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Abstract. Coastal wetlands provide a range of ecosystem services, yet are currently under threat from global change impacts.

Thus, monitoring and assessment is vital for evaluating their status, extent and distribution. Remote sensing provides an ex-

cellent tool for evaluating coastal ecosystems, whether with small scale studies using drones or national/regional/global scale

studies using satellite derived data. This study used a fine-scale plant community classification of coastal meadows in Esto-

nia derived from a multispectral camera on board Unoccupied Aerial Vehicles (UAV) to calculate the Plant Fractional Cover5

(PFC) in Sentinel-2 MultiSpectral Instrument sensor (MSI) grids. A Random Forest
:::
(RF)

:
algorithm was trained and tested

with vegetation indices (VI) calculated from the spectral bands extracted from the MSI sensor to predict the PFC. Additional

RF models were trained and tested after adding a Digital Elevation Model (DEM). After comparing the models, results show

that using DEM with VI can increase the prediction accuracy of PFC up to two times (R2
:::
R2 58-70%). This suggests the

use of ancillary data such as DEM to improve the prediction of empirical machine learning models, providing an appropriate10

approach to upscale local studies to wider areas for management and conservation purposes.

1 Introduction

Vegetation is the main target of study to monitor ecosystem change
:::::::
changes caused by drastic environmental shifts, because it

is the key structural component of ecosystems (Diekmann, 2003; Van der Maarel, 2005). Variations in the distribution patterns

of vegetation over an area depend on climate, environmental factors and human activities (Gardner et al., 2009) and can be15

assessed by identifying plant communities. These are assemblages of plant species at a place and time (Magurran, 1988;

Spiegelberger et al., 2012), and are considered as ecosystem service (ESs) - providing units, as their structure and function

directly underpins the supply of ESs (Luck et al., 2003; Burkhard et al., 2012).
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Traditional in-situ field survey methods have played a key role in studying spatio-temporal patterns in plant community

distribution, environmental monitoring, and biodiversity conservation (?). However, as the growing impacts of land-use intensification20

and climate change become more conspicuous and widespread (Findell et al., 2017), local-scale field survey methods may not

adequately reveal plant community shifts in a spatially-explicit manner. Tools such as remote sensing in combination with

artificial intelligence are essential to supply comprehensive assessments of these shifts (Knight et al., 2006; Adam et al., 2010; Pettorelli et al., 2014)

.

Remote Sensing has played a key role in wetland mapping, monitoring and trend detection, overcoming some of the25

difficulties of wetland survey, such as the large areal extents, remoteness and inaccessibility (Mahdianpari et al., 2020). Wet-

lands are one of the most degraded type of ecosystems in the world and natural wetlands have experienced a 50% decline

in total area since 1900 (Davidson, 2014), continuing to decline by 35% between 1970 and 2015, mainly due to agricultural

expansion and intensification, and drought (Courouble, 2021). Among wetlands, coastal wetlands have increasingly received

attention due to their capacity for carbon sequestration (Hopkinson et al., 2012; Ward, 2020), coastal protection (Gedan et al.,30

2011) and biodiversity maintenance (Sutton-Grier and Sandifer, 2019; ?)
:::::::::::::::::::::::::::
(Sutton-Grier and Sandifer, 2019).

Boreal Baltic coastal meadows, as stated in Annex I of the EU Habitats Directive (1992), are semi-natural wetlands managed

for centuries with low-intensity activities (Paal, 1998) such as grazing and mowing. Many such meadows along the Baltic Sea

coast currently show a degraded ecological status as a consequence of agriculture intensification or abandonment of traditional

management (Henle et al, 2008, Rannap et al, 2004). Since the 1960s, the total area of coastal meadows has decreased by 3400035

ha in Estonia, affecting a range of breeding and migratory bird species listed in the Birds Directive (Rannap et al, 2004, Leito et

al, 2014). To assess the effectiveness of conservation efforts, previous studies on coastal meadows have focused on the effects

of different environmental and management factors on the distribution of plant communities, such as microtopography (Ward

et al, 2016a), grazing abandonment (Burnside et al, 2007), mowing (Berg et al., 2012), and sea level rise (Ward et al., 2016)
:::
sea

::::
level

::::
rise,

::::::::::::::
microtopography

:::::::::::::::
(Ward et al., 2016)

:
,
::::::
grazing

::::::::::::
abandonment

::::::::::::::::::
(Burnside et al., 2007)

:
,
:::
and

:::::::
mowing

:::::::::::::::
(Berg et al., 2012).40

Remote Sensing techniques are increasingly used to map the distribution of coastal meadow plant communities (Villoslada

et al., 2020; Martínez Prentice et al., 2021) and to estimate biomass and sward structure using Unoccupied Aerial Vehicles

(UAVs) (Villoslada Peciña et al., 2021). The very high spatial resolutions supplied by UAV-borne sensors also allow fine-

grained ecosystem properties to be unveiled
:
,
:::::
which

:::::::::
otherwise that remain concealed under the coarse spatial resolution of

satellites, such as plant fractional cover, soil organic carbon, or aboveground biomass (Heil et al., 2022). In addition, near-real-45

time monitoring routines and the avoidance of the effect of clouds are among the advantages of UAVs over satellite sensors

(Colomina and Molina, 2014; Díaz-Delgado et al., 2019). Conversely, the disadvantages are not only their limited coverage and

battery capacity but also the legislation restrictions and their dependency on the weather conditions, as well as the requirement

to be in the field (Cracknell, 2017; Emilien et al., 2021).

On the other hand, Earth Observation satellites capture images with large swaths and a high temporal resolution, which50

allows the consistent study of large extents of ecosystems over multiple years. In the last decade, the idea of combining the

high spatial resolution derived from UAVs with the large swath and regular revisit times of satellites has gained momentum.

Some studies have successfully addressed the potential upscaling of UAV multispectral images to satellite image resolutions

2



in order to address wetland biophysical variables at multiple scales (Laliberte et al., 2011; Díaz-Delgado et al., 2019) with

UAV as a support for ground-truth observations. The accurate geometrical and radiometrical overlapping allows UAV imagery55

values to be aggregated into satellite pixel grids (Padró et al., 2018).

:::::
These

:::::::
remotely

::::::
sensed

::::
data

::
in
:::::::::::
combination

::::
with

:::::::
artificial

::::::::::
intelligence

::
is
::::::::
essential

::
to

::::::
supply

::::::::::::
comprehensive

::::::::::
assessments

:::
of

::::
these

:::::
shifts

::::::::::::::::::::::::::::::::::::::::::::::::::
(Knight et al., 2006; Adam et al., 2010; Pettorelli et al., 2014),

:::
are

::::::
playing

::
a

:::
key

:::
role

::
in

:::::::
wetland

::::::::
mapping,

:::::::::
ecosystem

:::::::::
monitoring

::::
and

::::
trend

:::::::::
detection,

::::::::::
overcoming

:::::
some

:::
of

:::
the

:::::::::
difficulties

:::
of

::::
local

:::::::
wetland

:::::::
surveys

:::::
with

:::::::::
traditional

:::::
in-situ

:::::
field

::::::::::::
methodologies

::
in

:::::
large

::::
areal

:::::::
extents,

::::::::::
remoteness

::::
and

::::::::::::
inaccessibility

:::::::::::::::::::::
(Mahdianpari et al., 2020)

:
.
:::
As

:::
the

:::::::
growing

:::::::
impacts

:::
of60

:::::::
land-use

::::::::::::
intensification

:::
and

:::::::
climate

::::::
change

:::::::
become

::::
more

:::::::::::
conspicuous

:::
and

::::::::::
widespread

:::::::::::::::::
(Findell et al., 2017),

::::::::::
local-scale

::::
field

:::::
survey

::::::::
methods

::::
may

:::
not

::::::::::
adequately

:::::
reveal

:::::
plant

::::::::::
community

:::::
shifts

::
in
::

a
::::::::::::::
spatially-explicit

:::::::
manner

::
to

:::::
study

::::::::::::::
spatio-temporal

::::::
patterns

::
in
:::::
plant

:::::::::
community

:::::::::::
distribution,

::::::::::::
environmental

::::::::::
monitoring,

:::
and

::::::::::
biodiversity

:::::::::::
conservation.

:

Modelling plant community coverage with remote sensing data is one of the main goals in ecological assessments and

monitoring (Corbane et al., 2015). Combining remotely sensed data with Machine Learning (ML) algorithms shows robust65

performance due to their ability to deal with non-parametric distribution of the ground-truth data as well as the multicollinearity

of variables (Rodriguez-Galiano et al., 2012; E Thessen, 2016; Maurya et al., 2021). ML-based models are used to predict the

presence of vegetation using indices as the input for different algorithms (Maurya et al., 2021), and Random Forest (RF) has

been shown to be an accurate algorithm to predict Plant Fractional Cover (PFC) over large areas (Zhang et al., 2019; De Simone

et al., 2021). Moreover, ancillary data such as Digital Elevation Models (DEM) interpolated from Light Detection and Ranging70

(LiDAR) point clouds have been successfully used for mapping plant communities in coastal wetlands (Ward et al., 2013)

together with multispectral data from remote sensing platforms. This combination provides an enhancement on the detection

of new plant distribution patterns (Okolie and Smit, 2022).

The present study compared two PFC models of five plant communities in Estonian coastal meadows from spectral indices

:::::::::
Vegetation

::::::
Indices

::::
(VI)

:
calculated with Sentinel-2 MultiSpectral Instrument (MSI) sensor and ancillary data from a DEM.75

High-resolution UAV imagery was used as the reference for PFC within the spatial resolution of a Sentinel-2 image. The

main objectives were to: (1) quantify the relationship between UAV imagery and MSI imagery values; (2) predict and test ML

models to predict individual PFC per plant community with VI derived from Sentinel-2 spectral values; (3) predict
::::
build

:
and

test the performance of the models by adding DEM data to the VI.

::
To

:::::::
improve

:::
the

:::::::
article’s

:::::::::
readability,

:::
we

::::
have

::::::::
included

:
a
:::
list

::
of

::::::::::::
abbreviations

::
in

::::
Table

::
1.
:

80
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Table 1.
:::
List

::
of

::::::::::
abbreviation

:::
and

:::::::
acronyms

::::
used

::
in

::
the

:::::
paper

:::::::::::
Abbreviation

::::::::
Definition

:::::::::::
Abbreviation

::::::::
Definition

::::
UAV

::::::::
Unmaned

:::::
Aerial

:::::::
Vehicle

:
N
: ::::::

Number
::
of

:::::::::
Estimators

:

:::
MSI

: :::::::::::
MultiSpectral

:::::::::
Instrument

:::
MF

: ::::::::
Maximum

:::::::
Features

:

:::
PS

:::::
Parrot

:::::::
Sequoia

:::::
RMSE

: ::::
Root

:::::
Mean

:::::::
Squared

:::::
Error

:::
ESs

: :::::::::
Ecosystem

:::::::
Services

:::::
MBE

:::::
Mean

:::::
Biased

:::::
Error

:

::
VI

:::::::::
Vegetation

:::::
Index

:::
LS

::::::
Lower

:::::
Shore

:::
PFC

: ::::
Plant

:::::::::
Fractional

:::::
Cover

:::
OP

::::
Open

:::::::
Pioneer

:

:::::
DEM

::::::
Digital

::::::::
Elevation

:::::
Model

: :::
US

:::::
Upper

::::::
Shore

:::::
dGPS

:::::::::
Differential

::::::
Global

::::::::::
Positioning

::::::
System

: :::
TG

:::
Tall

::::::::
Grassland

:

::
DI

:::::
Initial

:::::::::
Dataframe

:::
RS

::::
Reed

:::::::
Swamp

::
ID

::::::
Unique

::::::::
Identifier

:::::
KUD

:::::
Kudani

:

:::
DF0

: :::::::
Sampled

:::::
Data

:::::
Frame

: ::::
TAN

::::
Tahu

:::::
North

:

:::
DF1

: ::::
Data

::::::
Frame

:
1
: :::

TAS
: ::::

Tahu
:::::
South

:::
DF2

: ::::
Data

::::::
Frame

:
2
: ::::

RAL
:::::
Rälby

:::
RF

::::::
Random

::::::
Forest

:::::
MAT

:::::::
Matsalu

2 Materials and Methods

2.1 Study areas

Six coastal meadow study sites located in protected areas on the west coast of Estonia were selected for this study. Ku-

dani (KUD), Tahu North (TAN) and Tahu South (TAS) belong to the Silma Nature Reserve; Rälby (RAL) and Rumpo East

(RUE
::::
(RMP), to the Vormsi Landscape Protection Area; and Matsalu (MAT), to the Matsalu National Park (Figure 1). These85

landscapes are characterized by coastal meadows extended over a gradual transition from the sea to terrestrial ecosystems with

a low variation of topography, typically 0 to 2 metres above mean sea level (Ward et al., 2016). Sites were chosen based on

their near-continuous management history, high conservation value for wading birds, and presence of endangered plant species

(Rannap et al., 2004; Berg et al., 2012).

The plant communities under study are very characteristic of Estonian coastal meadows and have been previously grouped90

following a phytosociological classification by Burnside et al (2007): Lower Shore (LS), Open pioneer (OP), Upper shore (US),

Tall grassland (TG), and Reed Swamp (RS). This classification has been used in various studies in these coastal meadows and

the plant communities have proven to be differentiable from high-resolution images (ca. 10 centimetres per pixel) (Ward et al.,

2013; Villoslada et al., 2020; Martínez Prentice et al., 2021). The distribution of plant communities shows site-specific patterns

due to local variations in the inundation levels and
::::
flood frequencies (Rivis et al., 2016),

:::::::
sediment

::::::::
accretion,

:
microtopography95

(Ward et al., 2016), and grazing regimes (Berg et al., 2012).
:::::
Figure

::::
A1

:::::
shows

:::
the

:::::
plant

::::::::::
community

::::::::::
distribution

::
in

:::::::
relation
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Figure 1.
:::::::
Location

::
of

::
the

:::::
study

:::
sites

::
in

:::
the

::::::
western

::::
coast

::
of

::::::
Estonia.

::::::
Matsalu

::::::
(MAT),

::::
Tahu

:::::
South

:::::
(TAS),

::::
Tahu

::::
North

::::::
(TAN),

::::::
Kudani

::::::
(KUD),

::::
Rälby

::::::
(RAL)

:::
and

:::::
Rumpo

::::::
(RMP).

:::
The

:::::
black

:::::
square

:::::
shows

:::
the

:::::::
Sentinel-2

:::
tile

:::::::
footprint,

:::::::
whereas

::
the

:::::
extent

::
of

::
all

:::
the

::::
study

:::::
areas

:
is
::
in

:::
red.

::
to

:::
this

::::::::::::::
microtopography

:::
in

:
a
:::::::
boxplot.

::::::
Floods

:::::::
depend

::::::
mostly

:::
on

:::
the

::::::::::::
meteorological

:::::::::
conditions

::::::
across

:::
the

:::::
North

:::::::
Atlantic

::::
and

:::::::::::
Fennoscandia

::::::::::::::::
(Kont et al., 2003)

:::
and

:::
the

:::::::::
maximum

::::
level

::
is
:::::::

reached
:::

in
:::::
April

::::
after

:::
the

:::::
snow

::::::
melts.

::::
This

::
is

::::::::
followed

:::
by

:::
the

:::::::
growing

::::::
season,

::::::
which

::
is

:::::::::::
characterized

:::
by

:::
the

:::::::::
maximum

:::::
plant

:::::::
activity

::::::::
occurring

:::::
from

::::
May

:::::
until

::::::::::
September.

::::::
During

::::
this

::::::
period,

::::
plant

:::::::::::
communities

::::
rely

::
on

:::::
mean

:::::::::::
temperatures

:::::
above

::
10

:::

◦C
:::::::::::::::::::::
(Maasing and Paal, 1998)

:
.100

::::
Table

::
2
:::::::
provides

::
a

:::::::::
distribution

::::::::::
description

::
of

::::
each

:::::
plant

:::::::::
community

::
in

::::
this

:::::
study.

2.2 UAV classification data

A classification of the plant communities from high-resolution images (Martínez Prentice et al., 2021) was used as the train-

ing/validationdata in the present study. A multispectral Parrot Sequoia (PS) camera was carried on board of an eBee fixed-wing

drone controlled remotely with the software SenseFly eMotion (Parrot S.A. Paris) over the six study areas at an altitude of 120105

m to obtain Ground Sample Distance of 10 cm. Flight dates are shown in Table 1.
:::
The

::::
UAV

::::::
flights

::::
were

:::::::::
conducted

::::::
during

:::
the

::::
dates

::::::::::::
corresponding

::
to

:::
the

:::::::
growing

:::::::
season,

::::::::
carefully

::::::
chosen

::
to

::::::::
minimize

:::
the

::::::
impact

::
of

:::::::::
inundation

::::::
effects

::::::
(Table

:::
3). The im-

ages were radiometrically corrected with Airinov calibration panels and a sunshine sensor to produce multi band orthoimages

that were merged in Pix4D v.4.3.31 software. VI were calculated based on all the spectral bands (near infrared, rededge, red

and green
:::::
green,

::::
red,

:::
red

::::
edge

::::
and

::::
near

:::::::
infrared spectral bands) and used as input for two different workflows: a pixel-based110

classification, where the pixels were classified with a Random Forest and K-nearest neighbours’ algorithms; and segmentation

for an object-based classification with the same algorithms. The highest accuracy was achieved by a Random Forest pixel clas-

sification (accuracy and kappa greater than 90% and 0.85, respectively), calculated from a confusion matrix constructed using

140 vegetation survey quadrats as training samples
::::::
(Figure

::::
A2), where all the species with coverage above 5% were recorded

5



Table 2. Location
:::::::
Summary

:
of the study sites in the western coast

::::::::
description

:
of Estonia

::::
plant

::::::::::
communities

:::
in

::::
this

:::::
study

::::::::::::::::::
(Berg, 2008; Ward, 2012). 1. Matsalu

:::::
Lower

:::::
Shore

::::
(LS), 2. Tahu South

::::
Open

:::::::
Pioneer

::::
(OP), 3. Tahu North

:::::
Upper

:::::
Shore

::::
(US), 4. Kudani,

5. Rälby, 6. Rumpo
:::
Tall

::::::::
Grassland

::::
(TG)

:::
and

::::
Reed

::::::
Swamp

::::
(RS).The black square shows the Sentinel-2 tile footprint, whereas the extent of

all the study areas is in red.

::::
Plant

::::::::::
Community

:::::::::
Description

:::::
Lower

:::::
Shore

:::
(LS)

: :::
This

:::::::::
community

:::
has

::::::
adapted

:
to
::::::::
significant

::::::::
variations

:
in
::::::::::
hydrological

::::::::
conditions,

:::::
which

::::
result

::
in

::
the

::::::::::
accumulation

::
of

::::
litter

:::
and

::::::::::
waterlogged

:::
soil,

::::::
leading

::
to

:::::::::
considerable

::::::
salinity

:::::::::::
concentrations.

::::
Open

::::::
Pioneer

::::
(OP)

:::
This

:::::::::
community

:::
of

::::::::
halophytic

::::::
species

::
is
::::::

located
:::

in
:::::::
low-lying

:::::
areas

::::::
subject

::
to

::::::::
prolonged

::::::::
inundation

:::::
during

:::
the

:::::::
growing

::::::
season,

:::
with

:::
its

:::::::::
distribution

:::::::
primarily

::::::::
influenced

:::
by

::::::
salinity.

::::
These

::::::
specific

:::::::
locations

:::::
exhibit

:::
the

::::::
highest

::::::::
proportion

::
of

:::
bare

::::::
ground

::::
cover

:::
and

::::::
highest

:::::
salinity

:::::
levels.

:::::
Upper

::::
Shore

::::
(US)

: :::
This

:::::::::
community

::
is

::::::::
established

::
in

:::::
higher

::::::::
elevations,

:::::::::::
characterized

::
by

:::
less

:::::::
frequent

:::
and

:::::
shorter

:::::
floods.

:::
US

:
is
:::::::
relatively

:::::
more

:::::
species

:::
rich

::::
and

::::::::
productive

:::
than

:::
LS.

::
Tall

::::::::
Grassland

::::
(TG)

: :::
This

:::::::::
community

::
is

::::::
located

::
on

:::
the

:::::
highest

::::::::
elevations

:::::
within

:::
the

::::::
coastal

:::::::
meadows.

::::::::
Flooding

:
is

:::
less

:::::::::
pronounced

:::
and

:::::::
frequent,

:::
and

::::::::
vegetation

:
is
:::::
dense

:::
and

:::
very

::::::::::
species-rich.

::::
Reed

::::::
Swamp

::::
(RS)

:::
This

:::::::::
community

::::::
consists

:::
of

:::::::
extensive

:::::::
reedbeds

:::::
along

::
the

::::::::
coastline,

:::::
which

:::
are

::::::::
influenced

::
by

::::
more

::::::
frequent

:::::::::
inundations

::
of

::::::
brackish

:::::
water.

within the quadrats. For the OP communityall plants
:
A
::::::
Sokkia

:::::::::
GSR2700

::::
ISX

:::::::::
differential

::::::
Global

::::::::::
Positioning

::::::
System

:::::::
(dGPS)115

:::
was

::::
used

::
to

::::::
record

:::
the

:::::::
location

:::
and

:::::::::
elevation7

::
of

::::
each

:::::
plant

::::::::::
community.

:::
The

:::::
plants

::
in
:::
OP

::::::::::
community were recorded as a result of the low cover of all species and predominance of bare ground. Not

all the plant communities were present in each site (Table A1). Further details of this methodology and results can be obtained

in
:::::::
Martínez

:
Prentice et al (2021).

2.3 Satellite imagery120

Recent studies have shown that images taken by light-weight cameras in the visible and near infrared spectrum (VNIR) on

board of UAV have a good correlation with satellite images, especially with MSI images of Sentinel-2 (Zabala, 2017; Zhu et al.,

2021). Thus, one Sentinel-2 Level 2A image covering the six study areas (Figure 1) with the closest date to the drone flights was

used
:::::
(Table

::
2), with an estimated cloud cover of 19%(Table 1). The tile number was T34VFL and its date, 24/06/

:::
24th

:::
of

::::
June

::
of 2019. The level 2A was chosen because the orthorectified Bottom-of-Atmosphere reflectance values are comparable with PS125

reflectance (Fawcett et al., 2020). This image product is radiometrically corrected by the Payload Data Ground Segment with

6



Sen2Cor algorithm (Main-Knorn et al., 2017) and available online via the Copernicus Scientific Data Hub tool (Copernicus

Hub).

Table 3. Flight
:::::
Drone

::::
flight dates.

:::::::
Matsalu

:::::
(MAT),

::::
Tahu

:::::
South

:::::
(TAS),

::::
Tahu

:::::
North

::::::
(TAN),

:::::
Kudani

::::::
(KUD),

:::::
Rälby

:::::
(RAL) and tile number and

date of Sentinel-2 overpass to match the drone flights
::::::
Rumpo

::::::
(RMP).

Study Area
:::::
Study

::::
Area Drone flight date

:::::
Drone

:::::
flight

::::
date

MAT 29 /06/
::::
June 2019

TAS 23 /07/
:::
July

:
2019

TAN 30 /06/
::::
June 2019

KUD 30 /06/
::::
June 2019

RAL 04 /07/
:::
July

:
2019

RMP 02 /07/
:::
July

:
2019

Band 6 from MSI is in the Red-Edge region (Table 2
:
4) and contains valuable information of vegetation, avoiding background

reflectance that affects wetlands especially (Turpie, 2013). Its spatial resolution is 20 metres per pixel. To use its reflectance130

values with the highest spatial resolution corresponding to the VNIR bands at 10 metres, a resolution
::::::
meters,

:::
an enhancement

process based on a super-resolution method was applied, instead of using a panchromatic band to carry out a pan-sharpening

since this band does not exist in MSI. The super-resolution algorithm (Brodu, 2017) is available in the SNAP software (ESA,

2014) and combines the geometric and radiometric information of target bands to pan-sharpen the lower resolutionband
:::::::
increase

::
the

::::::
spatial

:::::::::
resolution.135

Table 4. Comparison of spectral
:::::::
resolution

::
of
:
bands in both sensors: Multispectral

::::::::::
MultiSpectral Instrument

:::::
(MSI) on board of Sentinel-2

and Parrot Sequoia
:::
(PS)

:
on board of eBee.

::::
First

::::::
number

:
is
:::
the

:::::
central

:::::::::
wavelength

:::
and

:::
the

:::::
second

::::
one

:
is
:::
the

:::::::::
wavelength

:::::
width.

::::
Units

:::
are

::
in

::::::::
nanometers

:::::
(nm).

Band
::::
Band Multispectral Instrument

:::::::::::
MultiSpectral

:::::::::
Instrument Parrot Sequoia

:::::
Parrot

::::::
Sequoia

Green 559.8,
:
35 550

:
, 40

Red 664.6,
:
30 660

:
, 40

Red Edge 740.5,
:
14 735

:
, 10

Near Infrared 832.8
:
, 105 790

:
, 40
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2.4 Digital Elevation Models

DEMs constitute a powerful co-predictor in species distribution models, due to the prominent role of elevation in the distribu-

tion patterns of coastal plant communities (Ward et al., 2013). This holds especially true for coastal meadows, characterized by

pronounced salinity and moisture gradients due to small variations of elevation, called microtopography (Ward et al., 2016).

Thus, a high-spatial resolution DEM was included in the models to test whether prediction accuracies improved. A LiDAR-140

derived DEM was downloaded from Eesti Maa-amet (Maa-amet geoportaal) with a spatial resolution of 1 meter
::
m. The DEM

was interpolated from a LiDAR point cloud of density of 2.1 points per square using a streaming triangulation (Isenburg et al.,

2006).
:::
The

::::::
vertical

:::::
error

:::
was

:::::::::
calculated

::::
with

::::::
RMSE

:::::::
between

::::::
in-situ

:::::::
elevation

::::::
points

::
of

:::
the

:::::
DEM

::::::
(Figure

:::
2).

Figure 2.
:::::
Vertical

::::
error

:::::::
between

:::
the

:::::::
measured

::::::
heights

::::
with

:::
the

::::::::
differential

::::::
Global

:::::::::
Positioning

:::::
System

:::::::
(dGPS),

::::::
Sokkia

:::::::
GSR2700

::::
ISX

::
in

:::
each

:::::::
sampled

::::
plant

::::::::
community

:::
and

:::
the

::::::
Digital

:::::::
Elevation

:::::
Model

::::::
(DEM).

::::
Units

:::
are

:::::::::
centimeters

::::
(cm).

:::::
Lower

:::::
Shore

::::
(LS),

::::
Open

::::::
Pioneer

:::::
(OP),

::::
Upper

:::::
Shore

:::::
(US),

:::
Tall

::::
Grass

:::::
(TG),

::::
Reed

::::::
Swamp

::::
(RS).

2.5 Image processing and upscaling

A key process
::::::
required

:
to perform upscaling of remote sensing images is the aggregation of pixel values from a high-resolution145

image to the geographically coincident pixels of coarser resolution image. Several studies have performed the aggregation

process to a common geographical data frame in the form of a quasi-continuous grid, where all the spectral data is stored (Padró

et al., 2018; Riihimäki et al., 2019; Mao et al., 2022; Bergamo et al., 2023). In the present study, the grid was constrained to

the limits of each study area, avoiding those overlapping with the edges, excluding transitional areas that do not correspond to

the extent of plant communities of interest and submerged areas. In total, 9766 MSI pixels cover the study areas (Figure 2
:::
A3).150
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Data frame derived from Sentinel-2 MultiSpectral Instrument (MSI) pixels (9766) covering the six study areas. 1. Matsalu,

2. Tahu South, 3. Tahu North, 4. Kudani, 5. Rälby, 6. Rumpo.

A band-to-band comparison between the PS bands used for the final classification in
::::::::
Martínez Prentice et al (2021) and

MSI reflectance values was undertaken to assess the potential differences in both sensors caused by different temporal, spectral

or spatial resolutions (Padró et al., 2018; Fernández-Guisuraga et al., 2018; Jiang et al., 2022; Isgró et al., 2022). To carry155

out this process, PS and MSI reflectance values were transferred into a polygon grid generated with the exact cell size as the

MSI image pixels covering the study areas with an associated unique identifier
::::::
Unique

::::::::
Identifier

:
(ID) for each row of the

data frame (Figure 3). Level 2A MSI reflectance values were transferred to each cell of the polygon grid and the PS values

were aggregated calculating the average
:::::
mean (Figure 3). A correlation and a linear function were used for a band-to-band

comparison, retrieving the significance level, R2 and Root Mean Squared Error (RMSE). DEM values were integrated
::::
This160

:::::::
approach

::::::::::
generalizes

:::
the

:::::::::
reflectance

::::::
within

:
a
::::
unit

::
of

:::::
grid,

:::::::
reducing

:::::
noise

::::
from

:::::::::::::
high-resolution

::::::
images

:::
of

:::
PS

:::
and

::::::::
resulting

::
in

::::
more

::::::::::
predictable

:::::::
behavior

::::::::::::::::::::
(Blan and Butler, 1999).

::::
This

::::::::::
aggregation

:::::::
criteria

:::
was

::::
also

:::::
used

::
to

:::::::
integrate

:::
the

:::::
DEM

::::::
values

:
into

the polygon grid using an average aggregation of pixels (Figure 2)and the percentage cover of
:::::
(Figure

:::
3).

:::
The

::::::::::::
comparability

::::
and

::::::::::
consistency

::
of

:::
the

:::::::
spectral

::::
data

:::::
from

:::
PS

:::
and

:::::
MSI

:::::
bands

::::
was

::::::::
analyzed

::
by

::::::
fitting

:::
the

::::::
values

::
in

::
a

:::::
linear

::::::
model,

:::::::::
calculating

:::
the

:::::::::
coefficient

::
of

:::::::::::
determination

::::
(R2)

::::
and

::::
Root

:::::
mean

::::::
squared

:::::
error

::::::::
(RMSE).

:::
The

:::::::
p-value

:::::::
showing

:::
the165

::::::::::
significance

::
of

:::
the

::::::
relation

:::::::
between

:::
PS

::::
and

::::
MSI.

:::
The

::::
PFC

::::
was

::
the

::::::::
response

:::::::
variable

:::::
under

:::::::::
assessment

:::
for each plant communityunder study

:
.
::
It was calculated by intersecting

the UAV-derived classification maps (Martínez Prentice et al., 2021) with the polygon grid .
::::::
within

::::
each

:::::::
polygon

::::
grid

:::::
(MSI

:::::
pixel)

:::
and

::::::::
applying

:::::::
equation

::
1.

:::
All

:::
the

::::
grids

::::
sum

::
a

::::
total

::
of

:
1
::::::
(100%

:::::
PFC).

:

For all the operations, all the pixels completely covered by each grid were extracted.170
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Figure 3. General workflow. The source data is marked as "Input" and the output data frame
:::
Data

:::::
Frame is DI. The final data frame contains

the explanatory variables (xn) and response variable (yi) of Plant Fractional Cover (PFC), where i = Lower Shore (LS), Open Pioneer (OP),

Upper Shore (US), Tall Grass (TG), Reed Swamp (RS).

The PFC was the response variable under assessment for each plant community. PFC was
::::
PFC

:::
was

:
calculated within each

MSI pixel in the main data frame after an overlay process of the classification and MSI pixel extents(equation .
::::
The

::::::::
Equation

:
(1) . This equation was applied to each plant community of study.

PFC =
Area of plant community within pixel extent

Area of MSI pixel
× 100 (1)

All processes were carried out using the open source Python packages NumPy (Harris et al., 2020), GeoPandas (Jordahl175

et al., 2020) and rasterio (Gillies, 2013).

2.6 Vegetation indices

Vegetation indices (VI )
::
VI

:
are quantitative and dimensionless mathematical combinations of spectral bands, related to veg-

etation structural properties (Lima-Cueto et al., 2019). VIs have been used to monitor vegetation cover by the enhancement
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of spectral contrast between photosynthetically active vegetation and other components (Andreatta et al., 2022). In
::
this

::::::
study,180

::::
these

:::::
band

:::::::::::
combinations

::::
may

:::::
unveil

:::::::::
vegetation

:::::::
patterns

::::::
related

::
to

::::::::
different

:::::
levels

::
of

:::::::
flooding

::::
and

:::::::::::
phenological

::::::
activity,

:::::
even

::::::
though

::
the

:::::
flight

:::::
dates

:::::::::
correspond

::
to

:::
the

:::::::
growing

:::::
season

::::
and

:::::
water

:::::::
presence

::
is

::
at

::
its

::::::
lowest

:
in
:::
the

:::::
study

:::::
areas

:::::
(Table

:::
3).

:::::::
Because

::
of

::::::::
variations

::
in

:::
the

:::::::
amount

::
of

::::
bare

::::::
ground

::::::
within

::::
each

:::::
plant

:::::::::
community

::::::
(Table

:::
2),

::
VI

:::
are

::::
also

:::::
used

::
for

:::::
their

:::::::::::
sensitiveness

::
to

:::
this

::::
type

::
of

::::::
ground

:::::
cover.

::
In
:
total, 14 vegetation indices

::
VI were calculated (Table 3) from all the MSI bands of this study. The

red edge MSI band was included in the calculations of VI because its reflectances show the highest photosynthetical activity185

and thus, better differentiation between plant communities (Schuster et al., 2012; Turpie, 2013). The indices in Table 3
:
5
:
were

calculated by combining the features in the data frame (Figure 1
:
3) using the Pandas Python package (McKinney, 2010).
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Table 5. List of fourteen vegetation indices used as explanatory variables in this study. G: Green band; R: Red band; Rre: Red Edge band;

NIR: Near Infrarred band.

Vegetation Index
:::::::::
Vegetation

:::::
Index Calculation

:::::::::
Calculation Reference

::::::::
Reference

Normalized Difference Vegetation

Index

NDV I = NIR−R
NIR+R

(Rouse et al., 1973)

::::::::::::::::
Rouse et al. (1973)

Green Normalized Difference

Vegetation Index

GNDV I = NIR−G
NIR+G

(Gitelson et al., 1996)

:::::::::::::::::
Gitelson et al. (1996)

Chlorophyll Vegetation Index CV I = NIR×R
G2

(Vincini et al., 2008)

::::::::::::::::
Vincini et al. (2008)

Modified Simple Ratio (red edge) MSRred= (NIR/Rre)−1√
(NIR/Rre)+1

(Wu et al., 2008)

:::::::::::::
Wu et al. (2008)

Red edge triangular vegetation index

(core)

RTV Icore = 100× (NIR−Rre)− 10× (NIR−G)
(Chen et al., 2010)

::::::::::::::
Chen et al. (2010)

Canopy Chlorophyll Content Index CCCI = (NIR−Rre)/(NIR+Rre)
(NIR−R)/(NIR+R)

(Barnes et al., 2000)

::::::::::::::::
Barnes et al. (2000)

Chlorophyll Index (red edge) CI re =
NIR

Rre
− 1

(Gitelson et al., 2003)

:::::::::::::::::
Gitelson et al. (2003)

Chlorophyll Index (green) CIg =
NIR
G − 1

(Merzlyak et al., 2003)

::::::::::::::::::
Merzlyak et al. (2003)

Red edge normalized difference

vegetation index

NDV I re =
NIR−Rre

NIR+Rre (Gitelson and Merzlyak, 1994)

::::::::::::::::::::::::
Gitelson and Merzlyak (1994)

Datt4 datt4 =
R

(G×Rre))
(Datt, 1998)

:::::::::
Datt (1998)

Modified Green Red Vegetation Index MGRV I = (G2−R2)
(G2+R2)

(Bendig et al., 2015)

::::::::::::::::
Bendig et al. (2015)

Modified Soil Adjusted Vegetation

Index

MGRV I =
2×NIR+1−

√
(2×NIR+1)2−8×(NIR−R)

2
(Qi et al., 1994)

::::::::::::
Qi et al. (1994)

Red Edge Ratio SR= NIR
Rre

(Gitelson and Merzlyak, 1994)

::::::::::::::::::::::::
Gitelson and Merzlyak (1994)

Green-red vegetation index GRV I = G−R
G+R

(Chen et al., 2019)

::::::::::::::
Chen et al. (2019)
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2.7 Machine Learning models

A ML algorithm was chosen to build a
::::
each PFC model because this approach has been successfully used in various ecological

applications with Remote Sensing data (Olden et al., 2008; E Thessen, 2016). More specifically, the Random Forest (RF )
:::
RF190

algorithm is widely accepted because of its high performance in modelling species occurrence and distribution with remote

sensing data without making assumptions of data distribution (Evans et al., 2011; Shiferaw et al., 2019; Valavi et al., 2021).

This algorithm was chosen to build ten RF regression models.

To build the training and test samples, a stratified sampling from the initial data frame
:::::
Initial

::::
Data

::::::
Frame (DI, Figure 3) was

carried out. The values of PFC were grouped in four bins created for this purpose (’0-25’, ’25-50’, ’50-75’ and ’75-100’). The195

bin ’0-25’ contained the majority of PFC values in all the plant communities, causing an imbalanced distribution. This is due

to the presence of minimum cover or absence of plant communities in a large share of the grid cells. Imbalanced distributions

are common in ecological data (Tang et al., 2023). To account for this, an under-sampling strategy was done by reducing the

number of values in each of the bins to the number of values in the minority bin (Table 4
:
6).

Table 6. Balanced training dataset per plant community with the number of training rows considered in each bin and the proportion of all

the bins in relation to the number of all Sentinel-2 MultiSpectral Instrument (MSI) pixels (9766). Plant communities are: Lower Shore (LS),

Open Pioneer (OP), Upper Shore (US), Tall Grass (TG), Reed Swamp (RS).

Plant

::::
Plant 0 - 25

:
0
:
-
::
25 25 - 50

::
25

:
-
::
50 50 - 75

::
50

:
-
::
75 75 - 100

::
75

:
-
:::
100 Total

::::
Total Proportion (%)

:::::::::
Proportion

:::
(%)

LS 823 823 823 823 3292 34

OP 178 178 178 178 712 7

US 1169 1169 1169 1169 4676 48

TG 711 711 711 711 2844 29

RS 100 100 100 100 400 4

This procedure balanced the number of rows per bin, avoiding overfitting of the models on the skewed bin of values. Two200

models were built for each plant community (LS, OP, US, TG and RS) from the sampled data frame
:::::::
Sampled

:::::
Data

::::::
Frame

(DF0, Figure 4), one trained with the list of 14 VI as explanatory variables (data frame
::::
Data

::::::
Frame 1, DF1, Figure 4) and the

other one adding the DEM to the explanatory variables (data frame
::::
Data

:::::
Frame

:
2, DF2, Figure 4).
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Figure 4. Diagram of the two training datasets used for the
::::::
Random

:::::
Forest

:
(RF

:
) models per plant community. DF0 is the sampled dataset

after the under-sample strategy. DF1 has the same structure as DF0 except the DEM variable (xn-1) and DF2 has all the explanatory variables

(xn). yi is the response variable (Plant Fractional Cover, PFC), where i = Lower Shore (LS), Open Pioneer (OP), Upper Shore (US), Tall

Grass (TG), Reed Swamp (RS). DF1 and DF2 have the same samples (rows) matching the unique identifier
:::::
Unique

:::::::
Identifier

:
(ID) column

derived from DF0.

A fraction of 80% was used to train the RF regression models with DF1 and DF2 (Figure 4). A Grid Search Cross-Validation

strategy was implemented to search for the best hyperparameters and tune a RF model (Figure 4
:
5). This method iterates through205

a grid of hyperparameters predefined
:::::::::
predefined

::::::::::::::
hyperparameters and tests the results with a 10-fold cross validation (Figure

4
:
5). The hyperparameters used to carry out the grid search approach were the number of estimators (N) and maximum features

(MF) used to find the best split to grow each tree in the forest. The standard parameters for RF (Probst et al., 2019) were not

used in this study because preliminary results did not show acceptable R2
::
R2

:
and RMSE scores on the training data set

:::::
dataset.

The remaining 20% of the samples were used to test the trained model with the best hyperparameters. Using this approach,210

training and testing dependencies are removed, ensuring the robustness of the final model. In order to compare the RF models

of plant communities trained with each dataset (DF1 and DF2), R2 and RMSE
::
R2,

::::::
RMSE

::::
and

:::::
Mean

::::
Bias

::::
Error

::::::
(MBE)

:
metrics

were reported .
::
to

:::::::
quantify

:::::::::
deviations

:::::::
between

:::::
actual

:::
and

::::::::
predicted

:::::
PFC.

::
To

:::::::
account

:::
for

:::
the

::::::::::
contribution

::
of

::::
each

:::::::
variable

::
to

:::
the

::::::
models,

:::
the

:::::::
variable

:::::::::
importance

::::
was

::::
also

::::::::
extracted.

:::::::
Variable

::::::::::
importance

:::::
ranges

:::::
from

:
0
::
to

::
1,

::::::::
indicating

:::
the

::::::::::
contribution

:::
of

::::
each

:::::
single

:::::::
variable

::
to

::::
each

::
of

:::
the

:::::
tree’s

::::
total

::::::::
impurity

::::::::
reduction.

:::
In

:::
the

:::
RF

:::::::::
algorithm,

:::
the

:::::::::
importance

::
is

:::::::::
calculated

::
as

:::
the

:::::::
average215

::
of

:::::::::
importance

:::::
over

::
all

:::::
trees.

:
The models with the best scores were used to predict the fractional cover

:::
PFC

:
of each plant

community over the whole polygon grid (Figure 5). RF models were programmed using the package scikit-learn in Python

(Pedregosa et al., 2018).
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Figure 5. Machine learning algorithm training and testing process. A 10-fold cross validation on the Training fraction (80% of the input

dataset) was used to search for the best hyperparameters for the Random Forest (RF) model and the 20% for Test fraction was used to test the

trained model. The lowest Root Mean Square Error (RMSE) in the different RF models was used to predict the plant community distribution

values on the polygon grid.

3 Results

3.1 Inter-sensor comparison220

Table 5
:::::
Figure

:
6
:
shows a quantitative comparison of spectral overlapping bands between MS and PS with R2

::
R2, RMSE and

the significance level. Although the spectral resolution of PS and MSI sensors do not overlap completely (Table 2
:
4), the PS

values aggregated by average into the MSI pixel show a significant positive correlation as well as low RMSE (Table 5
:::::
Figure

:
6).
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:

Figure 6. Evaluation metrics of relations between Parrot Sequoia (PS)
::
R2 and Sentinel-2 Multispectral Imager sensor (MSI) spectral

:::::
RMSE

::::::
obtained

::::
from

:::
the

::::
linear

:::::
fitting

::::::
between

:
bands. RMSE is

:
X

:::
and

:
y
::::
axes

::
are

:
in reflectance units (%) . Metric Green Red Red Edge Near Infrared

R2 56% 77% 69% 69%
::
as

:::
well

::
as
:

RMSE0.01 0.01 0.03 0.05.
::::::::::
Correlations

:
in
:::

all
::
the

:::::
cases

::
are

::::::::
significant

:
(p-value < 0.05 <0.05 <0.05 <0.05

::::::
0.0001).

3.2 Random Forest regressions225

The grid search procedure found the best model hyperparameters with
::::
There

::::
was

::
a
::::
clear

:::::::::
imbalance

:::
for

:::::::::
categories

::
of

:::::
PFC

:::::::
between

::::
0-25

::
%
:::

of
:::::
cover

::
of

:::::
each

:::::
plant

::::::::::
community.

::::
This

::::
was

:::::
taken

::::
into

:::::::
account

::::
and

::::
each

:::
RF

::::::
model

::::
was

::::::
finally

::::
built

:::
on

:::::::
different

::::
sizes

::
of

:::::::
training

:::::::
datasets

:::::::
because

::::
they

::::
were

:::
set

::
to

:::
the

::::::::
minimum

::::
size

::
of

::::::::
categories

:::::
used

:::
per

:::::::::
distribution

::::::
(Table

:::
6).

:::
The

::::
Grid

::::::
Search

::::::::::::::
Cross-Validation

::::::::
procedure

:::::::
enabled

:::
the

:::::::
selection

::
of

:::
the

::::
best

::::::::::::::
hyperparameters

::
to

::::
build

:::
RF

:::::::::
regression

::::::
models

::::
with

:::
the

:::::
lowest

::::::
errors,

::::::
leading

:::
to

:::
the

:::::::::::
identification

::
of

:
a minimum of 325 N. For models built on DF1, the N were

::
N

:::
was

:
500230

except
:
in
:

RS (325) and OP (375) and 11 MF considered for the best split. Figure 5
:
7
:
shows the overall results of each RF

regressor model with the best hyperparameters after the Grid Search in 10-fold cross validation. The models using only the

VI calculated from MSI bands (DF1) show a R2 score under 56
::
R2

:::::
score

:::::
under

:::
57% and RMSE above 23

::
22% (units of PFC),

resulting in a moderate to low prediction capability. Variable importance measured by the RF models do not show a common

variable used to split the nodes in the models (Figure A2
:::::
Having

:::::
48%

::
of

:::
the

::::
total

:::::::
samples

:::
to

::::
train,

:::
the

::::
RF

:::::
model

::
of

::::
the

:::
US235
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:::::::::
community

:::::::::
performed

:::
the

::::::
worst

::::
with

:::::
DF1,

:::::::
followed

:::
by

::::
TG

:::
and

:::
LS

::::::::::::
communities,

:::::
which

::::
also

::::
had

::
a

::::::
greater

:::::::::
percentage

:::
of

::::::
samples

::
to
:::::
train

:::
the

::::::
models

:::
(29

:::
and

:::::
34%,

::::::::::
respectively,

::::::
Figure

::
7). The models trained with VI and DEM values (

::::
built

:::
on DF2 )

:::::::
required

::::
more

:::
N,

::::
from

:::
400

:::
to

:::
500

:::
and

:::
the

:::::
same

::::
MF.

:::::
These

::::::
models showed a higher performance, where R2 scores were above

58% and RMSE reduced below 22 units of PFC (Figure 6). These models show the DEM as a common important explanatory

variable used to split the nodes, except for the model to predict PFC of OP (Figures A3 and A4). Because a higher variance240

was explained by the models trained with DF2, they were used to predict the distribution of PFC in the whole dataset (Figure

::
R2

::::::
scores

::::::::
increased

::
on

:::::::
average

::
20

:::::
units

:::
and

::::::
RMSE

::::::::
decreased

::::
5%

::
on

:::::::
average

::::::
(Figure

:
7).

R2 and Root Mean Squared Error (RMSE) retrieved by each Random Forest (RF) regressor model on plant communities.

Darker shades correspond to the model scores from data frame 2 (DF2) and lighter shades are model scores from data frame 1

(DF1). Plant communities are: Lower Shore (LS), Open Pioneer (OP), Upper Shore (US), Tall Grass (TG), Reed Swamp (RS).245

The best improvement of RF models is in US because the model trained and tested with VI and DEM improved
::::
DF2

::::::::
increased its R2 by 2.15 times more than VI alone (Figure 6

::::::
(Figure

::
7). The highest R2 was achieved by the RF model of TG,

reaching 70% after training and testing with DF2. Its RMSE decreased the most between models DF1 and DF2, from 27 to 19

units of PFC(Figure 6)
::
%

::::
PFC. RF models trained and tested with DF1 and DF2 for LS, OP and RS show the lowest differences

of R2 and RMSE despite having 34%, 7% and 4% of the samples for training and testing.250

Figure 7. Maps of predicted Plant Fractional Cover
::
R2

:::
and

::::
Root

:::::
Mean

::::::
Squared

::::
Error

:
(PFC ,%

::::
RMSE) for

::::::
retrieved

:::
by each

::::::
Random

:::::
Forest

:::
(RF)

:::::::
regressor

:::
on plant community within

:::::::::
communities.

::::::
Darker

:::::
colours

:::::::::
correspond

::
to the study areas

::::
model

:::::
scores

::::
from

::::
Data

:::::
Frame

:
2
:::::
(DF2)

:::
and

:::::
lighter

:::::
shades

:::
are

:::::
model

:::::
scores

::::
from

::::
Data

:::::
Drame

::
1

:::::
(DF1). Matsalu

::::
Plant

:::::::::
communities

::::
are:

:::::
Lower

::::
Shore

:
(MAT

::
LS), Tahu South

::::
Open

:::::
Pioneer

:
(TAS

::
OP), Tahu North

:::::
Upper

::::
Shore

:
(TAN

::
US), Kudani

:::
Tall

:::::
Grass (KUD

::
TG), Rälby

::::
Reed

::::::
Swamp (RAL

::
RS)and Rumpo (RMP).

:::::::
Variable

:::::::::
importance

::::::::
measured

:::
by

:::
the

:::
RF

::::::
models

::
to

::::
split

:::
the

:::::
nodes

:::
did

:::
not

:::::
show

:
a
:::::::
common

:::::::
variable

::::
used

::
in
:::
the

:::::::
models

::::
built

::::
with

::::
DF1

::::::
(Figure

::::
10).

::::::::::
Oppositely,

:::
the

::::::
models

::::::
trained

::::
with

::::
DF2

:::::
show

:::
the

:::::
DEM

::
as

::
a
:::::::
common

:::::::::
important

::::::::::
explanatory

:::::::
variable

::::
used

::
to

::::
split

:::
the

::::::
nodes,

:::::
except

:::
for

:::
the

::::::
model

::
to

::::::
predict

:::::
PFC

::
of

:::
OP

::::::
(Figure

::::
11).

::::::::
Because

:
a
::::::
higher

:::::::
variance

::::
was

::::::::
explained

:::
by
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::
the

:::::::
models

::::::
trained

::::
with

::::
DF2

::::
their

:::::
lower

::::::
RMSE

::::::
values,

::::
they

:::::
were

::::
used

::
to

::::::
predict

:::
the

::::::::::
distribution

::
of

::::
PFC

::
in

:::
the

::::::
whole

::::::
dataset

::::::
(Figure

::::
12).255

The prediction errors in the RF models show a scattered distribution between the predicted and real PFC (figures A1 and

A2
::::::
Figures

::
8
::::
and

:
9). In general, models tend to overestimate PFC below 50% of the real value and underestimate above it,

according to the differences between the best fit line of the point distribution and the identity line (perfect prediction). This is

more evident on the extreme values, around 0 and 100 PFC (Figures A1 and A2
:
8
:::
and

::
9). These results improve

::::::::
improved in

models on DF2, which show
::::::
showed the best-fit line closer to the identity line than those on DF1.

:::
The

:::::
MBE

::::::
metric

::::::::
indicated260

:::
that

:::
the

::::::
models

::
of

::::
LS,

:::
US

:::
and

:::
TG

:::::
under

::::
and

::::::::::
overestimate

:::
the

:::::
same

::::
way,

:::::
either

::::::
trained

::::
with

::::
DF1

::
or

::::
DF2

:::::::
(Figures

::
8

:::
and

:::
9).

:::
On

::
the

::::::::
contrary,

:::
the

::::::
models

::
of

:::
OP

::::
and

:::
RS

::::::::::::
underestimated

:::
the

::::::::
predicted

::::::
values

::::::
mostly

:::
and

:::
did

:::
not

:::::
show

:::
any

::::::::::::
improvement.

:

:

Figure 8.
:::::::
Prediction

:::::
errors

:::
per

::::
plant

:::::::::
community

:::::
derived

:::::
from

::::::
Random

:::::
Forest

::::
(RF)

:::::::::
regressions

::::
with

::::
Data

:::::
Frame

:
1
::::::

(DF1).
:::
On

::
the

::
x
::::
axis,

::::
actual

:::::
values

::
of

::::
Plant

::::::::
Fractional

::::
Cover

:::::
(PFC,

::
%

:
)
:::
and

::
on

:::
the

:
y
::::
axis,

:::::::
predicted

:::::
values

:
of
::::
PFC

:::
(%).

:::::
Black

:::::
dotted

::::
lines

::::
show

::
the

::::
best

:
fit
::::::::
estimated

:::
from

:::
the

:::::::::
correlation

::::::
between

:::
the

:::::::
predicted

:::
and

::::::::
measured

::::
value

::
of

:::
the

:::
PFC

::::
(%).

::::
Red

:::::
dotted

:::
lines

::::::::
represent

::
the

::::
over

::
or

:::::
under

::::::::
estimation

::
of

::
the

:::::::::
predictions

:::
with

::
its

:::::::::::
quantification

:::
with

:::::
Mean

:::::
Biased

:::::
Error

:::::
(MBE)

:::
and

::::
Root

:::::
Mean

::::::
Squared

::::
Error

:::::::
(RMSE).
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:

Figure 9.
::::::::
Prediction

::::
errors

:::
per

::::
plant

::::::::
community

::::::
derived

::::
from

::::::
Random

:::::
Forest

::::
(RF)

::::::::
regressions

::::
with

::::
DF2.

:::
On

::
the

:
x
::::
axis,

:::::
actual

:::::
values

::
of

::::
Plant

:::::::
Fractional

:::::
Cover

:::::
(PFC,

::
%

:
)
:::
and

::
on

::
the

::
y

:::
axis,

::::::::
predicted

::::
values

::
of
::::
PFC

::::
(%).

::::
Black

:::::
dotted

::::
lines

::::
show

:::
the

:::
best

::
fit

:::::::
estimated

::::
from

:::
the

::::::::
correlation

::::::
between

:::
the

:::::::
predicted

:::
and

:::::::
measured

::::
value

::
of
:::
the

::::
PFC

:::
(%).

::::
Red

::::
dotted

::::
lines

:::::::
represent

:::
the

::::
over

:
or
:::::

under
::::::::
estimation

::
of

:::
the

::::::::
predictions

::::
with

::
its

::::::::::
quantification

::::
with

::::
Mean

:::::
Biased

:::::
Error

:::::
(MBE)

:::
and

::::
Root

:::::
Mean

::::::
Squared

::::
Error

:::::::
(RMSE)
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:::

Figure 10.
::::::
Variable

:::::::::
importance

:::::::
retrieved

::
by

::
the

:::::::
Random

:::::
Forest

::::::
models

:::::
derived

::::
from

::::
DF1.

:::

Figure 11.
::::::
Variable

:::::::::
importance

::::::
retrieved

:::
by

::
the

:::::::
Random

:::::
Forest

:::::
models

::::::
derived

::::
from

::::
DF2,

:::::
where

::
the

:::::::
coloured

:::
bar

:::::::
represents

:::
the

:::::::::
explanatory

::::::
variable,

::::::
Digital

:::::::
Elevation

:::::
Model

::::::
(DEM)
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Figure 12.
::::
Maps

::
of

:::::::
predicted

::::
Plant

::::::::
Fractional

:::::
Cover

::::
(PFC

::
,%

:::
)for

::::
each

::::
plant

:::::::::
community

:::::
within

::
the

:::::
study

::::
areas.

::::::
Matsalu

::::::
(MAT),

::::
Tahu

:::::
South

:::::
(TAS),

::::
Tahu

:::::
North

:::::
(TAN),

::::::
Kudani

::::::
(KUD),

:::::
Rälby

:::::
(RAL)

:::
and

::::::
Rumpo

::::::
(RMP).
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4 Discussion

This study modelled
:
is

::::
one

:::::::
attempt

::
to

::::::
model the distribution of five coastal wetland plant communities using vegetation

indices derived from the spectral bands recorded by MSI sensor and then, compared these results after the fusion of DEM265

data
::::::::
belonging

:::
to

:::
the

::::::
formal

:::::::::::::::
phytosociological

:::::::::::
categorization

:::
of

::::::::
Burnside

::
et

:::
al.,

:::::
2007,

:::::
using

:::::
open

::::
data

::::
from

::::
MSI

::::::
sensor

:::
on

:::::
board

::
of

::::::::
Sentinel-2

::::
and

:::
the

::::::
official

:::::
DEM

::
of

::::::
Estonia. A fine plant community classification within the study areas derived from

the spectral bands of a PS camera (Martínez Prentice et al., 2021) was the reference to calculate the distribution of each plant

community.Relationships

::::::
Firstly,

:::
the

::::::
spatial

::::::::::
aggregation

:::
by

:::::::
average

:::::
mean

::
of

:::
the

:::
PS

:::::::
images

::::
from

:::
10

:::
cm

:::
to

::
10

:::
m

::::
gave

::::::::
coherent

:::::::::
similarities

:::::
with270

::
the

::::::
values

:::::
from

::::
MSI

:::::::
imagery

::
at

:::::
Level

:::
2A

::::
after

:::::::
finding

:::::::::
significant

::::::::::
relationships

:
between PS and MSI bands were significant

after a band-to-band comparison (Table 5), making the use of this source of data comparable with the MSI reflectance values,

::::
with

:
a
:::::
linear

::
fit

:::::::
(Figure

:::
6), having an average of 32

::
33% of unexplained variance in the relationships(Table 5). .

::::
The

:::
red

::::
and

::::
green

::::::
bands

::
in

::::
MSI

::::
data

:::::::
display

::::::
weaker

:::::
linear

:::::::::::
relationships

:::::
when

:::::::::
compared

::
to

:::
the

::::
red

::::
edge

::::
and

:::::::::::
near-infrared

:::::
bands.

:::::
This

::::::::::
discrepancy

:::
can

::
be

:::::::::
explained

::
by

:::
the

:::::
lower

::::::::::
reflectance

:::::
values

::
in
:::
the

::::::
visible

::::::::
spectrum

::::::
within

:::::
MSI,

:::::
which

:::::
might

:::
be

:::::::::
influenced275

::
by

:::
the

::::::::
presence

::
of

::
a
:::::::
mixture

::
of

:::::::::
vegetation

::::
and

:::::
water

:::::
within

::::
the

:::::
pixel.

::::
The

::
PS

::::
data

::::::::
captured

:::::
more

:::::::::
reflectance

:::
of

::::
bare

::::
soil,

::::::::::
contributing

::
to

:::::
higher

::::::::::
reflectance

:::::
values

::
in

:::
red

::::
and

:::::
green

:::::
bands.

::::::
Higher

:::::::::::
relationships

:::
are

::::::::
observed

:::::::
between

:::
red

::::
edge

::::
and

::::
near

::::::
infrared

::::::
bands

::::
from

::::
both

:::::::
sensors

::::::
(Figure

:::
6).

::::
This

::
is
:::::::
because

:::::
these

:::::
bands

:::::::
capture

:::::
strong

::::::::::
reflectance

::::::
signals

::::
from

::::::::::
vegetation.

Similar studies compared reflectance values of PS (Díaz-Delgado et al., 2019), or another sensor on board of UAV (Padró et al.,

2018), with MSI
:::::
images, finding good correlations. An RF algorithm was

:::::::::::
relationships.

:
280

::::::::
Secondly,

:::
the

:::
RF

:::::::::
algorithm used in this study to assess

::::::
assessed

:
the accuracy of non-parametric based regression mod-

els to predict the distribution of plant communities, as commonly used in Earth Observation studies (Ferreira et al., 2022),

due to their robustness reported in the literature(Maxwell et al., 2018). The Grid Search Cross-Validation procedure allowed

the use of best model hyperparameters to construct RF regression models with the lowest errors. Each model was built on

different sizes of training data sets because they were set to the minimum size of categories used per distribution (Table285

4) avoiding the imbalance of minimum values of PFC (between 0-25 % of cover of each plant community). Having 48%

of the total samples to train, the RF model of the US community performed the worst from DF1 values, followed by TG

and LS communities, which also had a greater percentage of samples to train the models (29 and 34%, respectively, Figure

6). These plant communities are included in a broad phytosociological categorization of grasslands (Burnside et al., 2007)

with similar spatial distributions in some study areas. The
:
,
:::
and

:::
its

:::
use

::
to

::::::::
generate

:::::::::
distribution

:::
of

::::
plant

:::::::::::
communities

::
at

:::::
large290

:::::
scales

::::::::::::::::::::::::::::::::::::::::::
(Maxwell et al., 2018; Butler and Sanderson, 2022).

:::
Its

:::::::::::
performance

:::
was

::::::::
assessed

::
in

::::
this

:::::
study.

::::
The

::::::
models

::::::::
improve

::::
after

:::
the

:::::
fusion

:::
of

:
a
:::::::::::::
high-resolution

:::::
DEM

::::::
(Figure

:::
7).

::::::::
However,

:::
the

:
mixture of reflectance signals included in one MSI pixel

might have caused an overestimation of their distributions in each model.
::
the

:::::::::
deviations

::
in

:::
the

::::::::::
predictions

:::::::
(Figures

::
8
::::
and

::
9).

::::::::::::::
Overestimations

:::
of

::::
PFC

::
in

:::
the

:::::::
models

:::::
might

:::
be

::::
due

::
to

::::::::
presence

::
of

:::::::
patches

::::::
where

:::::
plant

:::::::::::
communities

:::::
were

:::::
mown

:::
or

::::::::
trampled,

::::
thus,

::::::::
retrieving

:::
VI

::::::
values

::::
near

::
to

::::
bare

::::::
ground

::::::
values.

:::::::::::::::
Underestimation,

::
on

:::
the

:::::
other

:::::
hand,

::
is

:::
due

:::
to

:::
the

::::::
mixture

:::
of295

:::::::::
reflectance

::::::::
responses

:::::
from

:::::::
different

:::::
plant

::::::::::
communities

::::::
within

:::
the

:::::
same

::::::
spatial

::::::::::
distribution

::
of

::::
MSI

::::::
pixels.

::::::::
Martínez Prentice
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et al (2021) suggest that the presence of disagreement areas is due to a mixture of radiances in transitional areas or eco-

tones. The effect of mixed pixels is more significant in these types of transitional areas, as the sensor receives a wide range

of reflectance signals within the extent of the pixel (Muukkonen and Heiskanen, 2007). On the other hand, RF
:::
The

:
models

of OP and RS showed better results on
:::
with

:
DF1 , due to their distinct ecological categorization (Burnside et al., 2007) and300

specific spatial distributions where there is a greater
:::
and

::::
DF2

::::::::::::
underestimate

:::
the

::::
PFC

::
to

:
a
:::::
larger

::::::
degree.

::::
The

:::::::::
reflectance

::::::
values

:::::::
retrieved

:::::
from

::::
these

:::::
plant

:::::::::::
communities

:::
are

:::::::
affected

:::
by

::
a

:::::
higher

:
presence of water, reducing the values of VI due to lower

reflectance in the Near Infrared and Red Edge spectrum. An overestimation of predicted values of these models might be

due to presence of patches where plant communities were mown or trampled, thus, retrieving VI values near to bare ground

values. Underestimation, on the other hand, is due to the mixture of reflectance responses from different plant communities305

within the same spatial distribution of MSI pixels. As shown in figures 6 and A1, all RF models improved after the fusion of

high-resolution DEM (

:::
The

::::::::
decrease

::
of

::::::
RMSE

::
of

::::::::
predicted

::::
PFC

::::::
(Figure

::
7)
::::::::
suggests

:::
that

:::::
plant

:::::::::::
communities

:::::
follow

:::
the

::::::::
elevation

::::::
pattern

::
at

:::::::
broader

:::::
scales

::::::::::::
corresponding

::
to

:::
the

::::::::
variations

:::
the

:::::::::::::::
microtopography

::
in

:::
the

:::::
study

:::::
areas.

::::::::
Although

:::
the

:
spatial resolution of

:::
the

:::::
DEM

::
in

:::
this

:::::
study

::::
was 1 metre) into the spectral data (DF2, Figure 4). Comparing the importance of variables in each model

:
m

::::
and310

:::::::::
aggregated

::
to

::
10

:::
m,

:
it
:::::::
showed

:
a
:::::::
similar

::::::::
predictive

::::::::
efficiency

::
as

:::::
those

::::::::
generated

::::
with

:::
the

:::::::::::::::
photogrammetric

::::
point

:::::
cloud

:::::::
derived

::::
from

::::
UAV

::
at
::

a
:::::::::
resolution

:::::
below

:::
10

:::
cm

:::::::::::::::::::
(Villoslada et al., 2020)

:
.
::::
This

::
is

:::
also

::::::
shown

::
in

:::
the

:::::::
variable

:::::::::::
importances

::::::
derived

:::::
from

::
RF

:::::::
models

:
using DF1 and DF2 as shown in Figure A2,

::::::
Figures

::
10

::::
and

:::
11.

:
MSAVI was the only common variable among

all the models trained and tested with DF1. Once the DEM was included as an explanatory variable in DF2, the RF models

showed this as the most important variable, except for the RF model of OP, where the index GNDVI is the most important. OP315

is a type of plant community that is distributed over patches with a high proportion of moist and bare ground (Bergamo et al.,

2022), where the visible part of the spectrum (Red and Green) retrieve greater reflectance values than the far visible part of the

spectrum (Red Edge and Near Infrared). The rest of the plant communities show a distribution depending on the topography,

corresponding to variations in microtopography (Ward et al., 2016; Villoslada et al., 2020).Although the spatial resolution of

the DEM in this study was 1 metre, it showed a similar predictive efficiency as those generated with the photogrammetric point320

cloud derived from UAV at a resolution below
::::
Ward

::
et

:::
al.,

::::
2013

:::::::::
concluded

:::
that

:::
the

::::::::
presence

::
of

:::
OP

::::::
occurs

::
at

::::::
similar

::::::::
elevation

:::::
ranges

::::
than

::::
TG

::
by

:::::::::
predicting

::::
with

:
a
:::::::::::::::
microtopography

:::::::
variable.

:::::
Thus,

::::::::
building

:::
the

::::::
models

::::
with

:::
the

:::::
DEM

:::::
alone

:::
do

:::
not

:::::
reach

::
the

:::::::
metrics

::
as

::::
with

:::
the

:::
VI,

:::::::
because

::::
they

:::
are

::::::::
indicators

::
of

:::::::::
vegetation

::::::::::::
corresponding

::
to

:::::
plant

:::::::::::
communities.

:::
The

::::
final

:::::
plant

:::::::::
community

::::::::::
distribution

:::::
maps

:::::
match

:::
the

:::::::
common

:::::::
patterns

:::::::::
recognised

:::
by

:::::
expert

:::::::::
knowledge

::
in
:::
the

:::::
study

:::::
areas

:::
and

:::
the

:::::
maps

:::::
shown

::
in

::::::::
Martínez

:::::::
Prentice

::
et

::
al.

:::::
2021

::
at

:
a 10 cm (Villoslada et al., 2020). Overall, the results of this study show325

::
cm

::::::
spatial

:::::::::
resolution

::::::
(Figure

:::
12).

:::::::::
According

::
to

:::::
these

::::::
criteria,

:::
the

::::
PFC

:::::
maps

::
in

:::::
MAT

:::
are

::
the

:::::
most

:::::::::::
representative

::
of

::::
PFC

:::::::
(Figure

:::
12).

:::::
Some

:::::
plant

:::::::::::
communities

:::
that

:::::
were

:::
not

::::::::
identified

::
in

::::
most

::
of

:::
the

:::::
study

:::::
areas

:::::
(Table

::::
A1)

:::
are

::::::
present

::::
with

:::::
high

::::
PFC

::::::
values.

::::
This

:
is
:::

the
::::

case
:::

of
:::
RS

:::::::
because

::
its

::::::::::
distribution

:::::
along

:::
the

:::::::
coastline

::::::
shows

::::::
similar

::::
low

:::::
values

::
of

:::::
DEM

::::
and

::
VI

::::
due

::
to

:::
the

::::::
higher

:::::::::
inundation

:::::
levels

::
of

:::::::
brackish

:::::
water

:::::
(Table

:::
2).

::
It

:
is
::::::
largely

:::::::
missing

::
in

:::::
KUD

::::::
mostly,

::
as

::::
this

::::
study

::::
area

::
is

::::::::
relatively

::
far

:::::
from

::
to

:::
the

:::::::
coastline

:::::::
(Figure

::
1).

::::
The

::::
plant

::::::::::
community

::
of

:::
TG

::
is
::::::::::::
overestimated

::
in

:::::
TAN

:::
and

:::::
RMP

::::
areas

::::::
where

:
it
::::
was

:::
not

:::::::::
identified,

::::::
caused330

::
by

:::::::::
similarities

::
in
:::
VI

:::
and

:::::
DEM

::::
with

:::::
other

:::::
plant

:::::::::::
communities,

:::::
which

::::::
means

::::::
similar

:::::::::::::
biogeographical

::::::
factors

::::
than

::
in

:::::
other

:::::
study
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::::
areas

:::::
where

::
it
::
is

:::::::
actually

::::::
present.

::::
The

:::::::::
distribution

::
of
::::
LS,

:::
OP

:::
and

:::
US

:::
are

::::::
mostly

::::::
correct

::::::::
according

::
to

:::
the

::::::::::::
aformentioned

:::::::
criteria.

:::
OP

:::::::
presents

:
a
::::::
similar

::::::::::::
overestimation

:::
as

::
RS

:::
of

::
its

::::
PFC

::
in

:::::
RAL

:::
area

:::::
only,

:::
due

::
to
:::
the

:::::
same

::::::
reason

:::::::::
concerning

:::
RS.

:

::::
This

::::
study

::::::
shows an acceptable empirical approximation to modelling the distribution of ESs providing units in large-scale

images of coastal meadows of Estonia, this is, quantifying the prediction accuracy and error of PFC of small sized plant335

communities in heterogeneous ecosystems at a satellite spatial resolution. The
::::
main

:::::::::
advantage

::
of

:::::
using

:::
the

:::::::
publicly

::::::::
available

:::
data

:::::
from

::::::::
Sentinel-2

:::::::::::
constellation

::
is

::
its

:::::
short

:::::
revisit

:::::
time,

:::::::
provided

:::
by

::
the

::::
two

::::::::
satellites,

:::::::::
Sentinel-2

:
A
::::
and

::
B.

::::
The methodology

provides a rapid assessment of plant communities in a coastal ecosystem vulnerable to climate and land use changes using

different sources of remotely sensed data. Additionally, it is shown that it is possible to reduce time and costs associated with

multiple UAV flights in different areas to cover large extents by the validation of large-scale monitoring studies with open340

source satellite data such as Sentinel-2 and high-resolution products derived from multispectral images taken from UAV.To

improve the correspondence between inter-sensor bands, it is recommended to find closer images in time with a minimum

presence of clouds.

Upscaling remotely sensed imagery from fine to coarse resolution is necessary, although challenging, because they provide

:
.
:::::::
Satellite

:::::::
imagery

:::::::
provides

:
critical information of changes needed for improved environmental management and conserva-345

tion decision making at large scales. Considering this, linking UAV to Earth Observation
:::::::
satellites offers the opportunity for

multiscale study of environmentally sensitive ecosystems such as coastal wetlands. Further work can consider using ancillary

data as a co-predictor with the aggregated spectral data, improving the
:::
such

:::
as

::::::::::
temperature,

:::::::::::
pluviometry

::
or

:::::::
distance

::
of

:::::
plant

::::::::::
communities

:::::
from

:::
the

:::::
coast,

::
to

:::::::
improve

:::
the

:
prediction accuracies, as shown with DEM data in the present work. The super-

vised learning RF algorithm is one of the most robust ML algorithms used for ecosystem and species distribution modelling350

(Pichler and Hartig, 2023), however, other algorithms should be explored.
::::::::
Moreover,

::::::
recent

::::::::
advances

::
in

:::::::::::::::
Super-Resolution

::::::::::::
methodologies

:::::::
increase

:::
the

::::::
spatial

::::::::
resolution

:::
of

:::::::::
Sentinel-2

::::::
images

::
by

::::
four

:::::
times

:::
for

:::
all

::::::
bands,

::
at

:
a
:::::::::
maximum

::
of

:::::
2.5m

:::::
using

:::::::
Artificial

::::::::::
Intelligence

:::::::::
algorithms

:::::::::::::::::::::
(Tarasiewicz et al., 2023).

:::::
Finer

::::
scale

:::::::
analysis

:::
will

:::
be

::::
more

:::::::
suitable

::
to

:::::
study

::
the

::::::::::::
heterogeneity

::
of

::::
plant

:::::::::::
communities

::
in

::::::
Boreal

:::::
Baltic

::::::
coastal

:::::::::
meadows.

5 Conclusions355

A multiscale synergy approach between UAV and Sentinel-2 MSI was undertaken in this study to model the PFC of five plant

communities in coastal meadows. Good relationships existed between both sensors, which enabled PFC to be modelled using

VIs, although the fusion of DEM improved the models from 1.2 to 2 times. From this research, future studies on coastal

meadows using remote sensing from satellites should be focused on finding methods to achieve local calibration of the image

based on values retrieved from UAV mounted multispectral cameras and thus, achieve stronger synergies between both sensors360

(Emilien et al, 2021). Due to the high repeat time and long duration of data collection, upscaling from UAV to satellite imagery

provides an excellent resource for monitoring and assessment of the response of coastal ecosystems to loss and degradation

as a result of climate change or other anthropogenic stressors. This will allow land users and managers to appropriately assess

conservation priorities and implement and monitor responses.
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Appendix A365

A1 Additional figures and tables

Figure A1. Prediction errors per plant community derived from RF regressions with DF1. On the x axis, actual values
::::::
Boxplot

:
of Plant

Fractional Cover
::::::
elevation

:::::
ranges

:
(PFC, %

:
m) and on the y axis, predicted values

::
per

:::::::
category

:
of PFC (%). Black dotted lines show

::::
plant

:::::::::
communities

::
in

::::
each

::::
study

::::
area,

:::::::
showing the best fit estimated from

::::::::::::
microtopography

::::::
gradient

:::::
within

:
the correlation between the predicted

and measured value of the PFC (%)
::::::::
established

::::
plant

:::::::::
communities.Red dotted lines represent the over or under estimation of the predictions.

25



Figure A2. Prediction errors per plant community derived
::::::::
Confusion

:::::
Matrix from RF regressions with DF2. On the x axis

::::
results

::
of

:::::::
Random

::::
Forest

:::::
pixel

:::::::::
classification

::
in
:::::::

Martinez
:::::::

Prentice
::
et

::
al., actual

::::
2021.

::::
MAT

::::::::
(Matsalu),

::::
KUD

::::::::
(Kudani),

::::
TAS

::::
(Tahu

::::::
South),

::::
RAL

:::::::
(Rälby),

::::
TAN

::::
(Tahu

:::::
North)

::::
and

:::::
Rumpo

::::::
(RMP).

::::::
Kappa values

::
are

:::::
MAT:

::::
0.98,

:::::
KUD:

::::
0.92,

::::
TAS:

:::::
0.93,

::::
RAL:

::::
0.89,

:::::
TAN:

::::
0.99

:::
and

::::
RMP:

:::::
0.99.

::::
Each

::::
class

of
:::::::
Predicted

:::
and

:::::
Actual

:
Plant Fractional Cover

:::::::::
Communities

:::
are

:::
LS (PFC

:::::
Lower

:::::
Shore), %

::
OP

:::::
(Open

::::::
Pioneer)and on the y axis, predicted

values of PFC
::
US

:
(%

:::::
Upper

::::
Shore). Black dotted lines show the best fit estimated from the correlation between the predicted

:
,
:::
TG

::::
(Tall

::::::::
Grassland) and measured value of the PFC

::
RS

:
(%

::::
Reed

:::::
Swamp). Red dotted lines represent

:::::::
Numbers

::
are

:
the over or under estimation of the

predictions.
:::::
pixels

:::::::
classified

::
in

:::
each

::::::
quadrat
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Figure A3. Variable importance retrieved by the Random Forest models derived
::::::
Polygon

::::
grids

:
from DF1

:::::::
Sentinel-2

:::::::::::
MultiSpectral

::::::::
Instrument

::::
(MSI)

:::::
pixels

:::::
(9766)

:::::::
covering

:::
the

::
six

:::::
study

::::
areas.

::
1.

::::::
Matsalu

::::::
(MAT),

::
2.

::::
Tahu

::::
South

::::::
(TAS),

::
3.

:::
Tahu

:::::
North

::::::
(TAN),

::
4.

:::::
Kudani

::::::
(KUD),

::
5.

:::::
Rälby

:::::
(RAL),

::
6.

::::::
Rumpo

:::::
(RMP)
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Variable importance retrieved by the Random Forest models derived from DF2, where the coloured bar represents the explanatory

variable DEM.

Table A1. Plant communities sampled in each study area. Matsalu (MAT), Tahu South (TAS), Tahu North (TAN), Kudani (KUD), Rälby

(RAL) and Rumpo (RMP); Lower Shore (LS), Open Pioneer (OP), Upper Shore (US), Tall Grass (TG), Reed Swamp (RS).

Study Area
::::
Study

:::::
Area Plant Communities

::::
Plant

::::::::::
Communities

MAT LS, OP, US, TG, RS

TAS LS, OP, TG, US

TAN LS, OP, US

KUD LS, OP, TG, US

RAL LS, OP, TG, US

RMP LS, OP, US
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