stress of crops. Since productivity is affected by crop stress, improved stress detection and monitoring would also
help in productivity studies. While biotic and abiotic stressors can only be disentangled through synergistic multi-
sensor usage, in productivity studies, this synergy may be less relevant. Instead, multi-scale approaches, for instance,
by combining spectral information from aircraft, UAVs, and EO satellites (as described above) are more essential.
In this way, advantages of at least two platform types can be explored, such as more frequent availability or higher230

spatial resolution data (e.g., Gevaert et al., 2015; Sagan et al., 2019; Alvarez-Vanhard et al., 2021). By providing
a higher number of observations, multi-sensor fusion improves the spatiotemporal continuity through gap-filling,
leading to higher consistency and accuracy of current satellite products related to vegetation productivity (e.g.,
Claverie et al., 2018; Manivasagam et al., 2019; Sadeh et al., 2021). Although not explicitly treated in this review,
additionally, the fusion of synthetic aperture radar (SAR) and optical TS data can be beneficial for productivity235

monitoring in regions with frequent cloud coverage (e.g., Pipia et al., 2019; Mercier et al., 2020; Caballero et al.,
2023).

3 Time series processing methods for vegetation productivity monitoring

This section introduces several methods for deriving productivity metrics from remotely sensed TS data, including
trend analysis, land surface phenology, and process models. Each method has its own strengths and weaknesses, and240

the best approach to use will depend on the specific application. The final sub-chapter of this chapter will introduce
a variety of toolboxes that can be used to process and analyze remotely sensed TS data and derive productivity
metrics. By providing a comprehensive overview of the different methods and tools available, this chapter aims to
help researchers and practitioners select the best approach to deriving productivity metrics from remotely sensed
TS data for their specific needs.245
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3.1 Time series sources and pre-processing

3.1.1 Vegetation Indices

Spectral VIs are widely applied methods for monitoring trends and deriving plant productivity metrics (e.g., Gutman,
1999; Huete et al., 2002; Atzberger and Eilers, 2011a; Rasmussen et al., 2014; Kang et al., 2018; Zeng et al., 2020;
Shammi and Meng, 2021). Certainly, the most widely used VI in EO observation TS analysis is the normalized250

difference vegetation index (NDVI) (Rouse et al., 1974; Tucker, 1979). Its popularity comes from the fact that NDVI
explores the contrasting behaviour of reflectance in the visible red and near-infrared (NIR) spectral domains, which
strongly relate to vegetation biomass and, by extension, canopy-level plant photosynthetic activity. NDVI has the
great benefit of being available to the research community through long observational records of more than five
decades, specifically from AVHRR, the Landsat series, and MODIS (e.g., Huang et al., 2021; Li et al., 2021a).255

In addition to NDVI, other VIs have also been used to model temporal variations in productivity, including the
enhanced vegetation index (EVI), which also accounts for canopy background and atmospheric influences (Huete
et al., 2002). Multiple studies have explored TS of NDVI and EVI with direct linkages to vegetation productivity
metrics, such as GPP (e.g., Shi et al., 2017; Shammi and Meng, 2021), or as part of GPP assimilation schemes (e.g.,
Zhang et al., 2015; Liu et al., 2021a). However, biomass-sensitive VIs often overestimate GPP at the start and end260

of the growing season, when leaf chlorophyll content decouples from LAI (Croft et al., 2014, 2015). Recently, novel
VIs have been proposed for TS analysis, such as the Plant Phenology Index (PPI, Jin and Eklundh 2014), which
is used for the calculation of the HR-VPP product at 10 m resolution as part of the Copernicus Land Monitoring
Service (Tian et al., 2021).

Despite their widespread usage, spectral VIs also suffer from several drawbacks. Reducing the spectral signals265

into simple indices intrinsically leads to remaining spectral information unexploited, which potentially could inform
about plant physiology (e.g., Atzberger et al., 2011; Verrelst et al., 2019a). In general, these parametric methods
neglect the effect of the background soil and other confounding factors (e.g., Darvishzadeh et al., 2008; Verrelst
et al., 2008, 2010; Gao et al., 2022). Also, they tend to be proxies for a small set of the physiological properties of
vegetation only, leaving their empirical biophysical and biochemical meaning often ambiguous (e.g., Myneni et al.,270

1995; Morcillo-Pallarés et al., 2019).

3.1.2 Quantitative traits

A more explicit cause-effect alternative to obtaining TS of VIs can be derived from the radiative transfer theory.
Radiative transfer models (RTMs) offer the possibility of deriving biochemical and biophysical traits at leaf (e.g.,
Jacquemoud et al., 1996; Ceccato et al., 2001; Féret et al., 2017) and canopy levels (e.g., Myneni et al., 1997;275

Rautiainen, 2005; Richter et al., 2009; Darvishzadeh et al., 2011) from optical remotely sensed data. RTMs describe
the relationship between biochemical and biophysical traits and plant optical properties based on physical laws.
Various inversion strategies have been developed based on lookup tables, numerical optimization methods and ML
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methods, i.e. so-called hybrid approaches. An overview of RTM-based retrieval methods is provided by the reviews
of Kimes et al. (1998); Baret and Buis (2008); Verrelst et al. (2015a, 2019a). Building upon these RTM inversion280

strategies, a few traits are operationally retrieved from routinely acquired EO data of land missions such as MODIS
or S2. The most widely produced vegetation products are LAI and fAPAR, but also fractional vegetation cover,
and to a lesser extent canopy chlorophyll content (e.g., Myneni et al., 2015; Yan et al., 2016; Fang et al., 2019; Xu
et al., 2022). To obtain productivity metrics, TS data streams of the traits have been integrated into various GPP
assimilation schemes (e.g., Jung et al., 2007; Xie et al., 2019; Chen et al., 2022).285

Apart from those routinely generated vegetation products, a wide range of experimental studies present alternative
retrieval methods or focused on the retrieval of other biochemical traits, e.g. leaf and canopy water content, leaf
chlorophyll content (e.g., Croft et al., 2020; Estevez et al., 2021; Caballero et al., 2023). Typically, these studies have
been limited to the processing of single-date observations or at best multi-temporal acquisitions for a restricted time
window. Given those experimental retrievals, efforts to provide TS of a range of biochemical and biophysical traits290

were conducted by a few studies (e.g., Verger et al., 2016; Salinero-Delgado and Verrelst, 2021). An important note
on the use of RTMs to derive quantitative traits concerns their sensitivity to phenological developmental stages of
vegetation: Schiefer et al. (2021) demonstrated that trait retrieval accuracy has a strong dependency on phenology.
A possible solution would be to use expert knowledge and in situ data to enable a more precise parameterisation
of the RTMs depending on the phenological (macro) phase. At the same time, fast processing speeds are required295

to retrieve traits from TS data streams. This points towards hybrid retrieval schemes including active learning, i.e.,
relying on tuning RTM simulations against in situ measured traits and training of ML algorithms (e.g., Verrelst
et al., 2021; Berger et al., 2021).

An overview of widely used quantitative traits in TS processing available from RTM inversion, and their potential
relationship to vegetation productivity is given in Table 1. These traits can be further used within defined method-300

ologies to derive productivity metrics given in the blue box, such as GPP. The capability of advanced RTMs such as
SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, Van der Tol et al. (2009); Yang et al. (2021a))
to model SIF is promising. SIF is a strong proxy for actual photosynthetic activity in canopies (e.g., Porcar-Castell
et al., 2014; Verrelst et al., 2015b, 2016), and over the years various SCOPE-based SIF retrieval schemes have been
proposed to derive GPP, usually by taking ecosystem-specific characteristics into account (e.g., Damm et al., 2015;305

Norton et al., 2019; Pacheco-Labrador et al., 2019; Yang et al., 2022).

3.1.3 Gap-filling and smoothing methods

Continuous, complete, and unbiased TS data is often a key requisite to monitor vegetation productivity using optical
EO sensors. Here, one of the biggest challenges is data gaps. In reality, the availability of continuous data is often
hampered by: (1) sub-optimum to inadequate weather conditions, such as clouds, snow, dust and aerosols (e.g.,310

Kandasamy et al., 2013) or (2) instrumentation errors and uncertainties (Graf et al., 2023), as well as calibration
issues (e.g., Brinckmann et al., 2013). Cloud cover is the most stringent limitation of optical satellite data. The
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Table 1. Overview of widely-used biophysical variables inferable from RTM inversion to assess vegetation productivity
information.

Trait Description Key references

Green leaf area index (GLAI) GLAI quantifies the photosynthetically active fo-
liage area and is proportional to gross photosyn-
thesis and an important driver of net primary pro-
duction.

Myneni et al. (2002);
Baret et al. (2007, 2013)

Fraction of absorbed photosyntheti-
cally active radiation (fAPAR)

FAPAR refers to the amount of incoming solar ra-
diation absorbed by live vegetation in the spec-
tral range from 400–700 nm, divided by the total
amount of absorbed radiation.

Knyazikhin et al. (1998);
Myneni et al. (1997); Go-
bron et al. (2006)

Leaf chlorophyll content (LCC) LCC refers to the total chlorophyll a+b content
per unit leaf area (µg/cm2). Chlorophyll molecules
are responsible for harvesting the incoming PAR
required to drive the light-dependent reactions of
photosynthesis. LCC is closely related to leaf pho-
tosynthetic capacity.

Croft et al. (2020, 2017);
Luo et al. (2019)

Canopy chlorophyll content (CCC) CCC as the product of (G)LAI and LCC quantifies
the amount of photosynthetically active radiation
absorbed by a canopy and therefore relates to pri-
mary productivity.

Ali et al. (2020); Gitelson
et al. (2014, 2015)

Solar-induced fluorescence (SIF) SIF is an electromagnetic signal emitted by chloro-
phyll a of photosynthesizing plants and provides a
mechanistic proxy for photosynthesis.

Frankenberg et al.
(2011); Guanter et al.
(2012); Porcar-Castell
et al. (2014)
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majority of the terrestrial Earth’s surface is more or less regularly covered by clouds, and for some areas, persistent
cloud cover can last for weeks (e.g., Atkinson et al., 2012; Wilson and Jetz, 2016). In such cases, data sparsity leads
to biased estimates, decreased statistical power, increased standard errors, and substantial uncertainty in findings315

(Dong and Peng, 2013). For instance, clouds can mask key stages of phenological events, leading to unreliable
monitoring practices such as productivity predictions (e.g., Karlsen et al., 2018). Notably, the amount of data gaps
and noise strongly depends on the season, topography, location or environment (e.g., Beck et al., 2006; Vuolo et al.,
2017).

The spatiotemporal gap-filling of missing TS data has therefore become a crucial step for monitoring the life cycle320

of vegetation and inter- and intra-annual variations in plant productivity (e.g., Beck et al., 2006; Schwartz, 2013;
Kovács et al., 2023; Belda et al., 2020a; Amin et al., 2022). A high-quality signal can be assumed to represent the
true seasonal trajectory of vegetation and should be carefully processed to retain the short-term character of data
(e.g., using smoothing filters or splines). Signals with a high degree of noise need to be constrained by fitting to a
predefined function to avoid unrealistic variations (e.g. asymmetric Gaussian or logistic functions). TS filters and325

splines can to some degree balance between retaining or smoothing short-term variations, and with these methods,
parameter settings can be defined that balance smoothness with fidelity to the data (Atzberger and Eilers, 2011b).
Important considerations when applying smoothing to TS data are whether data should be fitted to the upper
envelope to compensate for signal bias (Chen et al., 2004; Jönsson and Eklundh, 2004), how to treat data points
labelled as sub-optimal quality (e.g. cloud shadow pixels), and how to handle long periods of missing data (Beck330

et al., 2007; Jönsson et al., 2018; Bolton et al., 2020). Gap-filling and smoothing methods can be categorized into
(1) smoothing and interpolation methods, (2) data transformation methods, and (3) fitting methods (Kovács et al.,
2023). An exhaustive overview of available methods is provided in recent reviews by Zeng et al. (2020) and Pipia
et al. (2022b), and is therefore not repeated here.

3.2 Assessment of vegetation productivity using trend analysis and anomaly detection335

Long TS data streams of VIs (Sect. 3.1.1) or quantitative traits (Sect. 3.1.2) are particularly well suited for trend anal-
ysis, a widely used method for monitoring plant productivity (Eastman et al., 2009). Such analysis includes aspects
such as abrupt or gradual changes in trends, as well as timing, number, and direction of such changes (Verbesselt
et al., 2010). An example of TS decomposition is shown in Fig. 4. Each of these components can be further ana-
lyzed, for example, using separate trend models for annually derived attributes (Stellmes et al., 2013; Munawar and340

Udelhoven, 2020).
Regarding trend analysis, the study by Karkauskaite et al. (2017), for instance, explored data from MODIS (from

2000 to 2014) to evaluate the performance of PPI, NDVI and EVI in analyzing the trends of SOS in boreal regions
of the Northern Hemisphere. The authors compared the VI trend results with in situ GPP-retrieved SOS from a
network of flux tower observations. Although all three VIs produced similar trends in SOS, a pronounced land-cover345
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dependence was observed, with PPI-SOS outperforming the other two spectral indices in approximating vegetation
productivity, i.e. GPP.

Figure 4. Generic plot showing the different components for TS analysis. Point observations result from the coupling of a
general trend, a seasonal component, and a remainder quantity. The decomposition allows for measuring the trend at specific
points, by disentangling seasonal effects.

In the context of anomaly detection, specific indices have been proposed: the Vegetation Condition Index (VCI) (Ko-
gan, 1995) informs about overall vegetation conditions by referencing actual NDVI values with long-term statistics
over the same period. The main application of VCI is related to drought detection (Klisch and Atzberger, 2016;350

Rembold et al., 2015a). Similarly, the Vegetation Productivity Index (VPI) (Smets et al., 2015) was proposed to
detect anomalies in vegetation productivity. Importantly, these methods were developed for natural ecosystems such
as boreal forests or sub-tropical savannahs where the vegetation type is assumed not to change from year to year.
Thus, these indices are not appropriate for ecosystems with regular changes in species composition; e.g., agricultural
croplands with crop rotation schedules. A deep learning approach for forecasting VCI was presented by Lees et al.355

(2022), demonstrating the usefulness of detecting drought conditions in Kenya using this anomaly index.
In addition to decomposing and analyzing trend patterns of a VI TS, an option is linking the VI to other environ-

mental variables that influence vegetation productivity using distributed lag models (Udelhoven, 2011). However,
relationships between climatic variables and responses in VI TS tend to be non-linear, spatially non-stationary and
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sensitive to the scale of analysis. Simple regression model techniques such as Ordinary Least Squares (OLS) fail360

to model vegetation productivity accurately. To overcome such shortcomings, geographically weighted regression
(GWR) approaches were suggested (Georganos et al., 2017).

3.3 Assessment of vegetation productivity using land surface phenology

Land surface phenology describes the seasonal timing and duration of vegetative growth using TS of VIs (Sect. 3.1.1)
or biophysical variables (Sect. 3.1.2) (De Beurs and Henebry, 2004). Typical LSP metrics are dates and values for365

the start of the season (SoS), end of the season (EoS), length of the growing season (LoS), the peak of the season
(PoS), season amplitude, and steepness of the greening and browning periods (Reed et al., 1994; Beck et al., 2006).
Depending on the vegetation type studied, varying names can be found in the literature, such as the onset of
greenness and the start of senescence for deciduous forests (e.g., Duchemin and Courrier, 1999; Kang et al., 2003;
Badeck et al., 2004). A diversity of mathematical methods have been proposed for extracting the metrics from smooth370

seasonal trajectories. Most are based on absolute or relative thresholds of the seasonal amplitude (e.g., Bolton et al.,
2020; Jönsson and Eklundh, 2004), whereas others are purely mathematical parameters, such as inflexion points or
derivatives of different order (e.g., Fisher et al., 2006; Elmore et al., 2012; Melaas et al., 2013). A comprehensive
review of the definition and extraction of LSP metrics is provided by Zeng et al. (2020).

Commonly, LSP metrics are used to study the impact of environmental changes on ecosystems: shifts in LSP, e.g.,375

the earlier timing of SoS, indicate climate change (Abbas et al., 2021). For instance, Wood et al. (2021) used three
decades of AVHRR data over the U.S. Northwestern Plains to study the impact of climate change and agricultural
management on phenology. They concluded that climate factors such as precipitation and temperature can have a
significant impact on productivity, but other factors such as soil nutrients, disturbance, and management practices
also play a role.380

The concept of LSP also has its drawbacks. Apart from the influence of the smoothing technique and the method
used to extract the LSP metrics, Helman (2018) stressed that changes in vegetation species composition rather than
phenological transitions could produce a false-positive signal in LSP. Moreover, LSP metrics show high sensitivity to
the frequency and temporal coverage of observations as well as cloud contamination, which can affect the estimation
of productivity metrics (Younes et al., 2021).385

3.4 Assessment of vegetation productivity using dynamic process models and data assimilation

A more advanced perspective is given by combining remotely sensed TS data with simulations of plant physiological
processes and their temporal development. Simulated plant growth driven and/or constraint by TS data streams
and environmental covariates can be used to study processes that are not directly quantifiable from the satellite data
itself - such as the amount of AGB increase over time (Delécolle et al., 1992). Here, EO data offer the possibility of390

providing a dynamic, spatially continuous parameterisation of model input variables (e.g., Bach and Mauser, 2003;
Verhoef and Bach, 2003; Hank et al., 2015).
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Process-based dynamic vegetation models can have different levels of complexity concerning their ability to simu-
late biophysical and biochemical processes in plants (e.g., Quillet et al., 2010; Ardö, 2015). Based solely on empirical
data, canopy structure dynamics models (CSDM) have been proposed to simulate a TS of canopy traits such as395

LAI as a function of temperature (growing-degree-days) (e.g., Baret et al., 2000; Koetz et al., 2005). Using the
concept of LUE, Goudriaan and Monteith (1990) described vegetation dry matter accumulation as a function of
leaf area expansion. By including further knowledge about physiological processes and plant morphology, more ad-
vanced DVMs can be created to simulate ecosystem productivity such as for boreal forests (e.g., Liu et al., 1997) or
croplands (e.g., Delécolle et al., 1992; Launay and Guerif, 2005; Liu et al., 2016). For instance, The Breathing Earth400

System Simulator (BESS) model (Ryu et al., 2011; Jiang and Ryu, 2016) couples atmosphere and canopy processes,
two-leaf photosynthesis, energy balance, to provide evapotranspiration and GPP.

Fischer et al. (1997) already distinguished three different strategies to combine remotely sensed TS of vegetation
with process-based models, which can be seen as state-of-the-art, as delineated in Fig. 5: (1) model forcing, (2) model
recalibration, and (3) coupled forward modelling. In the model forcing strategy (Fig. 5, 1), the remotely observed405

state variables (e.g., fAPAR, LAI) are forced (input) into the process model (e.g., BESS by Tagliabue et al., 2019).
In the recalibration strategy (Fig. 5, 2), also known as ‘data assimilation’, remotely sensed state variables are used
to readjust DVM parameters or inputs whenever an observation becomes available. While the first two strategies
involve inverse modelling to obtain the remotely sensed state variables, the third approach relies entirely on forward
modelling (Fig. 5, 3). It couples a DVM with an RTM to simulate vegetation optical properties, which are then410

compared to remotely sensed data. The main advantage of this strategy is the avoidance of inverse modelling,
which is not only ill-posed but usually also computationally intensive. Shiklomanov et al. (2021), for instance,
coupled three existing models, namely the Ecosystem Demography model version 2 (ED2, Medvigy et al., 2009),
PROSPECT-5 (Feret et al., 2008) and a simple soil reflectance model to the EDR model. Their model predicts the
full range of high-spectral-resolution surface reflectance, which is dependent on the current state of the ED2 model.415

Another relevant example is provided by Wang et al. (2023) with Climate Modeling Alliance (CliMA) Land, which is
able to simulate data streams of productivity metrics such as GPP, transpiration, as well as canopy reflectance and
fluorescence spectra that can be observed by satellites in a high temporal resolution. The authors demonstrated the
potential of CliMA Land in tracking the spatial patterns of productivity metrics (GPP) compared to data-driven
methods. Similarly, Poulter et al. (2023) recently coupled the LPJ-wsl global DVM and the canopy radiative transfer420

model PROSAIL. LPJ-PROSAIL can generate global, gridded TS of daily visible to shortwave infrared (VSWIR)
spectra (400–2500 nm) taking into account temporal and spatial variability. Overall, these studies demonstrate that
the model couplings (DVM and RTM) are valuable tools for monitoring the development of vegetation activity at the
global scale, in strong relation to the carbon cycle and hydrology. With this, the method can provide the prerequisite
of the Digital Twin concept allowing to model productivity with high fidelity for longer time periods, and eventually425

evaluate different future scenarios.
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Figure 5. Three strategies to combine remotely sensed TS with process-based DVMs: (1) model forcing, (2) data assimilation
(including model recalibration and re-initialization) and (3) coupled forward modelling of DVMs and RTMs (=Digital Twin).

3.5 Toolboxes for vegetation productivity studies

A variety of sophisticated software packages have been developed to facilitate the processing and analysis of large
image TS and ultimately provide key information about vegetation dynamics and ultimately about productivity
metrics. In most cases, these packages are openly available, and share common purposes, although they differ430

in specific features and methodologies. Broadly, we can distinguish toolboxes for TS processing, TS analysis and
change detection, traits retrieval, and process modelling (i.e., DVM). Tab. 2 lists the toolboxes according to this
categorization, including functionalities and implementation. Note that we have compiled this list to the best of our
knowledge; however, it is possible that it may not include all existing toolboxes.

TIMESAT (Jönsson and Eklundh, 2004), for instance, is able to transform noisy signals into smooth seasonal curves435

and to extract seasonality metrics, like SoS, EoS, and LoS, or integrated values. Originally developed for coarse spatial
resolution data (e.g. AVHRR or MODIS), with mostly equidistantly spaced temporal observations, recent versions
have adopted the characteristics of satellites with high spatial resolution but infrequent temporal observations, such
as Landsat and S2. While TIMESAT uses least-squares methods, the Decomposition and Analysis of Time Series
software (DATimeS) (Belda et al., 2020a) expands established TS interpolation methods to over 20 conventional440

(e.g., Whittaker smoother (Eilers, 2003)) and advanced ML fitting algorithms, like Gaussian process regression
(GPR), which is particularly efficient for reconstructing multi-seasonal vegetation patterns (Belda et al., 2020b). In
this way, DATimeS provides interpolated VI/trait values from unevenly spaced TS and associated uncertainties and
allows extraction of phenological metrics for each crop and season. DATimeS then also enables the calculation of
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Table 2. Toolboxes recommended and used for converting remotely sensed TS into gap-filled VI and vegetation trait products,
and to derive LSP metrics and trends, which all can be ultimately used for estimating productivity metrics. Note that this
list is not necessarily exhaustive, but rather a selection of some of the most notable tools that we are aware of, to the best of
our knowledge.

Toolbox (link) Functionality Implementation Reference

TS processing:
TIMESAT Gap-filling / phenology metrics Standalone Jönsson and Eklundh (2004)
DATimes Gap-filling / phenology metrics / TS fusion Matlab GUI Belda et al. (2020a)

TS analysis and change detection:
TimeStats Trend, seasonal, and multivariate analysis IDL virtual machine Udelhoven (2010)
EOTSA Trend, seasonal, and multivariate analysis Web interface, RStudio Leopold et al. (2020)
BFAST Phenology metrics / breakpoint analysis R Studio Verbesselt et al. (2010)
HiTEmpo Model-based change detection algorithm - Van Den Bergh et al. (2012)
SPIRITS Indicators / anomalies Java virtual machine Eerens et al. (2014)
R libraries Indicators, analysis, visualisation R e.g., Araya et al. (2018)

Traits retrieval:
EnMAP-Box 3 Data-agnostic handling of multi-sensor TS data Python, QGIS plugin van der Linden et al. (2015)
ARTMO Quantitative traits / RTMs, ML Matlab GUI Verrelst et al. (2012)

Process modelling:
PCSE DVM forward modelling, satellite data assimilation Python -

the same seasonality metrics as TIMESAT, and also has built the option to fuse TS of two data sources, e.g. optical445

and radar data (Pipia et al., 2019). Apart from TIMESAT and DATimeS, there are other software tools to analyse
VI TS data for phenology-related studies including Phenological Parameters Estimation Tool, enhanced TIMESAT,
Phenosat, CropPhenology and QPhenoMetrics (Zeng et al., 2020).

TimeStats (Udelhoven, 2011) goes beyond the extraction of phenological metrics as it expands TS analysis methods
to parametric and non-parametric methods for trend detection, generalized-least square regression, distributed lag450

models, cross spectra analysis, windowed trend and frequency analysis, continuous wavelet transform, and empirical
mode decomposition. Based on some of those methods within TimeStats, predefined workflows were implemented
in a web interface called EOTSA (Earth Observation Time Series Analysis) Toolbox (Leopold et al., 2020). EOTSA
allows online access to satellite data archives (currently the full PROBA-V database) without the need for local
data storage. Fig. 6 shows two examples where NDVI TS were analysed at the continental scale using EOTSA. In455

the first example, seasonal characteristics (mean NDVI, annual magnitude, peaking time) were derived (step 1),
followed by a trend analysis (step 2) (Fig. 6B). The colour composite of the trends for the seasonal characteristics
reveals spatiotemporal patterns. Fig. 6C shows an example of multivariate TS analysis in which NDVI was regressed
against lagged rainfall using distributed lag modelling after pre-whitening the TS. Regions with positive correlation
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at higher lags depict the dependence of vegetation biomass production on accumulated previous rainfall amounts.460

These can be for instance located in semi-arid areas occupied by natural grassland.

Figure 6. Landcover map of Africa and legend (A), trend analysis for a TS of MODIS satellite images (period: 2015-2019)
displayed as RGB colour composite (B), results from Distributed Lag Modelling where NDVI was regressed against lagged
rainfall (C). Prepared with EOTSA RStudio version.
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BFAST (Verbesselt et al., 2010) is a generic change detection approach that considers seasonal, trend, and re-
mainder components through iterative estimation of the time and number of abrupt changes within TS, and char-
acterisation of change by its magnitude and direction typically applied in forest monitoring studies.

HiTempo (Van Den Bergh et al., 2012) is a software tool created to aid in the study of TS analysis of hyper-temporal465

sequences of satellite image data. The platform was specifically designed to simplify the exhaustive evaluation and
comparison of algorithms while ensuring the reproducibility of experiments.

SPIRITS (Eerens et al., 2014) is a comprehensive software toolbox designed for environmental monitoring, with
a particular emphasis on generating clear and evidence-based information for crop production and decision-makers.
SPIRITS provides a vast array of tools for extracting vegetation indicators from image TS and estimating the470

potential impact of anomalies on crop production (Rembold et al., 2015b). With its user-friendly graphical interface,
SPIRITS offers an integrated and adaptable analysis environment that facilitates sequential tasking and provides a
high degree of automation for processing chains.

The EnMAP-Box 3 (van der Linden et al., 2015) provides a user-friendly GUI with tools for collecting and
visualizing spectral profiles from various sources such as raster images. Furthermore, the QGIS processing framework475

has been expanded by incorporating many algorithms typically utilized in EO data and imaging spectroscopy analysis
for a diversity of ecosystems. The "Agricultural Applications", for instance, provide empirical and physically based
trait retrieval strategies which can be explored for deriving productivity information (e.g., Danner et al., 2021).

Regarding RTMs, the Automated Radiative Transfer Models Operator (ARTMO) toolbox (Verrelst et al., 2011)
is an outstanding example. ARTMO provides GUI-based access to several leaf and canopy RTMs, and atmospheric480

RTMs and offers sophisticated strategies for forward and inverse modelling including state-of-the-art ML methods.
Finally, there is a host of available R packages, e.g., CropPhenology, for extraction of crop phenology from TS based

on VIs (Araya et al., 2018), the phenofit package - intended for daily vegetation TS and monitoring of vegetation
phenology from satellite VIs (Kong et al., 2022), or LPDynR as a tool to calculate the Land Productivity Dynamics
indicator (Rotllan-Puig et al., 2021). Moreover, there are Python libraries for phenology and vegetation productivity485

apps available for ODC. The aim of the ODC initiative is to enhance the worth and influence of worldwide EO
satellite data. It does so by offering an open and free-to-use data exploitation structure, and by encouraging a
community to cultivate, maintain, and expand the technology and its range of applications (Killough, 2018).

While the aforementioned toolboxes focus on the usage of remotely sensed data only, we found only a few tools
that allow users to work with DVMs. Many DVMs are (often) based on FORTRAN programming and lack graphical490

user interfaces or high-level programming interfaces. The ‘Python Crop Simulation Environment (PCSE) has ported
old-style DVMs to modern Python programming but, still, considerable coding skills are required to make use of
it. PCSE offers a platform for carrying out crop simulation modelling along with tools to read supporting data
(such as weather, soil, and agricultural management) and components for simulating various biophysical processes
including phenology, respiration, and evapotranspiration. Additionally, PCSE features implementations of widely495

used crop and grassland simulation models like WOFOST, LINGRA, and LINTUL3. WOFOST, for instance, has

23

https://pcse.readthedocs.io/en/stable/


been employed in the operational crop yield forecasting system MARS, which is used to monitor crops and predict
yields worldwide (De Wit et al., 2019; Lecerf et al., 2019). Furthermore, the code of specific process models has been
made available via the specific websites of the model authors, e.g, the BESS model.

4 Validation of RS-based primary productivity estimates500

Validation is a critical step in ensuring the accuracy and reliability of estimated quantities or (vegetation) products
derived from remotely sensed TS data sets (Justice et al., 2000). The validation process involves comparing the
estimates with those from independent sources, such as in situ observations, to evaluate their overall quality and
suitability for a particular application. The comparison between remotely sensed data products and ground-based
measurements enables the detection of errors and biases in the retrieved products and improves the interpretation and505

understanding of the underlying ecological processes (Wu et al., 2019). Ultimately, validation is essential for ensuring
that remotely sensed TS data can be used to accurately estimate GPP, NPP, and other vegetation productivity
metrics.

4.1 Validation strategies

In the context of productivity monitoring, we distinguish three distinct validation methods:510

1. In situ validation;
2. Local sensor networks;
3. Multi-product intercomparison.

These methods are illustrated in Fig. 7, which showcases how they interplay to provide accuracy, time resolution,
and spatial representation, as further elaborated below.515

The first category, in situ validation (1.), involves comparing RS data products to direct ground-based observations
of productivity metrics. Examples include the direct determination of AGB, litter biomass, and crop yield. In many
cases, in situ data is collected by harvesting plots and determining dry biomass (e.g., Zhang and Zhang, 2016;
Liu et al., 2021b). One prominent data set is the ORNL DAAC Net Primary Productivity data collection (ORNL
DAAC, 2023). It comprises field measurements of AGB and estimated NPP from roughly 100 terrestrial study sites520

across the globe, including different types of forests, grasslands, and crops. These data were gathered from various
published literature and other available sources of information. In situ validation provides a means of calibrating
models to ensure consistency over time, which is essential for long-term studies.

The second category, sensor networks, (2.) is perhaps the most widespread and promising strategy for validating
productivity products (i.e., metrics) from EO data. This category refers to a network of distinct sensors, compris-525

ing spectral radiometers, phenocams and eddy-covariance (EC) flux towers (e.g., Baldocchi et al., 2001; Baldocchi,
2003; Hilker et al., 2011; Toomey et al., 2015). Such an approach requires deploying validation sites or observation
networks with standardized observation protocols (Morisette et al., 2006). The employment of spectroradiometers,
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Figure 7. Interplay of the three main approaches (field-based: in situ validation, sensor networks and multi-products inter-
comparison) of validating vegetation productivity, as a function of time, spatial representation and accuracy.

phenocams, and EC systems is a valuable tool for providing both continuous, high-resolution (i.e., sub-daily) esti-
mates of vegetation productivity over daily to decadal timeframes and also serving as validation for satellite-based530

products. Phenocams capture time-lapse images of vegetation, allowing the monitoring of phenological events such
as leaf emergence, flowering, and senescence. This information is valuable for tracking the growth and development
of vegetation, as well as for identifying changes in productivity due to environmental stressors. For example, the
SpecNet network (SpecNet, 2022) aims to link optical measurements with flux sampling and standardized field op-
tical methods (e.g., Gamon et al., 2006, 2010). The Committee on Earth Observing Satellites (CEOS) Group on535

Calibration and Validation is currently leading efforts concerning the development of best-practice phenology valida-
tion protocols and the establishment of ground-reference sites across different biomes (NASA, 2023). The use of EC
techniques for providing direct measurements of the exchange of carbon, water and energy between vegetation and
the atmosphere (Baldocchi et al., 2001) has provided an extremely valuable means of measuring plant productivity
across diurnal to decadal time scales. The longest-running flux tower is located in Harvard Forest and has been540

providing continuous measurements at half-hourly intervals since 1989 (Urbanski et al., 2007). Several national and
regional networks of flux towers exist (e.g. Ameriflux, Chinaflux, Ozflux, ICOS), which has enabled the contribution
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of EC data to improve our understanding of plant-environment interactions to go beyond a single site or ecosystem to
regional-to-global studies. To address data consistency and allow cross-site comparisons, FLUXNET was established
in 1997, which is a ’network of networks’ and has led to harmonised methods and datasets. The latest dataset545

of FLUXNET, FLUXNET2015, contains gap-filled TS data streams of GPP, Re, and meteorological data for 1500
site years, along with an estimation of uncertainties (Pastorello et al., 2020). However, there are concerns about
the spatial and temporal representative of EC data, due to the disproportionate predominance of flux towers being
located in North America and Europe (Chu et al., 2017). To scale from the footprint of individual flux tower sites
to gridded, spatially- and temporally-explicit products, a variety of ML techniques have been employed, including550

neural networks, regression trees and kernel methods (Beer et al., 2010; Jung et al., 2011, 2020). EO data is usually
used, along with meteorological data within the ML algorithms, to extrapolate across time and space. These EC-
derived products, such as those within the FLUXCOM initiative (Jung et al., 2020) have been extensively used in
validating other sources of vegetation productivity estimates, including those from satellite-based EO data streams
and terrestrial biosphere models (Chu et al., 2017).555

The integration of these diverse ground-based sensing techniques together with EO data streams is suitable for
monitoring large-scale vegetation dynamics, and it can aid in the interpretation and validation of productivity models
obtained from remotely sensed data (Balzarolo et al., 2014). From a technical point of view, it is common to find
literature that explores the accuracy of satellite imagery validated through such near-surface sensors. Additionally,
there is increasing usage of similar networks focused on different aspects of vegetation and supported by the spread560

of low-cost and IoT sensors, for example, the TreeTalker network (Valentini et al., 2019; Tomelleri et al., 2022).
The third category, multi-product intercomparison, (3.) involves the benchmarking of multiple productivity prod-

ucts or different models using EO data. This validation approach requires a thorough comparison of the obtained
products with similar ones to check for consistency (Beer et al., 2010; Lin et al., 2022; Meroni et al., 2012). A critical
aspect of this approach is ensuring that the models or products being compared are fit for purpose. In other words,565

they must be appropriate for the specific application or use case. Additionally, the cross-comparison of distinct types
of models, such as (an ensemble of different) DVMs and data-driven approaches (e.g., Ardö, 2015; Jung et al., 2020),
can provide valuable insights into the strengths and weaknesses of each model type. Benchmarking models using
EO data can help to improve their accuracy and reduce errors in their predictions, which is essential for applica-
tions such as monitoring global climate change and assessing the health of ecosystems. It can also aid in developing570

more advanced primary productivity models that can better account for the complexities of ecological processes and
environmental variability.

4.2 Bridging the scaling gap

Scaling issues remain one of the most significant challenges in extracting vegetation productivity, regardless of the
metric chosen (Zeng et al., 2020; Caparros-Santiago et al., 2021). The disparity in spatial and temporal resolution575

between in situ measurements and remotely sensed data often creates uncertainty in the extracted vegetation pro-
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ductivity estimates. While in situ (point) observations are typically species-specific, RS platforms capture a mixture
of vegetation types within their large geographic footprint. Consequently, directly comparing in situ and remotely
derived productivity estimates can be difficult, if not impossible. Furthermore, while in situ observations or local
sensor networks provide a high level of detail and accuracy, their geographical coverage is often limited and may580

not be indicative for large-scale studies (see also Fig. 7). In contrast, EO data products from multiple satellites
offer broader coverage, but they suffer from coarser spatial resolutions. This trade-off between detail and coverage
presents a significant challenge in scaling in situ observations or local sensor networks (categories 1) and 2) into the
larger scale captured by EO data. Therefore, to overcome the scaling challenge and enhance the accuracy of remotely
derived vegetation productivity metrics (see blue box in Sect. 1.1), an effective protocol for the calibration and val-585

idation of such metrics using in situ observations, sensor networks, and multi-product / model intercomparison is
essential. See also the multiscale validation scheme as outlined in Malenovskỳ et al. (2019).

5 Systematic literature review on time series based applications for vegetation productivity

This section aims to complement the previous sections by taking a tour across principal thematic applications
through a meta-review. We do not assess the calculation of productivity applied in these studies. Instead, we aim to590

provide a thorough overview of how remotely sensed TS data were explored to estimate productivity for agricultural,
forestry, and other natural ecosystem applications. In this way, readers will be redirected towards specific scientific
studies analysing productivity with a multitude of proxies and methods for these application domains.

5.1 Systematic literature review

The systematic literature review followed the guidelines of the Preferred Reporting Items for Systematic Reviews595

and Meta-Analyses (PRISMA) (Page et al., 2021). The SCOPUS and Web of Science web catalogues were queried
for published, peer-reviewed studies. In SCOPUS, the title, abstract and keywords were searched with the query
“time AND series AND productivity AND ’remote sensing’ AND (vegetation OR forest OR crop)”, while the topic
field in the Web of Science catalogue was searched for “’time series’ AND (vegetation OR forest OR crop) AND
productivity”. The resulting 915 records of the two databases were merged into one database by omitting duplicated600

records as identified by their DOI (Fig. A1). The records were further screened to include research articles and
conference contributions in the English language, excluding review studies. Furthermore, the studies were required
to use RS analysis of terrestrial vegetation with at least two observations in time. For each entry, a range of attributes
was recorded (Tab. 3).

Unlike other studies, which defined a TS as consisting of a minimum of several observations, we included studies605

with a minimum of two images without an upper limit. This allowed us to include studies that have traditionally
been labeled under the topic of change detection analysis. We chose to do this for two reasons. First, we believe that
the minimum number of observations in a TS is arbitrary, and we wanted to take a more comprehensive approach
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to examining the aspect of time. Second, the number of studies using long TS consisting of high-resolution (10-30
m pixel size) images is relatively small. Considering only long TS data streams would have excluded many studies610

that observe productivity from Landsat and Sentinel-2 satellites.

Table 3. Attributes retrieved from selected studies for the systematic review.

Attributes Definitions

Sensor/platform Sensors and platforms used in the study
Spatial resolution Ground sampling distance of primary data product used in the analysis (in metre)
Land cover Land cover according to IGBP land cover classes1, plus category of LULCC
Study area category Size of study area in administrative terms (local, region, country, multi-country, continental, pan-continental, global)
Study area size Size of study area (in km2)
Time series start/end [date] Start and end date of time series
Revisit Frequency of observations in the time series (in days)
Time series steps Number of observations between start and end date (alternative to revisit)
Definition productivity Primary RS products used to derive productivity metrics (VI/LSP/traits/process/LULCC)

Fig. 8 shows the number of published papers per number of explored TS observations. Note that the x-axis starts
with "2". There is a skewed normal distribution with a median of 227 temporal observations and a long tail towards
a higher number of observations. The 75th percentile is reached at 786 observations.
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Figure 8. Histogram of number time steps used by the reviewed studies. Thirty-three studies with ≥1000 steps have been
removed in order to facilitate representation.
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Fig. 9a summarises which RS-derived products or methods were used by the studies to approximate productivity.615

Note that some studies referred to productivity but did not specifically state if the generated products were meant
to be a representation of productivity, this required care in the interpretation of the results. Generally, productivity
proxies were categorized into (1) VIs, being the simple algebraic transformation of spectral observations (see also
Sect. 3.1.1); (2) phenological metrics, i.e. derivatives of observations over time, as described in Sect. 3.3), (3) traits, i.e.
biophysical/ biochemical properties of vegetation at the time of observation (see also Sect. 3.1.2), (4) process, which620

implies the use of DVM (see also Sect. 3.4), and finally (5) land use and land cover change classifications (LULCC).
VIs were most often employed to describe productivity, with almost 50% of all analyzed studies. Specifically, most
studies relied on NDVI TS, which may be the most used and well-known method to analyse TS in the context of
vegetation productivity. VIs were followed by traits, processes, and phenological metrics, and cover characteristics
as less often used proxies.625
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Figure 9. Results of systematic literature review.
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Fig. 9b and Fig. 9c show the trends in spatial resolution and sensors underlying the vegetation productivity studies,
respectively. In both, three phases can be distinguished: first, the dominance of AVHRR-based and coarse-resolution
studies until 2005 (e.g., Wessels et al., 2004). In this period, only 21 studies (3.7 %) were published. Second, a rising
contribution of MODIS and Landsat marked the period from 2005 until 2017 (e.g., Boisvenue et al., 2016). During
this period the number of studies per year increased from 6 (1.1 %) in 2005 to 52 (9.2 %) in 2017. In Fig. 9b, the630

years 2013 and 2016 appeared to be outliers with the highest portion of studies with larger than 1000 m resolution.
The 2016 outlier can be explained with the publication of the Global Inventory Monitoring and Modeling System
(GIMMS) third generation NDVI (NDVI3g) long-term TS dataset based on AVHRR (Pinzon and Tucker, 2014).
The last phase started in 2017 and is marked by an increasing trend towards sub-1000 m resolution studies driven
by the increased availability of longer-term Landsat and MODIS TS. Studies combining both sensors make up 6.3 %635

of all (e.g., Knauer et al., 2017; Kussul et al., 2017). Moreover, an unprecedented amount of other sensor TS data
became available, see also Fig. 3. Despite the launch of the Sentinel-2A only in 2015, already 29 studies (5.1 %) made
use of it for analysis (e.g., Abdi et al., 2021).

In Fig. 9d, trends in assessed aggregated land cover types of the reviewed studies are indicated. Category "Other"
includes studies covering multiple land cover types as well as land cover/land use change studies. Hereby the dom-640

inance of agricultural studies can be clearly seen, followed by multiple, forests (e.g., Boisvenue et al., 2016) and
finally grasslands (e.g., Brinkmann et al., 2011).

5.2 Agricultural applications

Exploration of TS data has been focused on cultivated areas due to the high significance of agroecosystems for
providing global food security. In agricultural applications, grain or fruit yield is often considered the primary metric645

for productivity. Being indicated as "Vegetation Index" or "Traits" in Fig. 9a, these studies used VIs or quantitative
traits as one of several inputs in data-driven or process models (e.g., He and Mostovoy, 2019; Ma et al., 2021; Guo
et al., 2019) or transformed those into phenological metrics, such as calendar / thermal time or LoS (e.g., Duveiller
et al., 2013; Azzari et al., 2017) to predict yield. With regards to VIs, mainly NDVI was used to predict crop
yield (e.g., Lopresti et al., 2015; Suijker and Medrano, 2018). For instance, corn and soybean yield was estimated650

from six-year TS MODIS-driven NDVI by training regression tree-based models (Johnson, 2014) or for grape the
yield was forecasted by training a separate artificial neural network with Landsat NDVI, LAI and normalized
difference water index (NDWI) over three years (Arab et al., 2021). In a more complex set-up, Houborg et al. (2015)
retrieved leaf chlorophyll content from Landsat TS data to constrain community land model simulations of GPP;
whilst Yan et al. (2009) predicted the seasonal dynamics of GPP using a satellite-based vegetation photosynthesis655

model (VPM). The inclusion of multiple and heterogeneous data sources as inputs for ML models can improve
results for crop yield forecasting. For instance, Perich et al. (2023) evaluated four different methods (including ML
and deep learning) for pixel-based, within-field crop yield forecasts for five cereal crops from S2 time-series data
across five years (2017–2021) and 54 fields. While their models showed good performance in general, the results also
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demonstrated that the ability to predict yield for unseen years varied. This indicates that EO data alone might not660

be sufficient to explain complex productivity metrics such as yield. The importance of climate TS data, such as
maximum temperatures and accumulated rainfall, along with EO data when training ML models was emphasised
for crop yield forecasting by Kamir et al. (2020).

As a more direct proxy of plant photosynthetic activity, SIF may be able to directly indicate yield or agricultural
production. The study by Somkuti et al. (2020), for instance, showed the potential of integrated GOSAT-derived SIF665

TS data to estimate crop yield. This research line of yield prediction has since then been adapted using other satellite
sources of SIF (e.g. GOME-2, TROPOMI), thereby confirming that SIF contributes to improved yield prediction
models (e.g., Peng et al., 2020; Sloat et al., 2021; Li et al., 2022).

5.3 Applications in forestry

In the last three decades, the bulk of research on forest productivity TS has focused on estimating AGB, and thus670

carbon sequestration, and better understanding the role of forests in regulating the climate. To accomplish these
tasks, various types of data have often been combined, such as TS of satellite multispectral data (Landsat) with
Light Detection and Ranging (LiDAR) and radar (e.g., Powell et al., 2010; Pflugmacher et al., 2014; Nguyen et al.,
2020). The review by Nguyen et al. (2020) stated that innovative Landsat-based approaches for estimating forest
AGB dynamics across space and time have been developed in recent years. Methods have become more advanced675

and robust over time. For instance, Landsat data can be used to fill in missing data points in AGB maps, which
can improve the overall quality of the maps and make them more useful for applications such as carbon accounting
and forest monitoring. Landsat data have been also used to estimate AGB over large areas and long time periods,
even in areas where there is limited field data. Furthermore, recovery metrics can be used to improve the accuracy
of AGB models since Landsat data can provide information about the dynamics of forests over time, which is not680

always captured by traditional AGB models.
Furthermore, forest disturbances can play a crucial role in ecosystem dynamics affecting productivity. Therefore,

TS analysis of forest productivity is a fundamental tool for analyzing the magnitude and frequency of such events.
Many of these forest disturbances are related and have increased due to climate change. Storms and forest fires have
been highlighted as the most significant abiotic disturbances in Europe in recent years (Senf and Seidl, 2021). In685

addition, satellite TS analysis shows an increased trend in the frequency and intensity of droughts, and illustrative
studies have been conducted for northern Europe (e.g., Reinermann et al., 2019; Senf et al., 2020; Descals et al.,
2023). Climate change is also increasing the frequency of biotic disturbances like insect outbreaks (Senf et al., 2017;
Olsson et al., 2017). Insect outbreaks in forests have a significant impact on productivity by defoliating trees and
changing the structure of the forest. All these factors put our forests under increasing pressure and limit the forests’690

role as the global carbon sink. Therefore, it is essential to monitor temporal and spatial patterns of forest productivity
by adopting suitable tools like EO data. To this end, many novel initiatives are related to this specific ecosystem.
Examples are actions based on available data like the FAO’s Global Forest Observations Initiative (GFOI) (Penman
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et al., 2016). In recent years, the main concern about forest science has moved towards accurate carbon stock and
fluxes estimations, for which the focus on EO has shifted from multispectral proxy productivity estimations to precise695

forest extension and AGB measurements, by means of LiDAR, radar, and SIF observations. Remotely sensed SIF
has become a widely used method to study temporal variations of deciduous and evergreen forests. In particular,
SIF retrieved from GOSAT (Lee et al., 2013), GOME-2 (e.g., Koren et al., 2018; Getachew Mengistu et al., 2021)
and TROPOMI (e.g., Doughty et al., 2019) was explored to study the relatively subtle seasonal variations in tropical
forests and provided new insights on vegetation activity during the transitions between wet and dry seasons.700

5.4 Applications for natural ecosystems

For natural ecosystems, many studies assessed spatial and temporal trends in vegetation productivity for spe-
cific ecosystem types, often based on phenology indicators derived from TS of spectral VIs or by integrating
those in DVMs. Among natural ecosystems, several studies focused on African semi-arid ecosystems (Sahel, South
Africa) (Fensholt et al., 2013), the Arctic tundra (Beamish et al., 2020), the northern taiga (Canada, Alaska, Siberia,705

and Scandinavia) (Fiore et al., 2020) and the Middle-Asian grasslands, specifically in the Tibetan Plateau (You
et al., 2019; Liu et al., 2020) and the Chinese-Mongolian area (Tüshaus et al., 2014; Gao et al., 2017). Regarding
productivity, these studies assessed droughts, fires, changes in phenology metrics, land degradation, and vegetation
mortality (e.g., Mayr et al., 2018; Buitink et al., 2020). The most used EO missions are MODIS and AVHRR,
mainly through the analysis of NDVI and GPP TS, or to a lesser extent, other proxies (EVI, fAPAR) or metrics710

(NPP) of productivity (e.g., Rankine et al., 2017; Lara et al., 2018). The spatial coverage of these studies is global
or regional, while the temporal extent is decadal, as MODIS and AVHRR cover a larger time period, from the 1980s
to the present. Multiple studies took advantage of MODIS ready-to-use products (NDVI, EVI, fAPAR, GPP or
NPP), which are compatible with specific phenology analysis software, see also Section 3.5. The MODIS GPP algo-
rithms were also used in GPP estimation studies (e.g., Feagin et al., 2020) and for a comparison with a LUE-based715

DVM (Liu et al., 2011). Studies also compared the results of estimating GPP using MODIS and S2 TS data (e.g.,
Cai et al., 2021).

More recently, satellite SIF data became a valuable source for productivity estimations in natural ecosystems,
among others to better capture seasonal periods of water stress and early-season GPP dynamics in drylands (Smith
et al., 2018; Wang et al., 2019). Similarly, Merrick et al. (2019) studied satellite SIF data for different biomes,720

such as grasslands and savannas (among others). The authors concluded that the inclusion of SIF facilitated the
differentiation of various vegetation types based on their functional characteristics and seasonal changes, explaining
differences in year-round productivity dynamics. Despite being one of the most sensitive ecosystems, wetlands have
been the least researched in the TS context, which might be due to their complexity. A few studies explored MODIS
TS and EC flux tower data (e.g., Kang et al., 2018; Wang et al., 2021). Wang et al. (2021), for instance, used TS of725

the MOD17A3 annual NPP product to reveal spatial and temporal trends of NPP in China, among others. Analyses
for wetlands are also oriented towards classifying changes in wetland extent on multi-temporal S2 imagery. Products
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derived from multi-temporal data were used (S2, Landsat), like NDVI, for instance, to model NPP by means of the
Carnegie-Ames-Stanford Approach (Zhang, 2021; Zhang et al., 2022a).

5.5 The role of productivity as a sink for carbon across ecosystems730

Vegetation productivity, or GPP specifically, characterizes the "gross" terrestrial carbon sink, the gross amount of
CO2 annually sequestered by vegetation. NPP corresponds to the net carbon gain by plants, as it is the difference
between the carbon produced by GPP and Ra (Fig. 10). The appropriation of NPP is also a measure of vegetation
contribution to climate change mitigation (Alexandrov and Matsunaga, 2008). Overall, knowledge about the pro-
ductivity of aboveground carbon stocks in forests, agriculture, and natural ecosystems is essential for global climate735

scenarios (Erasmi et al., 2021). Terrestrial ecosystems, along with the oceans, serve as a natural buffer that restricts
the increase of CO2 in the atmosphere by absorbing and sequestering nearly half of emitted CO2 (Friedlingstein
et al., 2022).

Fig. 10 delineates the different levels of productivity which are GPP, NPP, NEP, and NBP with respect to their
carbon loss processes and flux densities over time. With increasing time scales, the four main fluxes are characterized740

by decreasing amounts of stored carbon due to diverse loss processes (GPP > NPP > NEP > NBP). Compared to
GPP and NPP; NEP and especially NBP are relatively small (Watson et al., 2000). As denoted in Fig. 10, distinct
ecosystems vary a lot in this respect. While an agricultural system (non-permanent crops) is releasing usually all
carbon during one season, natural and forest ecosystems can store carbon for decades, depending on climate, but
also on the amount of woody vegetation and tree age (Machwitz et al., 2015). This emphasizes the crucial role of745

TS data acquisition in monitoring the development of these carbon pools.
Due to the vast expansion of cultivated surfaces worldwide, the role of productivity of managed land within the

global carbon cycle has also increased significantly and deserves particular dedication. Hereby, different factors have
been found to influence the dynamics of carbon as sources or sinks, such as climate, tillage measures, fertilization
or irrigation, among others (Luo et al., 2010). For example, tillage usually leads to a loss of soil organic carbon by750

organic decomposition, however, in combination and depending on other management practices a larger amount can
be stored again by the crops (Haddaway et al., 2017).

The largest terrestrial carbon sink is the world’s forests. In a general view, the global forest carbon stock in 2020
was 662 Gt (FAO, 2020), from which 44% is contained in the AGB. The tropics have the largest proportion of the
world’s forests, and hence they are highly relevant in terms of global climate regulation. However, tropical rainforests755

are under threat due to deforestation, logging, or cultivation, among others. These human activities lead to the loss
of biodiversity and carbon storage, and thus to a transition of being carbon sources for the atmosphere. Also, other
forest types play essential roles in this context, such as needle-leaf forest systems. A study in southern Sweden,
for instance, focused on the plantation of needle-leaf trees (Grelle et al., 2023). The stands underwent a transition
from positive (sources) to negative (sinks) annual carbon fluxes approximately 8 to 13 years after disturbance,760

influenced by site productivity and management, with net carbon gains of around 5 tC ha−1 year−1. Additionally,
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Figure 10. Overview of productivity terms along with their loss processes and C flux density over time scales and for the
main ecosystems. Note that the given percentages are common average values and may vary.

tree crop-based agroecosystems, such as vineyards, have been linked to carbon storage facilities, with fixation rates
up to 7.23 tC ha−1 year−1, where the contribution of root systems implies 9-26% (Brunori et al., 2016) (which,
however, cannot be quantified by EO techniques). A recent study on carbon density simulation in woody vegetation
highlighted the need to advance model-data integration employing TS data streams, for a better understanding of765

the global terrestrial carbon cycle (Bultan et al., 2022).

6 Challenges and outlook

Our review revealed that multiple gaps, challenges, and opportunities exist to accurately estimate vegetation pro-
ductivity from remotely sensed TS data streams. In this final section, we will discuss the main priority areas of
research giving an outlook towards required efforts.770
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6.1 Key challenges

Efficient use of increasingly available and longer time-series datasets: Over the past few decades, there has
been an increasing number of TS datasets made available, with enhanced spatial details as depicted in Fig. 3. Despite
this progress, there may still be limitations in terms of the spatial and temporal resolutions for specific objectives
and applications of monitoring vegetation productivity trends and processes. Some of these limitations include gaps775

in available long-term datasets due to persistent cloud cover, and discontinuity of sensors, leading to uncertainties
in variable retrievals being relevant for vegetation productivity metrics. While with the advent of cloud-computing
platforms access to EO data TS has never been as easy as nowadays, access to other RS resources (local airborne
campaigns) is more fragmented and not always open. From a user’s perspective, currently, there is a broad range
of high-level, free and easy-to-use toolboxes available (as shown in Tab. 2), allowing and facilitating efficient TS780

processing.
Processes and factors affecting vegetation productivity: One important goal will be to adopt TS datasets

to develop and test methods for heterogeneous natural environments, as the current focus is largely on croplands (see
Fig. 9d). Satellite TS data streams can effectively capture, characterize, and quantify the spatiotemporal variation
of natural processes. However, some approaches (discussed in Sect. 3) may only provide a relative characterization785

of vegetation productivity. To increase our understanding, process-based models (i.e., DVMs) are required to pro-
vide the mechanistic basis (linking to modelling domains) necessary to capture productivity variations in natural
environments. Integrated modelling is a potential approach to address this need.

Availability of validation data and approaches: Effective validation of remotely sensed vegetation produc-
tivity products and derived productivity metrics is essential for ensuring their reliability and usefulness for a variety790

of applications. However, the collection of appropriate validation data (see Sect. 4), can be challenging for certain
ecosystems. Moreover, there may be discrepancies in the terminology used by different scientific communities, which
can hinder effective communication and collaboration. Thus, it is crucial to facilitate interdisciplinary exchanges to
promote a common understanding of the terminology and concepts related to RS, as well as to foster collaborations
that can help address knowledge gaps and advance the field.795

Use of TS-based approaches to identify drivers of productivity change: TS-based approaches can be
utilized to identify the drivers of productivity change, particularly concerning critical societal issues such as defor-
estation, land degradation, and climate change. Bultan et al. (2022), for instance, summarized that plant productivity
has been underestimated using DVMs due to missing data from unprecedented extreme events, such as droughts. By
providing a long-term perspective and enabling the detection of subtle changes over time, accurate TS data can help800

here and support more accurate predictions of future trends and impacts. Therefore, the use of TS-based approaches
can play an important role in informing decision-making processes and promoting sustainable development.

Role for deep learning (DL) approaches to be adopted for explorative analysis and support system
understanding: Classical RS data analysis methods for vegetation monitoring (including productivity studies)
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usually require (manual) selection of appropriate features from the input data, for instance, spectral indices, texture805

metrics or temporal segments. The abundance of ways to derive such variables makes it difficult to find the most
effective set of predictors for the automated identification of disturbances in vegetation productivity. Deep learning
(DL) has been identified as a powerful method that can learn the most appropriate data transformations to get the
most relevant data features for solving a specific problem (Kattenborn et al., 2021; Cherif et al., 2023). However, a
key condition is the availability of a large training dataset, i.e., if the dataset is small, then conventional ML methods810

may be more suitable. For analysing data streams of temporal dynamics, recurrent neural networks (RNN) are of
particular interest because they can recognize temporal patterns regardless of data gaps due to missing images or
cloud cover. Similar to convolutional neural networks (CNN) for spatial patterns, RNNs make a selection of temporal
features (e.g., trend, phenological indicators) obsolete (Kattenborn et al., 2021). A combination of RNN and CNN
potentially enables an end-to-end processing scheme in the spatial and temporal domain and is considered by some815

authors a potential game changer in analysing TS data for vegetation applications such as productivity studies
(Reichstein et al., 2019). Transformers are an alternative to RNNs that originate from natural language processing.
Like RNNs, transformers are designed to process sequential input data, but unlike RNNs, they process the entire
input all at once, which allows for more parallelisation and reduced training times. Very recently, transformers have
started to advance into RS applications (Aleissaee et al., 2023).820

6.2 Development of an integrated modelling approach towards the Digital Twin concept

We suggest that vegetation productivity research should focus on the integration of suitable multi-domain radiative
transfer models (e.g. SCOPE) with process models (i.e., DVMs) (Moulin et al., 1998; Delécolle et al., 1992) to build
Digital Twins of various ecosystems (Berger et al., 2022). This concept of real-time virtual representations allows
us to mirror behaviour and states over the lifetimes of ecosystems and thus has the potential to overcome current825

limitations. Therefore, we should aim to develop a conceptual Digital Twin framework that implies a DVM with a
fully integrated RTM for efficient vegetation productivity monitoring using RS TS data streams. Such integrated
models directly simulate remotely observed signals based on the status of the underlying DVM at a point in time.
This means the coupled DVM-RTM simulates the spectral signatures of the canopy (400 nm to 2500 nm) as well
as SIF emission, along with physiological processes. To effectively assimilate the sensor data, it is necessary to830

create strategies that consider the varying availability of data from different sensors and sensor modalities over time.
These strategies should enable continuous updates to the model, allowing for partial assimilation of variables while
maintaining internal constraints and connections to additional variables.

Utilizing DVMs, which offer a continuous sequence of temporal growth dynamics, can be beneficial in identifying
anomalies and enhancing the creation of continuous system descriptions. In this regard, incorporating a compre-835

hensive numerical model, which assimilates such data, represents a significant advancement. Moreover, to accelerate
the forward simulations, surrogate models or emulators can be used to replace some of the more intricate mod-
els (Verrelst et al., 2019b). Since DVMs are partly driven by weather variables, they may also allow the integration
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of weather forecasts and/or climate scenarios in such model designs. This dynamic nature would meet the require-
ments of a Digital Twin of ecosystems, which besides the representation of the current status, also predicts their840

future behaviour (Verdouw et al., 2021).

7 Conclusions

Monitoring vegetation productivity is critical for understanding the health and functioning across ecosystems. In
recent years, the increasing availability and quality of optical TS data streams resulted in a large-scale use for
monitoring vegetation productivity metrics (e.g. GPP, NPP, crop yield or AGB) for a range of application domains845

adopting both RS-derived phenological indicators and increasingly more complex integrated modelling approaches.
In this review, we identified a vast number of studies that used remotely sensed TS data streams and distinct methods
for inferring productivity metrics. These efforts led to valuable insights into vegetation dynamics across ecosystems,
including agriculture, forests, grasslands, and others. As the perhaps most urgent topic nowadays, spatially explicit
estimating vegetation productivity is crucial for understanding the role of ecosystems in the carbon cycle. By using850

satellite data to estimate the amount of carbon stored in vegetation, we can better understand the impact of land
use changes (e.g., deforestation) and other human activities on the global carbon balance, and thus climate change.
The availability of long-term satellite TS data streams with improved spatial and temporal detail has increased
steadily over the past decades. More recently, the emergence of routinely acquired SIF products proved to provide a
more direct linkage towards photosynthetic activity and became increasingly integrated into vegetation productivity855

processing chains. Validation efforts in ensuring the accuracy, robustness, and reliability of RS-based productivity
estimates are another essential aspect of the processing chains. Validation can be performed in several ways, including
in situ measurements, local sensor networks, and inter-comparisons of available productivity products or models.
The definition of harmonized validation strategies is critical to ensure that the methods used to infer productivity
from EO data are robust and accurate across various ecosystems and conditions. It also provides confidence in the860

data and models used to inform management decisions and climate change mitigation strategies. Additionally, we
foresee that due to the advancements in artificial intelligence, the processing approaches of TS data streams will
diversify, and at the same time, the modelling approaches will significantly advance towards holistic processing and
representations of vegetation productivity. Our proposed conceptual framework of a Digital Twin aims to address the
limitations of existing approaches and may provide more accurate and efficient productivity estimation supporting865

the management of ecosystems at varying scales.
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Figure A1. Identification of studies via databases and registers according to PRISMA (Page et al., 2021).

Appendix A

Author contributions. Conceptualisation: LK, KB, MM, MS, BB, JV, HA; Formal analysis: BB, DG, ET, FF, GK, IH, LK,
LG, MK MR, MM, OR, RD, SRK, VEG; Investigation: KB, JV, ET, MR, MM; Methodology: LK, KB, HA, JLR, LVG, BB,
JV; Software: KB, EP, JV; Supervision: LK, KB, JV, HA, JLR; Visualization: DG, MM, PRM, MS, KB, AH, BB; Writing -870
original draft: LK, KB, JV, HA, JLR, MM, LVG, BB, CA, VGM, EP, GK, BB, ET, OR, MS, SB, CSF, SRK, PRM; Writing
- review and editing: LK, KB, MM, MS, JV, HA, JLR, ZC, LVG, MR, MK, SC, GK, VGM, JP, HC, ETG, MK.

38



Competing interests. TEXT

Herewith we declare that no competing interests are present.

Acknowledgements. The research was mainly supported by the Action CA17134 SENSECO (Optical synergies for spa-875
tiotemporal sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and Technology,
www.cost.eu (accessed on 18/10/2023)). The research was further funded by the European Research Council (ERC) under the
FLEXINEL project. Grant number: 101086622. KB, PRM and JV were funded by the European Union (ERC, FLEXINEL,
101086622). The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor the granting authority can be880
held responsible for them.

39

www.cost.eu


References

Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P.: Quantitative Remote Sensing at Ultra-High Resolution with
UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows, Remote
Sensing, 10, 1091, https://doi.org/10.3390/rs10071091, http://www.mdpi.com/2072-4292/10/7/1091, 2018.885

Abbas, S., Nichol, J. E., and Wong, M. S.: Trends in vegetation productivity related to climate change in China’s Pearl
River Delta, PLOS ONE, 16, e0245 467, https://doi.org/10.1371/journal.pone.0245467, https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0245467, publisher: Public Library of Science, 2021.

Abdi, A. M., Carrié, R., Sidemo-Holm, W., Cai, Z., Boke-Olén, N., Smith, H. G., Eklundh, L., and Ekroos, J.: Biodiversity
decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing, Ecol. Indic., 130, 108 098,890
https://doi.org/10.1016/j.ecolind.2021.108098, 2021.

Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S., Cholakkal, H., Xia, G.-S., and Khan, F. S.: Transformers in Remote
Sensing: A Survey, Remote Sens., 15, 1860, https://doi.org/10.3390/rs15071860, 2023.

Alexandrov, G. A. and Matsunaga, T.: Normative productivity of the global vegetation, Carbon Balance Manage., 3, 1–13,
https://doi.org/10.1186/1750-0680-3-8, 2008.895

Ali, A. M., Darvishzadeh, R., Skidmore, A., Gara, T. W., O’Connor, B., Roeoesli, C., Heurich, M., and Paganini, M.: Compar-
ing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data, International Journal
of Applied Earth Observation and Geoinformation, 87, 102 037, https://doi.org/https://doi.org/10.1016/j.jag.2019.102037,
https://www.sciencedirect.com/science/article/pii/S0303243419310967, 2020.

Alvarez-Vanhard, E., Corpetti, T., and Houet, T.: UAV & satellite synergies for optical remote sensing applications: A900
literature review, Science of Remote Sensing, 3, 100 019, https://doi.org/10.1016/j.srs.2021.100019, 2021.

Amin, E., Belda, S., Pipia, L., Szantoi, Z., El Baroudy, A., Moreno, J., and Verrelst, J.: Multi-Season Phenology Mapping of
Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI, Remote sensing, 14, 1812, 2022.

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C.,
Peylin, P., et al.: Spatiotemporal patterns of terrestrial gross primary production: A review, Reviews of Geophysics, 53,905
785–818, 2015.

Arab, S. T., Noguchi, R., Matsushita, S., and Ahamed, T.: Prediction of grape yields from time-series vegetation indices
using satellite remote sensing and a machine-learning approach, Remote Sensing Applications: Society and Environment,
22, 100 485, https://doi.org/10.1016/j.rsase.2021.100485, https://linkinghub.elsevier.com/retrieve/pii/S2352938521000215,
2021.910

Araya, S., Ostendorf, B., Lyle, G., and Lewis, M.: CropPhenology: An R package for extracting crop phenology from time series
remotely sensed vegetation index imagery, Ecological Informatics, 46, 45–56, https://doi.org/10.1016/j.ecoinf.2018.05.006,
2018.

Ardö, J.: Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production
of Africa, Carbon Balance Manage., 10, 1–15, https://doi.org/10.1186/s13021-015-0018-5, 2015.915

Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smooth-
ing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400–417,
https://doi.org/10.1016/j.rse.2012.04.001, 2012.

40

https://doi.org/10.3390/rs10071091
http://www.mdpi.com/2072-4292/10/7/1091
https://doi.org/10.1371/journal.pone.0245467
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245467
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245467
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245467
https://doi.org/10.1016/j.ecolind.2021.108098
https://doi.org/10.3390/rs15071860
https://doi.org/10.1186/1750-0680-3-8
https://doi.org/https://doi.org/10.1016/j.jag.2019.102037
https://www.sciencedirect.com/science/article/pii/S0303243419310967
https://doi.org/10.1016/j.srs.2021.100019
https://doi.org/10.1016/j.rsase.2021.100485
https://linkinghub.elsevier.com/retrieve/pii/S2352938521000215
https://doi.org/10.1016/j.ecoinf.2018.05.006
https://doi.org/10.1186/s13021-015-0018-5
https://doi.org/10.1016/j.rse.2012.04.001


Atzberger, C.: Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and
major information needs, Remote Sensing, 5, 949–981, 2013.920

Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering
large parts of South America, International Journal of Digital Earth, 4, 365–386, 2011a.

Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering
large parts of South America, International Journal of Digital Earth, 4, 365–386, 2011b.

Atzberger, C., Richter, K., Vuolo, F., Darvishzadeh, R., and Schlerf, M.: Why confining to vegetation indices? Exploiting the925
potential of improved spectral observations using radiative transfer models, in: Proceedings Volume 8174, Remote Sensing
for Agriculture, Ecosystems, and Hydrology XIII, vol. 8174, pp. 263–278, SPIE, https://doi.org/10.1117/12.898479, 2011.

Atzberger, C., Klisch, A., Mattiuzzi, M., and Vuolo, F.: Phenological Metrics Derived over the European Continent from
NDVI3g Data and MODIS Time Series, Remote Sens., 6, 257–284, https://doi.org/10.3390/rs6010257, 2013.

Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., and le Maire, G.: Comparative analysis of different930
retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy, International Journal of
Applied Earth Observation and Geoinformation, 43, 19–31, https://doi.org/10.1016/j.jag.2015.01.009, http://dx.doi.org/
10.1016/j.jag.2015.01.009, 2015.

Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and
satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017.935

Bach, H. and Mauser, W.: Methods and examples for remote sensing data assimilation in land surface process modeling, IEEE
Transactions on Geoscience and Remote Sensing, 41, 1629–1637, https://doi.org/10.1109/TGRS.2003.813270, 2003.

Badeck, F.-W., Bondeau, A., Börg, and Sitch, S.: Responses of spring phenology to climate change, New Phytol., 162, 295–309,
https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., et al.:940
FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and
energy flux densities, Bulletin of the American Meteorological Society, 82, 2415–2434, 2001.

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past,
present and future, Global Change Biology, 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, http://doi.wiley.
com/10.1046/j.1365-2486.2003.00629.x, 2003.945

Balzarolo, M., Boussetta, S., Balsamo, G., Beljaars, A., Maignan, F., Calvet, J.-C., Lafont, S., Barbu, A., Poulter, B., Cheval-
lier, F., Szczypta, C., and Papale, D.: Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial
ecosystems over a European Eddy Covariance network, Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-
2014, 2014.

Baret, F. and Buis, S.: Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and950
Associated Problems, pp. 173–201, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-6450-0_7, https:
//doi.org/10.1007/978-1-4020-6450-0_7, 2008.

Baret, F., Weiss, M., Troufleau, D., Prevot, L., and Combal, B.: Maximum information exploitation for canopy characterization
by remote sensing., Aspects of Applied Biology, pp. 71–82, https://www.cabdirect.org/cabdirect/abstract/20002402580,
2000.955

41

https://doi.org/10.1117/12.898479
https://doi.org/10.3390/rs6010257
https://doi.org/10.1016/j.jag.2015.01.009
http://dx.doi.org/10.1016/j.jag.2015.01.009
http://dx.doi.org/10.1016/j.jag.2015.01.009
http://dx.doi.org/10.1016/j.jag.2015.01.009
https://doi.org/10.1016/j.rse.2017.04.014
https://doi.org/10.1109/TGRS.2003.813270
https://doi.org/10.1111/j.1469-8137.2004.01059.x
https://doi.org/10.1046/j.1365-2486.2003.00629.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00629.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00629.x
http://doi.wiley.com/10.1046/j.1365-2486.2003.00629.x
https://doi.org/10.5194/bg-11-2661-2014
https://doi.org/10.5194/bg-11-2661-2014
https://doi.org/10.5194/bg-11-2661-2014
https://doi.org/10.1007/978-1-4020-6450-0_7
https://doi.org/10.1007/978-1-4020-6450-0_7
https://doi.org/10.1007/978-1-4020-6450-0_7
https://doi.org/10.1007/978-1-4020-6450-0_7
https://www.cabdirect.org/cabdirect/abstract/20002402580


Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., et al.:
LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm,
Remote sensing of environment, 110, 275–286, 2007.

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., and Smets, B.: GEOV1: LAI and FA-
PAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles960
of development and production, Remote Sensing of Environment, 137, 299–309, https://doi.org/10.1016/j.rse.2013.02.030,
http://dx.doi.org/10.1016/j.rse.2012.12.027, 2013.

Battles, J.: Forest Biomass and Primary Productivity - Hubbard Brook Ecosystem Study, https://hubbardbrook.org/
online-book-chapter/forest-biomass-and-primary-productivity, [Online; accessed 1. Oct. 2022], 2022.

Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J., Bergstedt, H., Bartsch, A., Kruse, S., Miles, V.,965
Tanis, C. M., Heim, B., Fuchs, M., Chabrillat, S., Shevtsova, I., Verdonen, M., and Wagner, J.: Recent trends and remaining
challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook, Remote Sensing of Environment,
246, https://doi.org/10.1016/J.RSE.2020.111872, 2020.

Beck, P. S., Atzberger, C., Høgda, K. A., Johansen, B., and Skidmore, A. K.: Improved monitoring of vegetation dy-
namics at very high latitudes: A new method using MODIS NDVI, Remote Sensing of Environment, 100, 321–334,970
https://doi.org/10.1016/j.rse.2005.10.021, 2006.

Beck, P. S., Jönsson, P., Høgda, K. A., Karlsen, S. R., Eklundh, L., and Skidmore, A. K.: A ground-validated NDVI dataset
for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula, International Journal
of Remote Sensing, 28, 4311–4330, https://doi.org/10.1080/01431160701241936, 2007.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D.,975
Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W.,
Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide
uptake: global distribution and covariation with climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984,
2010.

Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Amin, E., De Grave, C., and Verrelst, J.: DATimeS: A machine980
learning time series GUI toolbox for gap-filling and vegetation phenology trends detection, Environ. Model. Software, 127,
104 666, https://doi.org/10.1016/j.envsoft.2020.104666, 2020a.

Belda, S., Pipia, L., Morcillo-Pallarés, P., and Verrelst, J.: Optimizing Gaussian Process Regression for Image Time Series
Gap-Filling and Crop Monitoring, Agronomy, 10, 618, 2020b.

Berger, K., Rivera Caicedo, J. P., Martino, L., Wocher, M., Hank, T., and Verrelst, J.: A Survey of Active985
Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data, Remote Sens., 13, 287,
https://doi.org/10.3390/rs13020287, 2021.

Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst, J., Atzberger, C., Van
der Tol, C., Damm, A., Rascher, U., Herrmann, I., Paz, V. S., Fahrner, S., Pieruschka, R., Prikaziuk, E., Buchaillot, Ma. L.,
Halabuk, A., and Schlerf, M.: Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain:990
A review, Remote Sens. Environ., 280, 113 198, https://doi.org/10.1016/j.rse.2022.113198, 2022.

Berger, M., Moreno, J., Johannessen, J., Levelt, P., and Hanssen, R.: ESA’s sentinel missions in support of Earth system
science, Remote Sensing of Environment, 120, 84–90, 2012.

42

https://doi.org/10.1016/j.rse.2013.02.030
http://dx.doi.org/10.1016/j.rse.2012.12.027
https://hubbardbrook.org/online-book-chapter/forest-biomass-and-primary-productivity
https://hubbardbrook.org/online-book-chapter/forest-biomass-and-primary-productivity
https://hubbardbrook.org/online-book-chapter/forest-biomass-and-primary-productivity
https://doi.org/10.1016/J.RSE.2020.111872
https://doi.org/10.1016/j.rse.2005.10.021
https://doi.org/10.1080/01431160701241936
https://doi.org/10.1126/science.1184984
https://doi.org/10.1016/j.envsoft.2020.104666
https://doi.org/10.3390/rs13020287
https://doi.org/10.1016/j.rse.2022.113198


Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., and Fereres, E.: Thermal and Narrowband Multispectral Remote Sens-
ing for Vegetation Monitoring From an Unmanned Aerial Vehicle, IEEE Trans. Geosci. Remote Sens., 47, 722–738,995
https://doi.org/10.1109/TGRS.2008.2010457, 2009.

Berra, E. F. and Gaulton, R.: Remote sensing of temperate and boreal forest phenology: A review of progress,
challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics, Forest Ecology
and Management, 480, 118 663, https://doi.org/10.1016/j.foreco.2020.118663, https://linkinghub.elsevier.com/retrieve/pii/
S0378112720314328, 2021.1000

Bi, W., He, W., Zhou, Y., Ju, W., Liu, Y., Liu, Y., Zhang, X., Wei, X., and Cheng, N.: A global 0.05 dataset for gross primary
production of sunlit and shaded vegetation canopies from 1992 to 2020, Scientific Data, 9, 213, 2022.

Boisvenue, C., Smiley, B. P., White, J. C., Kurz, W. A., and Wulder, M. A.: Integration of Landsat time se-
ries and field plots for forest productivity estimates in decision support models, For. Ecol. Manage., 376, 284–297,
https://doi.org/10.1016/j.foreco.2016.06.022, 2016.1005

Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land
surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240,
https://doi.org/10.1016/J.RSE.2020.111685, 2020.

Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use
with climate models: concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543–1566,1010
https://doi.org/10.1046/j.1365-2486.2003.00681.x, 2003.

Borra-Serrano, I., De Swaef, T., Quataert, P., Aper, J., Saleem, A., Saeys, W., Somers, B., Roldán-Ruiz, I., and Lootens, P.:
Closing the phenotyping gap: High resolution UAV time series for soybean growth analysis provides objective data from
field trials, Remote Sensing, 12, 1644, 2020.

Brinckmann, S., Trentmann, J., and Ahrens, B.: Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset1015
Derived from Geostationary Satellite Observations, Remote Sens., 6, 352–378, https://doi.org/10.3390/rs6010352, 2013.

Brinkmann, K., Dickhoefer, U., Schlecht, E., and Buerkert, A.: Quantification of aboveground rangeland productivity and an-
thropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data, Remote Sens. Environ.,
115, 465–474, https://doi.org/10.1016/j.rse.2010.09.016, 2011.

Brunori, E., Farina, R., and Biasi, R.: Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem,1020
Agriculture, Ecosystems & Environment, 223, 10–21, https://doi.org/https://doi.org/10.1016/j.agee.2016.02.012, https:
//www.sciencedirect.com/science/article/pii/S0167880916300883, 2016.

Buitink, J., Swank, A. M., Van Der Ploeg, M., Smith, N. E., Benninga, H. J. F., Van Der Bolt, F., Carranza, C. D., Koren, G.,
Van Der Velde, R., and Teuling, A. J.: Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture
and satellite vegetation indices, Hydrology and Earth System Sciences, 24, 6021–6031, https://doi.org/10.5194/HESS-24-1025
6021-2020, 2020.

Bultan, S., Nabel, J. E. M. S., Hartung, K., Ganzenmüller, R., Xu, L., Saatchi, S., and Pongratz, J.: Tracking
21st century anthropogenic and natural carbon fluxes through model-data integration, Nat. Commun., 13, 1–14,
https://doi.org/10.1038/s41467-022-32456-0, 2022.

43

https://doi.org/10.1109/TGRS.2008.2010457
https://doi.org/10.1016/j.foreco.2020.118663
https://linkinghub.elsevier.com/retrieve/pii/S0378112720314328
https://linkinghub.elsevier.com/retrieve/pii/S0378112720314328
https://linkinghub.elsevier.com/retrieve/pii/S0378112720314328
https://doi.org/10.1016/j.foreco.2016.06.022
https://doi.org/10.1016/J.RSE.2020.111685
https://doi.org/10.1046/j.1365-2486.2003.00681.x
https://doi.org/10.3390/rs6010352
https://doi.org/10.1016/j.rse.2010.09.016
https://doi.org/https://doi.org/10.1016/j.agee.2016.02.012
https://www.sciencedirect.com/science/article/pii/S0167880916300883
https://www.sciencedirect.com/science/article/pii/S0167880916300883
https://www.sciencedirect.com/science/article/pii/S0167880916300883
https://doi.org/10.5194/HESS-24-6021-2020
https://doi.org/10.5194/HESS-24-6021-2020
https://doi.org/10.5194/HESS-24-6021-2020
https://doi.org/10.1038/s41467-022-32456-0


Caballero, G., Pezzola, A., Winschel, C., Sanchez Angonova, P., Casella, A., Orden, L., Salinero-Delgado, M., Reyes-Muñoz,1030
P., Berger, K., Delegido, J., et al.: Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water
Content Mapping with Multi-Output Gaussian Processes, Remote Sensing, 15, 1822, 2023.

Cai, Z., Junttila, S., Holst, J., Jin, H., Ardö, J., Ibrom, A., Peichl, M., Mölder, M., Jönsson, P., Rinne, J., Karamihalaki, M.,
and Eklundh, L.: Modelling daily gross primary productivity with sentinel-2 data in the nordic region – comparison with
data from MODIS, Remote Sensing, 13, 1–18, https://doi.org/10.3390/RS13030469, 2021.1035

Campbell, A. D., Fatoyinbo, T., Charles, S. P., Bourgeau-Chavez, L. L., Goes, J., Gomes, H., Halabisky, M., Holmquist, J.,
Lohrenz, S., Mitchell, C., Moskal, L. M., Poulter, B., Qiu, H., De Sousa, C. H. R., Sayers, M., Simard, M., Stewart, A. J.,
Singh, D., Trettin, C., Wu, J., Zhang, X., and Lagomasino, D.: A review of carbon monitoring in wet carbon systems using
remote sensing, Environ. Res. Lett., 17, 025 009, https://doi.org/10.1088/1748-9326/ac4d4d, 2022.

Caparros-Santiago, J. A., Rodriguez-Galiano, V., and Dash, J.: Land surface phenology as indicator of global1040
terrestrial ecosystem dynamics: A systematic review, ISPRS J. Photogramm. Remote Sens., 171, 330–347,
https://doi.org/10.1016/j.isprsjprs.2020.11.019, 2021.

Carletto, C., Jolliffe, D., and Banerjee, R.: From Tragedy to Renaissance: Improving Agricultural Data for Better Policies,
Journal of Development Studies, 51, 133–148, https://doi.org/10.1080/00220388.2014.968140, 2015.

Cavender-Bares, J., Gamon, J. A., and Townsend, P. A., eds.: Remote Sensing of Plant Biodiversity, Springer International1045
Publishing, https://doi.org/10.1007/978-3-030-33157-3, http://link.springer.com/10.1007/978-3-030-33157-3, 2020.

Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Grégoire, J.-M.: Detecting vegetation leaf water content using
reflectance in the optical domain, Remote Sens. Environ., 77, 22–33, https://doi.org/10.1016/S0034-4257(01)00191-2, 2001.

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A simple method for reconstructing a high-quality
NDVI time-series data set based on the Savitzky–Golay filter, Remote sensing of Environment, 91, 332–344, 2004.1050

Chen, S., Sui, L., Liu, L., and Liu, X.: Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation, Remote
Sensing, 14, 57, 2022.

Cheng, T., Riaño, D., and Ustin, S. L.: Detecting diurnal and seasonal variation in canopy water content of nut tree orchards
from airborne imaging spectroscopy data using continuous wavelet analysis, Remote Sensing of Environment, 143, 39–53,
https://doi.org/10.1016/j.rse.2013.11.018, 2014a.1055

Cheng, Y.-B., Zhang, Q., Lyapustin, A. I., Wang, Y., and Middleton, E. M.: Impacts of light use efficiency and fPAR
parameterization on gross primary production modeling, Agricultural and Forest Meteorology, 189, 187–197, 2014b.

Cherif, E., Feilhauer, H., Berger, K., Dao, P. D., Ewald, M., Hank, T. B., He, Y., Kovach, K. R., Lu, B., Townsend, P. A., and
Kattenborn, T.: From spectra to plant functional traits: Transferable multi-trait models from heterogeneous and sparse
data, Remote Sens. Environ., 292, 113 580, https://doi.org/10.1016/j.rse.2023.113580, 2023.1060

Chevrel, M., Courtois, M., and Weill, G.: The SPOT satellite remote sensing mission, Photogrammetric Engineering and
Remote Sensing, 47, 1163–1171, 1981.

Chopping, M., Schaaf, C. B., Zhao, F., Wang, Z., Nolin, A. W., Moisen, G. G., Martonchik, J. V., and Bull, M.: Forest structure
and aboveground biomass in the southwestern United States from MODIS and MISR, Remote Sensing of Environment,
115, 2943–2953, https://doi.org/10.1016/j.rse.2010.08.031, http://dx.doi.org/10.1016/j.rse.2010.08.031, 2011.1065

Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes all of the time? A primer on the temporal repre-
sentativeness of FLUXNET, J. Geophys. Res. Biogeosci., 122, 289–307, https://doi.org/10.1002/2016JG003576, 2017.

44

https://doi.org/10.3390/RS13030469
https://doi.org/10.1088/1748-9326/ac4d4d
https://doi.org/10.1016/j.isprsjprs.2020.11.019
https://doi.org/10.1080/00220388.2014.968140
https://doi.org/10.1007/978-3-030-33157-3
http://link.springer.com/10.1007/978-3-030-33157-3
https://doi.org/10.1016/S0034-4257(01)00191-2
https://doi.org/10.1016/j.rse.2013.11.018
https://doi.org/10.1016/j.rse.2023.113580
https://doi.org/10.1016/j.rse.2010.08.031
http://dx.doi.org/10.1016/j.rse.2010.08.031
https://doi.org/10.1002/2016JG003576


Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., and Justice, C.:
The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, 219, 145–161,
https://doi.org/10.1016/j.rse.2018.09.002, https://linkinghub.elsevier.com/retrieve/pii/S0034425718304139, 2018.1070

Croft, H., Chen, J. M., and Zhang, Y.: Temporal disparity in leaf chlorophyll content and leaf area index across a growing season
in a temperate deciduous forest, Int. J. Appl. Earth Obs. Geoinf., 33, 312–320, https://doi.org/10.1016/j.jag.2014.06.005,
2014.

Croft, H., Chen, J. M., Froelich, N. J., Chen, B., and Staebler, R. M.: Seasonal controls of canopy chlorophyll
content on forest carbon uptake: Implications for GPP modeling, J. Geophys. Res. Biogeosci., 120, 1576–1586,1075
https://doi.org/10.1002/2015JG002980, 2015.

Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., and Staebler, R. M.: Leaf chlorophyll content as a proxy for leaf
photosynthetic capacity, Global Change Biol., 23, 3513–3524, https://doi.org/10.1111/gcb.13599, 2017.

Croft, H., Chen, J., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, J., Zhang, Y., et al.: The global
distribution of leaf chlorophyll content, Remote Sensing of Environment, 236, 111 479, 2020.1080

Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W., Ammann, C., and
Schaepman, M. E.: Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary
production: An assessment based on observational and modeling approaches, Remote Sensing of Environment, 166, 91–105,
https://doi.org/10.1016/j.rse.2015.06.004, https://www.sciencedirect.com/science/article/pii/S0034425715300341, 2015.

Danner, M., Berger, K., Wocher, M., Mauser, W., and Hank, T.: Efficient RTM-based training of machine learning regression1085
algorithms to quantify biophysical & biochemical traits of agricultural crops, ISPRS J. Photogramm. Remote Sens., 173,
278–296, https://doi.org/10.1016/j.isprsjprs.2021.01.017, 2021.

Darvishzadeh, R., Skidmore, A., Atzberger, C., and van Wieren, S.: Estimation of vegetation LAI from hyperspec-
tral reflectance data: Effects of soil type and plant architecture, Int. J. Appl. Earth Obs. Geoinf., 10, 358–373,
https://doi.org/10.1016/j.jag.2008.02.005, 2008.1090

Darvishzadeh, R., Atzberger, C., Skidmore, A., and Schlerf, M.: Mapping grassland leaf area index with airborne hyperspectral
imagery: A comparison study of statistical approaches and inversion of radiative transfer models, ISPRS J. Photogramm.
Remote Sens., 66, 894–906, https://doi.org/10.1016/j.isprsjprs.2011.09.013, 2011.

Dash, J. P., Pearse, G. D., and Watt, M. S.: UAV Multispectral Imagery Can Complement Satellite Data for Monitoring
Forest Health, Remote Sens., 10, 1216, https://doi.org/10.3390/rs10081216, 2018.1095

De Beurs, K. M. and Henebry, G. M.: Land surface phenology, climatic variation, and institutional change: Analyzing agri-
cultural land cover change in Kazakhstan, Remote Sensing of Environment, 89, 497–509, 2004.

De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and
van Diepen, K.: 25 years of the WOFOST cropping systems model, Agricultural systems, 168, 154–167, 2019.

Delécolle, R., Maas, S., Guérif, M., and Baret, F.: Remote sensing and crop production models: present trends, ISPRS Jour-1100
nal of Photogrammetry and Remote Sensing, 47, 145–161, https://doi.org/https://doi.org/10.1016/0924-2716(92)90030-D,
https://www.sciencedirect.com/science/article/pii/092427169290030D, 1992.

Descals, A., Verger, A., Yin, G., Filella, I., and Peñuelas, J.: Widespread drought-induced leaf shedding and legacy
effects on productivity in European deciduous forests, Remote Sensing in Ecology and Conservation, 9, 76–89,
https://doi.org/10.1002/rse2.296, https://onlinelibrary.wiley.com/doi/10.1002/rse2.296, 2023.1105

45

https://doi.org/10.1016/j.rse.2018.09.002
https://linkinghub.elsevier.com/retrieve/pii/S0034425718304139
https://doi.org/10.1016/j.jag.2014.06.005
https://doi.org/10.1002/2015JG002980
https://doi.org/10.1111/gcb.13599
https://doi.org/10.1016/j.rse.2015.06.004
https://www.sciencedirect.com/science/article/pii/S0034425715300341
https://doi.org/10.1016/j.isprsjprs.2021.01.017
https://doi.org/10.1016/j.jag.2008.02.005
https://doi.org/10.1016/j.isprsjprs.2011.09.013
https://doi.org/10.3390/rs10081216
https://doi.org/https://doi.org/10.1016/0924-2716(92)90030-D
https://www.sciencedirect.com/science/article/pii/092427169290030D
https://doi.org/10.1002/rse2.296
https://onlinelibrary.wiley.com/doi/10.1002/rse2.296


Dong, Y. and Peng, C. Y. J.: Principled missing data methods for researchers, SpringerPlus, 2, 1–17,
https://doi.org/10.1186/2193-1801-2-222, 2013.

Doughty, R., Köhler, P., Frankenberg, C., Magney, T. S., Xiao, X., Qin, Y., Wu, X., and Moore, B.: TROPOMI reveals
dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest, Proceedings of the National Academy
of Sciences of the United States of America, 116, 22 393–22 398, https://doi.org/10.1073/PNAS.1908157116, 2019.1110

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort,
P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA’s Optical High-Resolution Mission for
GMES Operational Services, Remote Sensing of Environment, 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.

Duchemin, B. and Courrier, G.: Monitoring Phenological Key Stages and Cycle Duration of Temperate Deciduous Forest
Ecosystems with NOAA/AVHRR Data, Remote Sens. Environ., 67, 68–82, https://doi.org/10.1016/S0034-4257(98)00067-1115
4, 1999.

Dusseux, P., Guyet, T., Pattier, P., Barbier, V., and Nicolas, H.: Monitoring of grassland productivity using Sentinel-2 remote
sensing data, Int. J. Appl. Earth Obs. Geoinf., 111, 102 843, https://doi.org/10.1016/j.jag.2022.102843, 2022.

Duveiller, G., López-Lozano, R., and Baruth, B.: Enhanced Processing of 1-km Spatial Resolution fAPAR Time Series for
Sugarcane Yield Forecasting and Monitoring, Remote Sens., 5, 1091–1116, https://doi.org/10.3390/rs5031091, 2013.1120

Eastman, R. J., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., and Crema, S. C.: Seasonal
trend analysis of image time series, Int. J. Remote Sens., 30, 2721–2726, https://doi.org/10.1080/01431160902755338, 2009.

EEA, E. E. A.: Vegetation productivity, https://www.eea.europa.eu/data-and-maps/indicators/land-productivity-dynamics/
assessment, [Online; accessed 12. Jul. 2022], 2021.

Eerens, H., Haesen, D., Rembold, F., Urbano, F., Tote, C., and Bydekerke, L.: Image time series processing for agriculture1125
monitoring, Environ. Model. Software, 53, 154–162, https://doi.org/10.1016/j.envsoft.2013.10.021, 2014.

Eilers, P. H. C.: A Perfect Smoother, Analytical Chemistry, 75, 3631–3636, https://doi.org/10.1021/ac034173t, pMID:
14570219, 2003.

Eitel, J. U., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, J. S., Glennie, C. L., Joerg, P. C., LeWin-
ter, A. L., Magney, T. S., Mandlburger, G., Morton, D. C., and Müller, öand Vierling, K. T.: Beyond 3-D: The1130
new spectrum of lidar applications for earth and ecological sciences, Remote Sensing of Environment, 186, 372–392,
https://doi.org/10.1016/j.rse.2016.08.018, http://linkinghub.elsevier.com/retrieve/pii/S0034425716303212, 2016.

Elmore, A. J., Guinn, S. M., Minsley, B. J., and Richardson, A. D.: Landscape controls on the timing of spring, autumn, and
growing season length in mid-Atlantic forests, Global Change Biology, 18, 656–674, 2012.

Erasmi, S., Klinge, M., Dulamsuren, C., Schneider, F., and Hauck, M.: Modelling the productivity of Siberian larch forests1135
from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe, Environ. Monit. Assess., 193,
1–18, https://doi.org/10.1007/s10661-021-08996-1, 2021.

Estevez, J., Berger, K., Vicent, J., Rivera-Caicedo, J. P., Wocher, M., and Verrelst, J.: Top-of-Atmosphere Retrieval of
Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow, Remote Sens., 13,
1589, https://doi.org/10.3390/rs13081589, 2021.1140

Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An overview of global leaf area index (LAI): Methods, products,
validation, and applications, Reviews of Geophysics, 57, 739–799, 2019.

46

https://doi.org/10.1186/2193-1801-2-222
https://doi.org/10.1073/PNAS.1908157116
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/S0034-4257(98)00067-4
https://doi.org/10.1016/S0034-4257(98)00067-4
https://doi.org/10.1016/S0034-4257(98)00067-4
https://doi.org/10.1016/j.jag.2022.102843
https://doi.org/10.3390/rs5031091
https://doi.org/10.1080/01431160902755338
https://www.eea.europa.eu/data-and-maps/indicators/land-productivity-dynamics/assessment
https://www.eea.europa.eu/data-and-maps/indicators/land-productivity-dynamics/assessment
https://www.eea.europa.eu/data-and-maps/indicators/land-productivity-dynamics/assessment
https://doi.org/10.1016/j.envsoft.2013.10.021
https://doi.org/10.1021/ac034173t
https://doi.org/10.1016/j.rse.2016.08.018
http://linkinghub.elsevier.com/retrieve/pii/S0034425716303212
https://doi.org/10.1007/s10661-021-08996-1
https://doi.org/10.3390/rs13081589


FAO: Forest plantation productivity. Report based on the work of W.J. Libby and C.Palmberg-Lerche, techreport, Forest
Resources Development Service, Forest Resources Division. UN Food and Agriculture Organization, 2010.

FAO: Global Forest Resources Assessment, Tech. rep., U.N. Food and Agriculture Organization,1145
https://doi.org/https://doi.org/10.4060/ca8753en, 2020.

Feagin, R. A., Forbrich, I., Huff, T. P., Barr, J. G., Ruiz-Plancarte, J., Fuentes, J. D., Najjar, R. G., Vargas, R., Vázquez-Lule,
A., Windham-Myers, L., Kroeger, K. D., Ward, E. J., Moore, G. W., Leclerc, M., Krauss, K. W., Stagg, C. L., Alber, M.,
Knox, S. H., Schäfer, K. V., Bianchi, T. S., Hutchings, J. A., Nahrawi, H., Noormets, A., Mitra, B., Jaimes, A., Hinson,
A. L., Bergamaschi, B., King, J. S., and Miao, G.: Tidal Wetland Gross Primary Production Across the Continental United1150
States, 2000-2019, Global Biogeochemical Cycles, 34, https://doi.org/10.1029/2019GB006349, 2020.

Fensholt, R., Sandholt, I., Stisen, S., and Tucker, C.: Analysing NDVI for the African continent using
the geostationary meteosat second generation SEVIRI sensor, Remote Sensing of Environment, 101, 212–229,
https://doi.org/10.1016/j.rse.2005.11.013, https://linkinghub.elsevier.com/retrieve/pii/S0034425705004268, 2006.

Fensholt, R., Rasmussen, K., Kaspersen, P., Huber, S., Horion, S., and Swinnen, E.: Assessing land degradation/recovery1155
in the african sahel from long-term earth observation based primary productivity and precipitation relationships, Remote
Sensing, 5, 664–686, https://doi.org/10.3390/RS5020664, 2013.

Feret, J. B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., Ustin, S. L., le Maire, G., and
Jacquemoud, S.: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments,
Remote Sensing of Environment, 112, 3030–3043, https://doi.org/10.1016/j.rse.2008.02.012, 2008.1160

Féret, J. B., Gitelson, A. A., Noble, S. D., and Jacquemoud, S.: PROSPECT-D: Towards modeling leaf optical properties
through a complete lifecycle, Remote Sensing of Environment, 193, 204–215, https://doi.org/10.1016/j.rse.2017.03.004,
http://dx.doi.org/10.1016/j.rse.2017.03.004, 2017.

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary Production of the Biosphere: Integrating
Terrestrial and Oceanic Components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.1165

Fiore, N. M., Goulden, M. L., Czimczik, C. I., Pedron, S. A., and Tayo, M. A.: Do recent NDVI trends demonstrate boreal
forest decline in Alaska?, Environmental Research Letters, 15, https://doi.org/10.1088/1748-9326/AB9C4C, 2020.

Fischer, A., Kergoat, L., and Dedieu, G.: Coupling satellite data with vegetation functional models: Review of dif-
ferent approaches and perspectives suggested by the assimilation strategy, Remote Sensing Reviews, 15, 283–303,
https://doi.org/10.1080/02757259709532343, http://www.tandfonline.com/doi/abs/10.1080/02757259709532343, 1997.1170

Fisher, J. I., Mustard, J. F., and Vadeboncoeur, M. A.: Green leaf phenology at Landsat resolution: Scaling from the field to
the satellite, Remote sensing of environment, 100, 265–279, 2006.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A.,
and Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with
gross primary productivity, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048738, 2011.1175

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T.,
Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson,
R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp,
L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T.,
Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ily-1180

47

https://doi.org/https://doi.org/10.4060/ca8753en
https://doi.org/10.1029/2019GB006349
https://doi.org/10.1016/j.rse.2005.11.013
https://linkinghub.elsevier.com/retrieve/pii/S0034425705004268
https://doi.org/10.3390/RS5020664
https://doi.org/10.1016/j.rse.2008.02.012
https://doi.org/10.1016/j.rse.2017.03.004
http://dx.doi.org/10.1016/j.rse.2017.03.004
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1088/1748-9326/AB9C4C
https://doi.org/10.1080/02757259709532343
http://www.tandfonline.com/doi/abs/10.1080/02757259709532343
https://doi.org/10.1029/2011GL048738


ina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken,
J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl,
N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot,
D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger,
J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T.,1185
Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wan-
ninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and
Zheng, B.: Global Carbon Budget 2022, Earth System Science Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-
2022, http://www.nasa.gov/press-release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continueshttps://
essd.copernicus.org/articles/14/4811/2022/, 2022.1190

Gamon, J., Rahman, A., Dungan, J., Schildhauer, M., and Huemmrich, K.: Spectral Network (SpecNet) – What is it and why
do we need it?, Remote Sensing of Environment, 103, 227–235, https://doi.org/https://doi.org/10.1016/j.rse.2006.04.003,
https://www.sciencedirect.com/science/article/pii/S0034425706001301, spectral Network, 2006.

Gamon, J. A., Coburn, C., Flanagan, L. B., Huemmrich, K. F., Kiddle, C., Sanchez-Azofeifa, G. A., Thayer, D. R.,
Vescovo, L., Gianelle, D., Sims, D. A., Rahman, A. F., and Pastorello, G. Z.: SpecNet revisited: bridging flux and1195
remote sensing communities, Canadian Journal of Remote Sensing, 36, S376–S390, https://doi.org/10.5589/m10-067,
http://www.tandfonline.com/doi/abs/10.5589/m10-067, 2010.

Gao, L., Darvishzadeh, R., Somers, B., Johnson, B. A., Wang, Y., Verrelst, J., Wang, X., and Atzberger, C.: Hyperspectral
response of agronomic variables to background optical variability: Results of a numerical experiment, Agric. For. Meteorol.,
326, 109 178, https://doi.org/10.1016/j.agrformet.2022.109178, 2022.1200

Gao, T., Xu, B., Yang, X., Deng, S., Liu, Y., Jin, Y., Ma, H., Li, J., Yu, H., Zheng, X., and Yu, Q.: Aboveground net primary
productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and
their relationships with climate factors, Environmental Earth Sciences, 76, https://doi.org/10.1007/S12665-016-6158-4,
2017.

Georganos, S., Abdi, A. M., Tenenbaum, D. E., and Kalogirou, S.: Examining the NDVI-rainfall relationship1205
in the semi-arid Sahel using geographically weighted regression, Journal of Arid Environments, 146, 64–74,
https://doi.org/10.1016/j.jaridenv.2017.06.004, https://linkinghub.elsevier.com/retrieve/pii/S014019631730126X, 2017.

Getachew Mengistu, A., Mengistu Tsidu, G., Koren, G., Kooreman, M. L., Folkert Boersma, K., Tagesson, T., Ardö, J.,
Nouvellon, Y., and Peters, W.: Sun-induced fluorescence and near-infrared reflectance of vegetation track the seasonal
dynamics of gross primary production over Africa, Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/BG-18-2843-1210
2021, 2021.

Gevaert, C. M., Suomalainen, J., Tang, J., and Kooistra, L.: Generation of Spectral-Temporal Response Surfaces by Combining
Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 8, 3140–3146, https://doi.org/10.1109/JSTARS.2015.2406339,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7058421, 2015.1215

Gitelson, A. A., Verma, S. B., Viña, A., Rundquist, D. C., Keydan, G., Leavitt, B., Arkebauer, T. J., Burba,
G. G., and Suyker, A. E.: Novel technique for remote estimation of CO2 flux in maize, Geophys. Res. Lett., 30,
https://doi.org/10.1029/2002GL016543, 2003.

48

https://doi.org/10.5194/essd-14-4811-2022
https://doi.org/10.5194/essd-14-4811-2022
https://doi.org/10.5194/essd-14-4811-2022
http://www.nasa.gov/press-release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continues https://essd.copernicus.org/articles/14/4811/2022/
http://www.nasa.gov/press-release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continues https://essd.copernicus.org/articles/14/4811/2022/
http://www.nasa.gov/press-release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continues https://essd.copernicus.org/articles/14/4811/2022/
https://doi.org/https://doi.org/10.1016/j.rse.2006.04.003
https://www.sciencedirect.com/science/article/pii/S0034425706001301
https://doi.org/10.5589/m10-067
http://www.tandfonline.com/doi/abs/10.5589/m10-067
https://doi.org/10.1016/j.agrformet.2022.109178
https://doi.org/10.1007/S12665-016-6158-4
https://doi.org/10.1016/j.jaridenv.2017.06.004
https://linkinghub.elsevier.com/retrieve/pii/S014019631730126X
https://doi.org/10.5194/BG-18-2843-2021
https://doi.org/10.5194/BG-18-2843-2021
https://doi.org/10.5194/BG-18-2843-2021
https://doi.org/10.1109/JSTARS.2015.2406339
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7058421
https://doi.org/10.1029/2002GL016543


Gitelson, A. A., Peng, Y., Arkebauer, T. J., and Schepers, J.: Relationships between gross primary production, green
LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production, Remote Sensing1220
of Environment, 144, 65–72, https://doi.org/10.1016/j.rse.2014.01.004, https://www.sciencedirect.com/science/article/pii/
S0034425714000170, 2014.

Gitelson, A. A., Peng, Y., Arkebauer, T. J., and Suyker, A. E.: Productivity, absorbed photosynthetically active radia-
tion, and light use efficiency in crops: Implications for remote sensing of crop primary production, Journal of Plant
Physiology, 177, 100–109, https://doi.org/10.1016/j.jplph.2014.12.015, https://www.sciencedirect.com/science/article/pii/1225
S0176161715000073, 2015.

Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W. B., Fensholt, R., Gond, V., Huemmrich, K. F., Lavergne,
T., Mélin, F., et al.: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy
radiation transfer regimes: Methodology and results using Joint Research Center products derived from SeaWiFS against
ground-based estimations, Journal of Geophysical Research: Atmospheres, 111, 2006.1230

Goetz, S. J., Baccini, A., Laporte, N. T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R. a., and Sun, M.: Map-
ping and monitoring carbon stocks with satellite observations: a comparison of methods, Carbon balance and manage-
ment, 4, https://doi.org/10.1186/1750-0680-4-2, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2667409&
tool=pmcentrez&rendertype=abstract, 2009.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale1235
geospatial analysis for everyone, Remote Sensing of Environment, 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
https://doi.org/10.1016/j.rse.2017.06.031https://linkinghub.elsevier.com/retrieve/pii/S0034425717302900, 2017.

Goudriaan, J. and Monteith, J. L.: A Mathematical Function for Crop Growth Based on Light Interception and Leaf Area
Expansion, Annals of Botany, 66, 695–701, https://doi.org/10.1093/oxfordjournals.aob.a088084, https://doi.org/10.1093/
oxfordjournals.aob.a088084, 1990.1240

Graf, L. V., Gorroño, J., Hueni, A., Walter, A., and Aasen, H.: Propagating Sentinel-2 Top-of-Atmosphere Radiometric
Uncertainty Into Land Surface Phenology Metrics Using a Monte Carlo Framework, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 16, 8632–8654, https://doi.org/10.1109/JSTARS.2023.3297713, 2023.

Grelle, A., Hedwall, P.-O., Strömgren, M., Håkansson, C., and Bergh, J.: From source to sink – recovery of the carbon balance
in young forests, Agric. For. Meteorol., 330, 109 290, https://doi.org/10.1016/j.agrformet.2022.109290, 2023.1245

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and
global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sensing of Environment,
121, 236–251, https://doi.org/10.1016/j.rse.2012.02.006, http://linkinghub.elsevier.com/retrieve/pii/S0034425712000909,
2012.

Guo, C., Tang, Y., Lu, J., Zhu, Y., Cao, W., Cheng, T., Zhang, L., and Tian, Y.: Predicting wheat productivity: Integrating1250
time series of vegetation indices into crop modeling via sequential assimilation, Agric. For. Meteorol., 272-273, 69–80,
https://doi.org/10.1016/j.agrformet.2019.01.023, 2019.

Gutman, G. G.: On the use of long-term global data of land reflectances and vegetation indices derived from the advanced
very high resolution radiometer, J. Geophys. Res. Atmos., 104, 6241–6255, https://doi.org/10.1029/1998JD200106, 1999.

49

https://doi.org/10.1016/j.rse.2014.01.004
https://www.sciencedirect.com/science/article/pii/S0034425714000170
https://www.sciencedirect.com/science/article/pii/S0034425714000170
https://www.sciencedirect.com/science/article/pii/S0034425714000170
https://doi.org/10.1016/j.jplph.2014.12.015
https://www.sciencedirect.com/science/article/pii/S0176161715000073
https://www.sciencedirect.com/science/article/pii/S0176161715000073
https://www.sciencedirect.com/science/article/pii/S0176161715000073
https://doi.org/10.1186/1750-0680-4-2
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2667409&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2667409&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2667409&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031 https://linkinghub.elsevier.com/retrieve/pii/S0034425717302900
https://doi.org/10.1093/oxfordjournals.aob.a088084
https://doi.org/10.1093/oxfordjournals.aob.a088084
https://doi.org/10.1093/oxfordjournals.aob.a088084
https://doi.org/10.1093/oxfordjournals.aob.a088084
https://doi.org/10.1109/JSTARS.2023.3297713
https://doi.org/10.1016/j.agrformet.2022.109290
https://doi.org/10.1016/j.rse.2012.02.006
http://linkinghub.elsevier.com/retrieve/pii/S0034425712000909
https://doi.org/10.1016/j.agrformet.2019.01.023
https://doi.org/10.1029/1998JD200106


Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., Jørgensen, H. B., and Is-1255
berg, P.-E.: How does tillage intensity affect soil organic carbon? A systematic review, Environ. Evid., 6, 1–48,
https://doi.org/10.1186/s13750-017-0108-9, 2017.

Hank, T. B., Bach, H., and Mauser, W.: Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale
Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe, Remote Sensing, 7, 3934–
3965, https://doi.org/10.3390/rs70403934, https://www.mdpi.com/2072-4292/7/4/3934, 2015.1260

Harmon, M. E., Bond-Lamberty, B., Tang, J., and Vargas, R.: Heterotrophic respiration in disturbed forests: A review with
examples from North America, J. Geophys. Res. Biogeosci., 116, https://doi.org/10.1029/2010JG001495, 2011.

He, L. and Mostovoy, G.: Cotton Yield Estimate Using Sentinel-2 Data and an Ecosystem Model over the Southern US,
Remote Sens., 11, 2000, https://doi.org/10.3390/rs11172000, 2019.

He, Y., Piao, S., Li, X., Chen, A., and Qin, D.: Global patterns of vegetation carbon use efficiency and their climate drivers1265
deduced from MODIS satellite data and process-based models, Agricultural and Forest Meteorology, 256-257, 150–158,
https://doi.org/10.1016/j.agrformet.2018.03.009, https://linkinghub.elsevier.com/retrieve/pii/S0168192318300923, 2018.

Helman, D.: Land surface phenology: What do we really “see” from space?, Science of The Total Environment, 618, 665–673,
https://doi.org/10.1016/j.scitotenv.2017.07.237, https://linkinghub.elsevier.com/retrieve/pii/S004896971731954X, 2018.

Hilker, T., Gitelson, A., Coops, N. C., Hall, F. G., and Black, T. A.: Tracking plant physiological properties from multi-angular1270
tower-based remote sensing, Oecologia, 165, 865–876, https://doi.org/10.1007/s00442-010-1901-0, 2011.

Hill, M. J. and Donald, G. E.: Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using
AVHRR NDVI time series, Remote Sensing of Environment, 84, 367–384, https://doi.org/10.1016/S0034-4257(02)00128-1,
2003.

Houborg, R., F. McCabe, M., Cescatti, A., and A. Gitelson, A.: Leaf chlorophyll constraint on model sim-1275
ulated gross primary productivity in agricultural systems, Int. J. Appl. Earth Obs. Geoinf., 43, 160–176,
https://doi.org/10.1016/j.jag.2015.03.016, 2015.

Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of normalized difference vegetation
index (NDVI) in the era of popular remote sensing, Journal of Forestry Research, 32, 1–6, 2021.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radiometric and biophysical per-1280
formance of the MODIS vegetation indices, Remote Sensing of Environment, 83, 195–213, https://doi.org/10.1016/S0034-
4257(02)00096-2, http://linkinghub.elsevier.com/retrieve/pii/S0034425702000962, 2002.

Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., and Hosgood, B.: Estimating leaf biochemistry
using the PROSPECT leaf optical properties model, Remote Sens. Environ., 56, 194–202, https://doi.org/10.1016/0034-
4257(95)00238-3, 1996.1285

Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary productivity and evapotranspiration
products derived from Breathing Earth System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.

Jin, H. and Eklundh, L.: A physically based vegetation index for improved monitoring of plant phenology, Remote Sensing
of Environment, 152, 512–525, https://doi.org/10.1016/J.RSE.2014.07.010, 2014.1290

50

https://doi.org/10.1186/s13750-017-0108-9
https://doi.org/10.3390/rs70403934
https://www.mdpi.com/2072-4292/7/4/3934
https://doi.org/10.1029/2010JG001495
https://doi.org/10.3390/rs11172000
https://doi.org/10.1016/j.agrformet.2018.03.009
https://linkinghub.elsevier.com/retrieve/pii/S0168192318300923
https://doi.org/10.1016/j.scitotenv.2017.07.237
https://linkinghub.elsevier.com/retrieve/pii/S004896971731954X
https://doi.org/10.1007/s00442-010-1901-0
https://doi.org/10.1016/S0034-4257(02)00128-1
https://doi.org/10.1016/j.jag.2015.03.016
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
http://linkinghub.elsevier.com/retrieve/pii/S0034425702000962
https://doi.org/10.1016/0034-4257(95)00238-3
https://doi.org/10.1016/0034-4257(95)00238-3
https://doi.org/10.1016/0034-4257(95)00238-3
https://doi.org/10.1016/j.rse.2016.08.030
https://doi.org/10.1016/J.RSE.2014.07.010


Johnson, D. M.: An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields
in the United States, Remote Sensing of Environment, 141, 116–128, https://doi.org/10.1016/j.rse.2013.10.027, https://
linkinghub.elsevier.com/retrieve/pii/S0034425713003957, 2014.

Jönsson, P. and Eklundh, L.: TIMESAT - a program for analyzing time-series of satellite sensor data, Computers & Geo-
sciences, 30, https://doi.org/https://doi.org/10.1016/j.cageo.2004.05.006, 2004.1295

Jönsson, P., Cai, Z., Melaas, E., Friedl, M. A., and Eklundh, L.: A method for robust estimation of vegetation seasonality
from Landsat and Sentinel-2 time series data, Remote Sensing, 10, https://doi.org/10.3390/RS10040635, 2018.

Jönsson, P. and Eklundh, L.: TIMESAT—a program for analyzing time-series of satellite sensor data, Comput. Geosci., 30,
833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004.

Jung, M., Le Maire, G., Zaehle, S., Luyssaert, S., Vetter, M., Churkina, G., Ciais, P., Viovy, N., and Reichstein, M.: Assessing1300
the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate
in Europe, Biogeosciences, 4, 647–656, 2007.

Jung, M., Reichstein, M., Margolis, H. a., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C.,
Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Mer-
bold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns1305
of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite,
and meteorological observations, Journal of Geophysical Research, 116, G00J07, https://doi.org/10.1029/2010JG001566,
http://doi.wiley.com/10.1029/2010JG001566, 2011.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P.,
Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D.,1310
Nabel, J. E. M. S., Nelson, J. A., O’Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch,
S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe:
synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-
2020, 2020.

Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J., and Baret, F.: Developments in the ’valida-1315
tion’ of satellite sensor products for the study of the land surface, Int. J. Remote Sens., 21, 3383–3390,
https://doi.org/10.1080/014311600750020000, 2000.

Kamir, E., Waldner, F., and Hochman, Z.: Estimating wheat yields in Australia using climate records, satellite image
time series and machine learning methods, ISPRS Journal of Photogrammetry and Remote Sensing, 160, 124–135,
https://doi.org/10.1016/j.isprsjprs.2019.11.008, https://linkinghub.elsevier.com/retrieve/pii/S092427161930262X, 2020.1320

Kandasamy, S., Baret, F., Verger, A., Neveux, P., and Weiss, M.: A comparison of methods for smoothing and gap fill-
ing time series of remote sensing observations – application to MODIS LAI products, Biogeosciences, 10, 4055–4071,
https://doi.org/10.5194/bg-10-4055-2013, 2013.

Kang, S., Running, S. W., Lim, J.-H., amd Chan-Ryul Park, M. Z., and Loehman, R.: A regional phenology model for
detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index, Remote Sensing1325
of Environment, 86, 232–242, https://doi.org/10.1016/S0034-4257(03)00103-2, 2003.

51

https://doi.org/10.1016/j.rse.2013.10.027
https://linkinghub.elsevier.com/retrieve/pii/S0034425713003957
https://linkinghub.elsevier.com/retrieve/pii/S0034425713003957
https://linkinghub.elsevier.com/retrieve/pii/S0034425713003957
https://doi.org/https://doi.org/10.1016/j.cageo.2004.05.006
https://doi.org/10.3390/RS10040635
https://doi.org/10.1016/j.cageo.2004.05.006
https://doi.org/10.1029/2010JG001566
http://doi.wiley.com/10.1029/2010JG001566
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.1080/014311600750020000
https://doi.org/10.1016/j.isprsjprs.2019.11.008
https://linkinghub.elsevier.com/retrieve/pii/S092427161930262X
https://doi.org/10.5194/bg-10-4055-2013
https://doi.org/10.1016/S0034-4257(03)00103-2


Kang, X., Yan, L., Zhang, X., Li, Y., Tian, D., Peng, C., Wu, H., Wang, J., and Zhong, L.: Modeling gross primary production
of a typical Coastal Wetland in China using MODIS time series and CO2 Eddy Flux Tower Data, Remote Sensing, 10,
https://doi.org/10.3390/RS10050708, 2018.

Karkauskaite, P., Tagesson, T., and Fensholt, R.: Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-1330
Season Trend Analysis of the Northern Hemisphere Boreal Zone, Remote Sens., 9, 485, https://doi.org/10.3390/rs9050485,
2017.

Karlsen, S. R., Anderson, H. B., van der Wal, R., and Hansen, B. B.: A new NDVI measure that overcomes data sparsity in
cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity, Environ. Res.
Lett., 13, 025 011, https://doi.org/10.1088/1748-9326/aa9f75, 2018.1335

Karlsen, S. R., Stendardi, L., Tømmervik, H., Nilsen, L., Arntzen, I., and Cooper, E. J.: Time-Series of Cloud-Free
Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard, Remote Sens., 13, 3031,
https://doi.org/10.3390/rs13153031, 2021.

Kattenborn, T., Leitloff, J., Schiefer, F., and Hinz, S.: Review on Convolutional Neural Networks (CNN)
in vegetation remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49,1340
https://doi.org/10.1016/j.isprsjprs.2020.12.010, https://linkinghub.elsevier.com/retrieve/pii/S0924271620303488, 2021.

Killough, B.: Overview of the Open Data Cube Initiative, in: IGARSS 2018 - 2018 IEEE International Geoscience and
Remote Sensing Symposium, pp. 8629–8632, IEEE, https://doi.org/10.1109/IGARSS.2018.8517694, https://ieeexplore.ieee.
org/document/8517694/, 2018.

Kimes, D. S., Nelson, R. F., Manry, M. T., and Fung, a. K.: Attributes of neural networks for extracting continuous1345
vegetation variables from optical and radar measurements, International Journal of Remote Sensing, 19, 2639–2663,
https://doi.org/10.1080/014311698214433, 1998.

Klisch, A. and Atzberger, C.: Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series, Remote Sens., 8,
267, https://doi.org/10.3390/rs8040267, 2016.

Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint1350
Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.

Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., and Kuenzer, C.: Monitoring Agricultural Expansion in Burkina Faso
over 14 Years with 30 m Resolution Time Series: The Role of Population Growth and Implications for the Environment,
Remote Sens., 9, 132, https://doi.org/10.3390/rs9020132, 2017.

Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., and Running, S. W.: Synergistic algorithm for estimating1355
vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR
data, Journal of Geophysical Research, 103, 32 257, https://doi.org/10.1029/98JD02462, 1998.

Koetz, B., Baret, F., Poilvé, H., and Hill, J.: Use of coupled canopy structure dynamic and radiative transfer models to estimate
biophysical canopy characteristics, Remote Sensing of Environment, 95, 115–124, https://doi.org/10.1016/j.rse.2004.11.017,
2005.1360

Kogan, F.: Application of vegetation index and brightness temperature for drought detection, Advances in Space
Research, 15, 91–100, https://doi.org/https://doi.org/10.1016/0273-1177(95)00079-T, https://www.sciencedirect.com/
science/article/pii/027311779500079T, natural Hazards: Monitoring and Assessment Using Remote Sensing Technique,
1995.

52

https://doi.org/10.3390/RS10050708
https://doi.org/10.3390/rs9050485
https://doi.org/10.1088/1748-9326/aa9f75
https://doi.org/10.3390/rs13153031
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://linkinghub.elsevier.com/retrieve/pii/S0924271620303488
https://doi.org/10.1109/IGARSS.2018.8517694
https://ieeexplore.ieee.org/document/8517694/
https://ieeexplore.ieee.org/document/8517694/
https://ieeexplore.ieee.org/document/8517694/
https://doi.org/10.1080/014311698214433
https://doi.org/10.3390/rs8040267
https://doi.org/10.5194/gmd-8-3695-2015
https://doi.org/10.3390/rs9020132
https://doi.org/10.1029/98JD02462
https://doi.org/10.1016/j.rse.2004.11.017
https://doi.org/https://doi.org/10.1016/0273-1177(95)00079-T
https://www.sciencedirect.com/science/article/pii/027311779500079T
https://www.sciencedirect.com/science/article/pii/027311779500079T
https://www.sciencedirect.com/science/article/pii/027311779500079T


Kong, D., McVicar, T. R., Xiao, M., Zhang, Y., Peña-Arancibia, J. L., Filippa, G., Xie, Y., and Gu, X.: phenofit: An1365
R package for extracting vegetation phenology from time series remote sensing, Methods Ecol. Evol., 13, 1508–1527,
https://doi.org/10.1111/2041-210X.13870, 2022.

Körner, C.: Paradigm shift in plant growth control, Curr. Opin. Plant Biol., 25, 107–114,
https://doi.org/10.1016/j.pbi.2015.05.003, 2015.

Koren, G., Van Schaik, E., Araújo, A. C., Boersma, K. F., Gärtner, A., Killaars, L., Kooreman, M. L., Kruijt, B., Van Der1370
Laan-Luijkx, I. T., Von Randow, C., Smith, N. E., and Peters, W.: Widespread reduction in sun-induced fluorescence from
the Amazon during the 2015/2016 El Niño, Philosophical Transactions of the Royal Society B: Biological Sciences, 373,
https://doi.org/10.1098/RSTB.2017.0408, 2018.

Kovács, D. D., Reyes-Muñoz, P., Salinero-Delgado, M., Mészáros, V. I., Berger, K., and Verrelst, J.: Cloud-Free Global Maps
of Essential Vegetation Traits Processed from the TOA Sentinel-3 Catalogue in Google Earth Engine, Remote Sens., 15,1375
3404, https://doi.org/10.3390/rs15133404, 2023.

Krause, A., Papastefanou, P., Gregor, K., Layritz, L. S., Zang, C. S., Buras, A., Li, X., Xiao, J., and Rammig, A.: Quantifying
the impacts of land cover change on gross primary productivity globally, Sci. Rep., 12, 1–10, https://doi.org/10.1038/s41598-
022-23120-0, 2022.

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice,1380
I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem.
Cycles, 19, https://doi.org/10.1029/2003GB002199, 2005.

Kuenzer, C., Dech, S., and Wagner, W.: Remote Sensing Time Series Revealing Land Surface Dynamics, Remote Sensing
Time Series, 22, https://doi.org/10.1007/978-3-319-15967-6, 2015.

Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A.: Cropland productivity assessment for Ukraine based on time series of1385
optical satellite images, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5007–5010,
IEEE, https://doi.org/10.1109/IGARSS.2017.8128127, 2017.

Landsberg, J. J. and Gower, S. T.: Applications of Physiological Ecology to Forest Management, Elsevier, Academic Press,
https://doi.org/10.1016/B978-0-12-435955-0.X5000-6, 1997.

Lara, B., Gandini, M., Gantes, P., and Matteucci, S. D.: Regional patterns of ecosystem functional diversity in the Argentina1390
Pampas using MODIS time-series, Ecological Informatics, 43, 65–72, https://doi.org/10.1016/J.ECOINF.2017.11.004, 2018.

Larcher, W.: Physiological Plant Ecology, Springer, Berlin, Germany, https://link.springer.com/book/9783540435167, 2003.
Launay, M. and Guerif, M.: Assimilating remote sensing data into a crop model to improve predictive performance for

spatial applications, Agriculture, Ecosystems & Environment, 111, 321–339, https://doi.org/10.1016/j.agee.2005.06.005,
https://www.sciencedirect.com/science/article/pii/S0167880905002902, 2005.1395

Lausch, A., Heurich, M., Magdon, P., Rocchini, D., Schulz, K., Bumberger, J., and King, D. J.: A Range of Earth Obser-
vation Techniques for Assessing Plant Diversity, in: Remote Sensing of Plant Biodiversity, pp. 309–348, Springer, Cham,
Switzerland, https://doi.org/10.1007/978-3-030-33157-3_13, 2020.

Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., and Baruth, B.: Assessing the information in
crop model and meteorological indicators to forecast crop yield over Europe, Agric. Syst., 168, 191–202,1400
https://doi.org/10.1016/j.agsy.2018.03.002, 2019.

53

https://doi.org/10.1111/2041-210X.13870
https://doi.org/10.1016/j.pbi.2015.05.003
https://doi.org/10.1098/RSTB.2017.0408
https://doi.org/10.3390/rs15133404
https://doi.org/10.1038/s41598-022-23120-0
https://doi.org/10.1038/s41598-022-23120-0
https://doi.org/10.1038/s41598-022-23120-0
https://doi.org/10.1029/2003GB002199
https://doi.org/10.1007/978-3-319-15967-6
https://doi.org/10.1109/IGARSS.2017.8128127
https://doi.org/10.1016/B978-0-12-435955-0.X5000-6
https://doi.org/10.1016/J.ECOINF.2017.11.004
https://link.springer.com/book/9783540435167
https://doi.org/10.1016/j.agee.2005.06.005
https://www.sciencedirect.com/science/article/pii/S0167880905002902
https://doi.org/10.1007/978-3-030-33157-3_13
https://doi.org/10.1016/j.agsy.2018.03.002


Lee, J. E., Frankenberg, C., Van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden,
J. R., Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and water stress in Amazonia: Observations from GOSAT
chlorophyll fluorescence, Tohoku Journal of Experimental Medicine, 230, https://doi.org/10.1098/RSPB.2013.0171, 2013.

Lees, T., Tseng, G., Atzberger, C., Reece, S., and Dadson, S.: Deep Learning for Vegetation Health Forecasting: A Case Study1405
in Kenya, Remote Sens., 14, 698, https://doi.org/10.3390/rs14030698, 2022.

Leopold, U., Gräler, B., Bredel, H., Torres-Matallana, J. A., Pinheiro, P., Stefas, M., Udelhoven, T., Dries, J., Valentin,
B., Gale, L., Mougnaud, P., and Schlerf, M.: The Earth Observation Time Series Analysis Toolbox (EOTSA) - An
R package with WPS, Web-Client and Spark integration, EGU General Assembly Conference Abstracts, p. 21974,
https://doi.org/10.5194/egusphere-egu2020-21974, 2020.1410

Li, S., Xu, L., Jing, Y., Yin, H., Li, X., and Guan, X.: High-quality vegetation index product generation: A review of NDVI
time series reconstruction techniques, International Journal of Applied Earth Observation and Geoinformation, 105, 102 640,
2021a.

Li, X., Xiao, J., Fisher, J. B., and Baldocchi, D. D.: ECOSTRESS estimates gross primary production with fine spatial
resolution for different times of day from the International Space Station, Remote Sensing of Environment, 258, 112 360,1415
https://doi.org/10.1016/j.rse.2021.112360, https://linkinghub.elsevier.com/retrieve/pii/S003442572100078X, 2021b.

Li, Z., Ding, L., and Xu, D.: Exploring the potential role of environmental and multi-source satellite data in crop yield
prediction across Northeast China, Science of the Total Environment, 815, 2022.

Liao, Z., Zhou, B., Zhu, J., Jia, H., and Fei, X.: A critical review of methods, principles and progress for estimating the gross
primary productivity of terrestrial ecosystems, Frontiers in Environmental Science, 11, 464, 2023.1420

Lin, S., Li, J., Liu, Q., Li, L., Zhao, J., and Yu, W.: Evaluating the Effectiveness of Using Vegetation Indices
Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity, Remote Sens., 11, 1303,
https://doi.org/10.3390/rs11111303, 2019.

Lin, S., Huang, X., Zheng, Y., Zhang, X., and Yuan, W.: An Open Data Approach for Estimating Vegetation Gross Primary
Production at Fine Spatial Resolution, Remote Sens., 14, 2651, https://doi.org/10.3390/rs14112651, 2022.1425

Liu, D., Cai, W., Xia, J., Dong, W., Zhou, G., Chen, Y., Zhang, H., and Yuan, W.: Global Validation of a Process-
Based Model on Vegetation Gross Primary Production Using Eddy Covariance Observations, PLoS One, 9, e110 407,
https://doi.org/10.1371/journal.pone.0110407, 2014.

Liu, F., Wang, C., and Wang, X.: Can vegetation index track the interannual variation in gross primary production of
temperate deciduous forests?, Ecological Processes, 10, 1–13, 2021a.1430

Liu, J., Chen, J. M., Cihlar, J., and Park, W. M.: A process-based boreal ecosystem productivity simulator using remote sens-
ing inputs, Remote Sensing of Environment, 62, 158–175, https://doi.org/https://doi.org/10.1016/S0034-4257(97)00089-8,
https://www.sciencedirect.com/science/article/pii/S0034425797000898, 1997.

Liu, J., Sun, O. J., Jin, H., Zhou, Z., and Han, X.: Application of two remote sensing GPP algorithms at a semiarid grassland
site of North China, Journal of Plant Ecology, 4, 302–312, https://doi.org/10.1093/JPE/RTR019, 2011.1435

Liu, P.: A survey of remote-sensing big data, Front. Environ. Sci., https://doi.org/10.3389/fenvs.2015.00045, 2015.
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP

land surface model, J. Geophys. Res. Atmos., 121, 13,953–13,972, https://doi.org/10.1002/2016JD025597, 2016.

54

https://doi.org/10.1098/RSPB.2013.0171
https://doi.org/10.3390/rs14030698
https://doi.org/10.5194/egusphere-egu2020-21974
https://doi.org/10.1016/j.rse.2021.112360
https://linkinghub.elsevier.com/retrieve/pii/S003442572100078X
https://doi.org/10.3390/rs11111303
https://doi.org/10.3390/rs14112651
https://doi.org/10.1371/journal.pone.0110407
https://doi.org/https://doi.org/10.1016/S0034-4257(97)00089-8
https://www.sciencedirect.com/science/article/pii/S0034425797000898
https://doi.org/10.1093/JPE/RTR019
https://doi.org/10.3389/fenvs.2015.00045
https://doi.org/10.1002/2016JD025597


Liu, Y., Wang, J., Dong, J., Wang, S., and Ye, H.: Variations of Vegetation Phenology Extracted from Remote Sens-
ing Data over the Tibetan Plateau Hinterland during 2000-2014, Journal of Meteorological Research, 34, 786–797,1440
https://doi.org/10.1007/S13351-020-9211-X, 2020.

Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z., Zhang, Z., and Wen, Z.: Evaluating the dynamics of grass-
land net primary productivity in response to climate change in China, Global Ecol. Conserv., 28, e01 574,
https://doi.org/10.1016/j.gecco.2021.e01574, 2021b.

Lopresti, M. F., Di Bella, C. M., and Degioanni, A. J.: Relationship between MODIS-NDVI data and wheat yield:1445
A case study in Northern Buenos Aires province, Argentina, Information Processing in Agriculture, 2, 73–84,
https://doi.org/10.1016/j.inpa.2015.06.001, 2015.

Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R., and Santamaría, L.: Modeling Biomass Production in Seasonal
Wetlands Using MODIS NDVI Land Surface Phenology, Remote Sens., 9, 392, https://doi.org/10.3390/rs9040392, 2017.

Luo, X., Croft, H., Chen, J. M., He, L., and Keenan, T. F.: Improved estimates of global terrestrial photosynthesis using1450
information on leaf chlorophyll content, Global Change Biol., 25, 2499–2514, https://doi.org/10.1111/gcb.14624, 2019.

Luo, Z., Wang, E., and Sun, O. J.: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems:
A review and synthesis, Geoderma, 155, 211–223, https://doi.org/https://doi.org/10.1016/j.geoderma.2009.12.012, https:
//www.sciencedirect.com/science/article/pii/S0016706109004170, 2010.

Ma, Y., Zhang, Z., Kang, Y., and Özdoğan, M.: Corn yield prediction and uncertainty analysis based on re-1455
motely sensed variables using a Bayesian neural network approach, Remote Sens. Environ., 259, 112 408,
https://doi.org/10.1016/j.rse.2021.112408, 2021.

Machwitz, M., Gessner, U., Conrad, C., Falk, U., Richters, J., and Dech, S.: Modelling the Gross Primary Productivity of
West Africa with the Regional Biomass Model RBM+, using optimized 250m MODIS FPAR and fractional vegetation
cover information, Int. J. Appl. Earth Obs. Geoinf., 43, 177–194, https://doi.org/10.1016/j.jag.2015.04.007, 2015.1460

Madani, N., Kimball, J. S., Ballantyne, A. P., Affleck, D. L. R., van Bodegom, P. M., Reich, P. B., Kattge, J., Sala, A., Nazeri,
M., Jones, M. O., Zhao, M., and Running, S. W.: Future global productivity will be affected by plant trait response to
climate, Sci. Rep., 8, 1–10, https://doi.org/10.1038/s41598-018-21172-9, 2018.
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