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General remarks 

This paper presents a multifaceted approach for modelling and upscaling spot data to landscape level. It is 

a follow-up of a paper (Wangari et al. 2022, JGR: Biogeosciences, 127, e2022JG006901) that showed the 

measured GHG fluxes in more detail. It is noteworthy that the data from the spring campaign (March 14-

15) was left out of this modelling exercise. 

I generally like the setup and believe it brings useful information to landscape and land use type 

assessments. There is not much to space for critics. The methods seem sound, text is well written and 

easily readable. However, it could benefit from more clarity in showing the improvement in upscaling 

prediction performance and restrictions of the measured GHG data in seasonal and spatial scales in Ch. 

4.1. That would result in moderate changes only. 

Response: Thank you for your overall comments and suggestions. We have addressed most of them in the 

current version of our manuscript. Please find below the detailed responses. Your comments were 

beneficial in helping us to provide clarity on the strengths and limitations of our study, which collectively 

offered the basis for further discussions on future research gaps in the modeling of landscape GHG fluxes. 

Upscaling of GHG fluxes measured from micro to macro scale is hampered by spatial and temporal 

uncertainties of varying biological and physical origins. At the same time, an adequate increase of the 

frequency of chamber measurements is hard. This paper uses flux data, soil physical and chemical 

characteristics from different types of ground vegetation-soil systems for high resolution upscaling to 

landscape level with help of remote sensed parameters and indices, and DEM for Random Forest 

modelling by different land use types separately. Measurements of soil characteristics and GHG fluxes 

included two rather short campaigns in 2020. GHG’s were measured daytime using opaque chamber and 

“fast box” techniques during late June-early July and September 8-17. Those probably yielded estimates 

relative non-winter emission strengths rather than annual fluxes for the sites.  

Response: Thank you for your comments. We agree on the limitation of the study in terms of temporal 

measurements throughout the year. However, our study primarily focused on capturing the spatial 

heterogeneities in soil GHG fluxes. For that reason, we had to limit our campaigns to only a few days to 

reduce the risk of intra and inter-daily variations being mistaken for spatial variability. Regarding the 

representation of the annual fluxes, we agree that our summer and autumn measurements do not represent 

the fluxes from other seasons, e.g., winter. For that same reason, we only talked about the spatial 

variability of GHG fluxes during the summer and autumn seasons throughout our manuscript and 

refrained from talking about annual fluxes from seasonally resolved measurements, which was not the 

focus of our study. To make clear the limitation of our measured GHG data in terms of representing the 

seasonal trends of soil GHG fluxes in our landscape, we have added the following sentences to the 

conclusion, which is a potential research gap for the future. 

 

“While we identified hot and cold spots of soil GHG flux across the Schwingbach landscape through RF 

modeling, the entire exercise was limited to two measuring campaigns of a few days in two seasons 

(summer and autumn). For this reason, it is still unclear whether these hot and cold spots persist 

throughout the year and their overall contribution to the annual landscape GHG flux estimates. Future 

studies should, therefore, aim at increasing the temporal resolution of similar spatially extensive 

measurements to at least monthly scales, which, when combined with remotely-sensed data, may be able 

to create similar landscape flux maps and identify the contribution of GHG hot and cold spots to annual 

estimates.” 
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In forest land, the trees may contribute to the measured soil CO2 emissions through root respiration and 

add to uncertainties.  

Response: Thank you for your comment. We agree that the contribution of root respiration to total soil 

respiration might be substantial in forests. We have now added a description in the methods section to 

reflect this view.  

“The CO2 fluxes quantified using the opaque chambers represented either soil respiration (SR) (root and 

microbial respiration) or ecosystem respiration (ER) (root, microbial, and plant respiration). The CO2 

measurements in autumn across the entire landscape were SR since above-ground biomass was not 

included in the chambers during measurements. In contrast, the summer CO2 measurements on arable and 

grasslands were ER since the above-ground vegetation was incorporated using chamber extensions while 

the forest measurements remained as SR due to minimal above-ground vegetation on the forest floor.” 

 

For CO2, the opaque chamber flux represents a somewhat artificial sum of heterotrophic and autotrophic 

gas release, but not ecosystem net CO2 exchange that could be measured using e.g. using transparent 

chamber or eddy covariance over a landscape or within separate land use types. Thus, the CO2 fluxes 

could be hard to compare with literature data.  

Response: Thank you for your comment. We agree that comparing net CO2 fluxes to only those from 

respiration is misleading. However, extensive CO2 flux comparisons to past literature values were done in 

our earlier publication and were limited to only fluxes quantified using opaque chambers (See Wangari et 

al., 2022). In this study, comparisons were only made on the prediction performance of RF models, which 

we also noted to be uncertain because of the different validation methods. These reflections were also in 

the discussion. 

“Nevertheless, caution has to be taken when interpreting any conclusions from these study comparisons 

due to the limitations of different model validation techniques, different predictor variables used for 

modeling, and the different ecosystems and spatial scales of measurement and predictions.” 

 

The authors should elaborate in discussion how their results could be applicable e.g., in land use planning 

or mitigation efforts, given the representativeness of their data. 

Response: Thank you for your critical comment. We agree that the CO2 fluxes we measured with opaque 

chambers were not net CO2 ecosystem exchange and, therefore, do not represent the net fluxes for CO2, 

which would be suitable for mitigation measures. However, the common hotspot regions of all three 

gasses, including N2O and CH4, representing net values in our study, were primarily within arable lands. 

Therefore, these common hot spot regions can be a target for mitigation strategies, considering that around 

60% of anthropogenic N2O emissions come from arable lands. At the same time, agricultural land use also 

lowers the ability of soils to sink atmospheric CH4. Land use planning measures such as targeted fertilizer 

regimes or expansion of local forests can play a vital role as local GHG mitigation solutions. These 

reflections were also included in the discussion.  

“Identifying common patches with elevated emissions of the three GHGs can inform priority areas for 

implementing localized mitigation measures within a landscape. These common patches covered only 

1.5% of our landscape (~0.2 km2) and had the highest GHG fluxes contributing around 5%, 1%, and 8% 

of the landscape CO2, CH4, and N2O emissions. The location of these patches primarily (99.9%) on arable 

land emphasized the significant role of focusing on mitigating GHG fluxes from arable soils. Because 

most of the common GHG hotspots in the arable soils were also in areas with high water content, 

mitigation strategies that aim at adjusting the fertilizer application rates at specific areas that hold more 

water may be successful in lowering the emissions (e.g., Hassan et al., 2022). In contrast to hot spot 

regions of elevated GHG emissions, CH4 uptake hotspots inform future mechanisms for leveraging the 

GHG sink ability of soils, such as expanding local forests. This finding is supported by uptake hot spots 
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identified on forest soils in this study, offsetting 8% of the total landscape CH4 flux. The expansion of 

forested areas will also likely have a much higher mitigation impact via CO2 sequestration.” 

The paper claims an improved prediction performance compared to other approaches in upscaling the 

mosaic of landscape GHG fluxes. Table 3 shows the approach of this study compared to that of other 

published studies using RF. It is however difficult to evaluate the performance differences thereof with 

other types of approaches. 

Response: Thank you for your critical comment. We included Table 3 to compare with other studies that 

have used a similar RF approach. We agree that comparisons are difficult even with studies that have a 

similar RF approach due to differences in model validation, predictor variables, amount of data, etc. This 

limitation was also discussed in lines 380-383.  

“Nevertheless, caution has to be taken when interpreting any conclusions from these study comparisons 

due to the limitations of different model validation techniques, different predictor variables used for 

modeling, and the different ecosystems and spatial scales of measurement and predictions.” 

 

Please explain clearly why the present approach is an improvement over others. Are there any relative 

qualitative or quantitative indices for such evaluation? 

Response: Thank you for your critical question. Qualitatively, compared to the other studies, ours 

included more spatially well-distributed sites over a larger area that accounts for landscape GHG 

heterogeneities. In addition to remotely sensed data, we used more measured soil parameters to model the 

landscape GHG fluxes. This approach differed from previous studies focusing on remotely sensed data 

and a few soil parameters, such as soil moisture. All these points were highlighted in the discussion.   

“Compared with other studies that have upscaled GHG fluxes using the random forest algorithm, we 

considered more site-measured data on soil parameters, all three GHG fluxes, and different land uses 

(Table 3). Moreover, point selections for measurements were done by implementing a stratified sampling 

plan that represented the spatial variability of several landscape characteristics, specifically land use, soil 

type, and slope (Wangari et al., 2022).” 

 

Hot and cold landscape spots of emissions were identified and their contribution to overall GHG fluxes 

was evaluated. This is very useful for using the results in GHG mitigation. 

Response: Thank you for the word of encouragement. It was indeed our hope that the information 

provided in our work could at least provide a starting work framework for the generation of detailed 

spatial maps, which in the future may be used to inform mitigation strategies. 

 

Specific remarks 

Lines 24-25 Please complete the comparison sentence since you make comparisons between approaches in 

Ch. 3.5 (Fig. 6) and in discussion Table 3 and elsewhere. Be more specific. 

Response: Thanks for pointing out the comparison confusion. We have added Random Forest to the 

statement to avoid confusion with the area-weighted mean approach in Figure 6.  

“Based on these field-based measurements and remotely-sensed data on landscape and vegetation 

properties, we used the Random Forest (RF) algorithm to predict GHG fluxes at a landscape scale (1 m 

resolution) in summer and autumn. The RF results showed improved GHG flux prediction performance 

when combining field-measured soil parameters with remotely-sensed data.” 

 

 


