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Referee 1 

General remarks 

This paper presents a multifaceted approach for modelling and upscaling spot data to landscape level. It is 

a follow-up of a paper (Wangari et al. 2022, JGR: Biogeosciences, 127, e2022JG006901) that showed the 

measured GHG fluxes in more detail. It is noteworthy that the data from the spring campaign (March 14-

15) was left out of this modelling exercise. 

I generally like the setup and believe it brings useful information to landscape and land use type 

assessments. There is not much to space for critics. The methods seem sound, text is well written and 

easily readable. However, it could benefit from more clarity in showing the improvement in upscaling 

prediction performance and restrictions of the measured GHG data in seasonal and spatial scales in Ch. 

4.1. That would result in moderate changes only. 

Response: Thank you for your overall comments and suggestions. We have addressed most of them in the 

current version of our manuscript. Please find below the detailed responses. Your comments were 

beneficial in helping us to provide clarity on the strengths and limitations of our study, which collectively 

offered the basis for further discussions on future research gaps in the modeling of landscape GHG fluxes. 

Upscaling of GHG fluxes measured from micro to macro scale is hampered by spatial and temporal 

uncertainties of varying biological and physical origins. At the same time, an adequate increase of the 

frequency of chamber measurements is hard. This paper uses flux data, soil physical and chemical 

characteristics from different types of ground vegetation-soil systems for high resolution upscaling to 

landscape level with help of remote sensed parameters and indices, and DEM for Random Forest 

modelling by different land use types separately. Measurements of soil characteristics and GHG fluxes 

included two rather short campaigns in 2020. GHG’s were measured daytime using opaque chamber and 

“fast box” techniques during late June-early July and September 8-17. Those probably yielded estimates 

relative non-winter emission strengths rather than annual fluxes for the sites.  

Response: Thank you for your comments. We agree on the limitation of the study in terms of temporal 

measurements throughout the year. However, our study primarily focused on capturing the spatial 

heterogeneities in soil GHG fluxes. For that reason, we had to limit our campaigns to only a few days to 

reduce the risk of intra and inter-daily variations being mistaken for spatial variability. Regarding the 

representation of the annual fluxes, we agree that our summer and autumn measurements do not represent 

the fluxes from other seasons, e.g., winter. For that same reason, we only talked about the spatial 

variability of GHG fluxes during the summer and autumn seasons throughout our manuscript and 

refrained from talking about annual fluxes from seasonally resolved measurements, which was not the 

focus of our study. To make clear the limitation of our measured GHG data in terms of representing the 

seasonal trends of soil GHG fluxes in our landscape, we have added the following sentences to the 

conclusion, which is a potential research gap for the future. 

 

“While we identified hot and cold spots of soil GHG flux across the Schwingbach landscape through RF 

modeling, the entire exercise was limited to two measuring campaigns of a few days in two seasons 

(summer and autumn). For this reason, it is still unclear whether these hot and cold spots persist 

throughout the year and their overall contribution to the annual landscape GHG flux estimates. Future 

studies should, therefore, aim at increasing the temporal resolution of similar spatially extensive 

measurements to at least monthly scales, which, when combined with remotely-sensed data, may be able 
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to create similar landscape flux maps and identify the contribution of GHG hot and cold spots to annual 

estimates.” 

 

 

In forest land, the trees may contribute to the measured soil CO2 emissions through root respiration and 

add to uncertainties.  

Response: Thank you for your comment. We agree that the contribution of root respiration to total soil 

respiration might be substantial in forests. We have now added a description in the methods section to 

reflect this view.  

“The CO2 fluxes quantified using the opaque chambers represented either soil respiration (SR) (root and 

microbial respiration) or ecosystem respiration (ER) (root, microbial, and plant respiration). The CO2 

measurements in autumn across the entire landscape were SR since above-ground biomass was not 

included in the chambers during measurements. In contrast, the summer CO2 measurements on arable and 

grasslands were ER since the above-ground vegetation was incorporated using chamber extensions while 

the forest measurements remained as SR due to minimal above-ground vegetation on the forest floor.” 

 

For CO2, the opaque chamber flux represents a somewhat artificial sum of heterotrophic and autotrophic 

gas release, but not ecosystem net CO2 exchange that could be measured using e.g. using transparent 

chamber or eddy covariance over a landscape or within separate land use types. Thus, the CO2 fluxes 

could be hard to compare with literature data.  

Response: Thank you for your comment. We agree that comparing net CO2 fluxes to only those from 

respiration is misleading. However, extensive CO2 flux comparisons to past literature values were done in 

our earlier publication and were limited to only fluxes quantified using opaque chambers (See Wangari et 

al., 2022). In this study, comparisons were only made on the prediction performance of RF models, which 

we also noted to be uncertain because of the different validation methods. These reflections were also in 

the discussion. 

“Nevertheless, caution has to be taken when interpreting any conclusions from these study comparisons 

due to the limitations of different model validation techniques, different predictor variables used for 

modeling, and the different ecosystems and spatial scales of measurement and predictions.” 

 

The authors should elaborate in discussion how their results could be applicable e.g., in land use planning 

or mitigation efforts, given the representativeness of their data. 

Response: Thank you for your critical comment. We agree that the CO2 fluxes we measured with opaque 

chambers were not net CO2 ecosystem exchange and, therefore, do not represent the net fluxes for CO2, 

which would be suitable for mitigation measures. However, the common hotspot regions of all three 

gasses, including N2O and CH4, representing net values in our study, were primarily within arable lands. 

Therefore, these common hot spot regions can be a target for mitigation strategies, considering that around 

60% of anthropogenic N2O emissions come from arable lands. At the same time, agricultural land use also 

lowers the ability of soils to sink atmospheric CH4. Land use planning measures such as targeted fertilizer 

regimes or expansion of local forests can play a vital role as local GHG mitigation solutions. These 

reflections were also included in the discussion.  

“Identifying common patches with elevated emissions of the three GHGs can inform priority areas for 

implementing localized mitigation measures within a landscape. These common patches covered only 

1.5% of our landscape (~0.2 km2) and had the highest GHG fluxes contributing around 5%, 1%, and 8% 

of the landscape CO2, CH4, and N2O emissions. The location of these patches primarily (99.9%) on arable 

land emphasized the significant role of focusing on mitigating GHG fluxes from arable soils. Because 
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most of the common GHG hotspots in the arable soils were also in areas with high water content, 

mitigation strategies that aim at adjusting the fertilizer application rates at specific areas that hold more 

water may be successful in lowering the emissions (e.g., Hassan et al., 2022). In contrast to hot spot 

regions of elevated GHG emissions, CH4 uptake hotspots inform future mechanisms for leveraging the 

GHG sink ability of soils, such as expanding local forests. This finding is supported by uptake hot spots 

identified on forest soils in this study, offsetting 8% of the total landscape CH4 flux. The expansion of 

forested areas will also likely have a much higher mitigation impact via CO2 sequestration.” 

The paper claims an improved prediction performance compared to other approaches in upscaling the 

mosaic of landscape GHG fluxes. Table 3 shows the approach of this study compared to that of other 

published studies using RF. It is however difficult to evaluate the performance differences thereof with 

other types of approaches. 

Response: Thank you for your critical comment. We included Table 3 to compare with other studies that 

have used a similar RF approach. We agree that comparisons are difficult even with studies that have a 

similar RF approach due to differences in model validation, predictor variables, amount of data, etc. This 

limitation was also discussed in lines 380-383.  

“Nevertheless, caution has to be taken when interpreting any conclusions from these study comparisons 

due to the limitations of different model validation techniques, different predictor variables used for 

modeling, and the different ecosystems and spatial scales of measurement and predictions.” 

 

Please explain clearly why the present approach is an improvement over others. Are there any relative 

qualitative or quantitative indices for such evaluation? 

Response: Thank you for your critical question. Qualitatively, compared to the other studies, ours 

included more spatially well-distributed sites over a larger area that accounts for landscape GHG 

heterogeneities. In addition to remotely sensed data, we used more measured soil parameters to model the 

landscape GHG fluxes. This approach differed from previous studies focusing on remotely sensed data 

and a few soil parameters, such as soil moisture. All these points were highlighted in the discussion.   

“Compared with other studies that have upscaled GHG fluxes using the random forest algorithm, we 

considered more site-measured data on soil parameters, all three GHG fluxes, and different land uses 

(Table 3). Moreover, point selections for measurements were done by implementing a stratified sampling 

plan that represented the spatial variability of several landscape characteristics, specifically land use, soil 

type, and slope (Wangari et al., 2022).” 

 

Hot and cold landscape spots of emissions were identified and their contribution to overall GHG fluxes 

was evaluated. This is very useful for using the results in GHG mitigation. 

Response: Thank you for the word of encouragement. It was indeed our hope that the information 

provided in our work could at least provide a starting work framework for the generation of detailed 

spatial maps, which in the future may be used to inform mitigation strategies. 

 

Specific remarks 

Lines 24-25 Please complete the comparison sentence since you make comparisons between approaches in 

Ch. 3.5 (Fig. 6) and in discussion Table 3 and elsewhere. Be more specific. 

Response: Thanks for pointing out the comparison confusion. We have added Random Forest to the 

statement to avoid confusion with the area-weighted mean approach in Figure 6.  

“Based on these field-based measurements and remotely-sensed data on landscape and vegetation 

properties, we used the Random Forest (RF) algorithm to predict GHG fluxes at a landscape scale (1 m 

resolution) in summer and autumn. The RF results showed improved GHG flux prediction performance 

when combining field-measured soil parameters with remotely-sensed data.” 
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Referee 2 

In the submission by Wangari et al., the authors present the development of a random forest model to 

predict GHG fluxes at high spatial resolution for a study area in central Germany. The authors apply state 

of the art methods on a comprehensive and interesting dataset. The topic is of interesting to the readership 

of Biogeosciences. I have a few concerns regarding the RF model development that I wish to see 

addressed before the article can be considered for publication. 

In my opinion, the data does not substantiate the development of a model at 1 m spatial resolution. The 

only variables that truly convey information at that scale are the ones derived from the DEM and they are 

not dominant in the important predictor variables in the CD models. The soil properties are interpolated 

using a simple interpolation routine. There exist a large body of literature on soil mapping and 

interpolation (also using ML based approaches like RF or geostatistics) and I find the applied approach 

too simplified to support a 1 m resolution.  

I would recommend to conduct the modelling at 10 m spatial resolution instead; meaning applying the 

IDW interpolation of the soil properties at 10 m and aggregating the DEM to 10 m as well. 

Response: Thank you for your critical comment and suggestion. We agree that predicting landscape GHG 

fluxes at 10 m resolution would best reflect our available 10 m resolution remotely sensed data for the 

most important predictor variables (Sentinel-2 datasets). To take up your suggestion, we remodeled the 

GHG fluxes to a 10 m spatial resolution. Additionally, we also compared the measured versus the 

predicted flux values at 1 m and 10 m resolutions (Figures 1 and 2, respectively). We found that the 

resolution does matter, i.e., a finer resolution of 1 m is better in representing the measured fluxes, 

particularly for N2O and CH4 fluxes that are either sinks or sources over short distances than the coarser 

10 m resolution. This finding is surprising as we expected (probably you did too) that the latter coarser 

resolution would better model the measured fluxes because of the much lower uncertainties linked to the 

downscaling of the predictor variables. We attribute this finding to the fine-scale heterogeneities that have 

been extensively reported on soil GHG fluxes, which are better represented by the finer-scale resolution 

despite the uncertainties introduced by the statistical downscaling. Based on these results, we have 

decided to stick with the 1 m resolution. We hope that you also share the same opinion after seeing these 

results. 
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Figure 1: Linear regressions (with 95% confidence bands) of the measured and predicted GHG fluxes at 1 

m resolution using remotely sensed data (RS), soil physico-chemical parameters (SP), and combined data 

(CD). The GHG fluxes from all the sampling point locations were included in this regression analysis.  
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Figure 2: Linear regressions (with 95% confidence bands) of the measured and predicted GHG fluxes at 

10 m resolution using remotely sensed data (RS), soil physico-chemical parameters (SP), and combined 

data (CD). The GHG fluxes from all the sampling point locations were included in this regression 

analysis. 
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The RF models are trained individually for the three land use classes while the summer and autumn data 

are treated jointly. I would expect that a RF model could easily utilize information from a land use map as 

additional predictor variable. Especially if the GHG fluxes show significantly different distributions across 

the three land use classes.  

For each of the three fluxes one model could be trained using data jointly from the three land use classes 

as well as both seasons. In line with the argument of the authors that joining summer and autumn trains 

more robust models, I would expect the same for including data from diverse land use classes.    

Response: Thank you for your critical comment. We did consider adding land use as an extra predictor 

variable and then using a single-trained model to model the entire landscape, similar to what we did for 

our seasonal data. However, we trained models for each land use to separately investigate the main 

predictor variables of the fluxes in the individual land uses. This approach was made to identify the 

underlying drivers of spatial heterogeneities of soil GHGs in each land use, which would have been lost if 

we built models for the entire landscape. While we see the advantage of having one robust model for the 

whole landscape, we believe the benefits of separating by land use are more significant. For starters, 

having separate predictors by land use means that one can infer different process mechanisms for each 

land use. Secondly, the land use-specific information on best predictors can also be used as a benchmark 

by other people interested in using a similar modeling framework to model homogenous landscapes 

regarding land use. We have added this rationale to the methods section. 

“…..Modeling land use-specific GHG fluxes also enabled the identification of the best remotely-sensed 

predictors as the dominance of individual GHG production, consumption, and processes may vary in 

dependence of land use. These best predictors can also be used as benchmark parameters in future studies 

that use a similar modeling framework to model GHG fluxes in single land-use landscapes.” 

 

It is unclear whether the data plotted in Fig 3 are the 10-fold CV or the 30% test data. It should be the 30% 

test data that is being evaluated here. Also, it would be very interesting to see the model’s performance for 

the 30% test data reported in a similar way as the 70% used in the 10-fold cv evaluation in Table 2. In this 

way, the model’s robustness can be evaluated.  

Response: Thank you for your critical comment. In this study, we used two main methods for validating 

our model. The first one is the traditional hold-out method. In this method, the data set was split into the 

training set (70%) and the testing set (30%). However, after further research into ML models, we realized 

that this validation method is biased as it depends heavily on which data points end up in the training set 

and which end up in the test set, and the evaluation may be significantly different depending on how the 

split is made.  

To address this limitation, we switched our main validation method to a more sophisticated 

repeated k-fold cross-validation method. In this method, the data set was automatically divided into 10 

subsets, and the hold-out method was repeated 10 times. Each time, one of the 10 subsets is used as the 

test set, and the other 9 subsets are put together to form a training set. Then the average error across all 10 

trials is computed. The advantage of this method is that it matters less how the data gets divided. Every 

data point gets to be in a test set exactly once and gets to be in a training set 9 times. The variance of the 

resulting estimate is reduced as the K is increased, and the final model contains modeling parameters that 

are independent of the individual training or test datasets.  

However, we still used this sophisticated method of k-fold cross-validation on 70% of our data 

and not 100% of the data because we were also interested in lowering the amount of data we used for our 

model building in the hope that future studies with lower sample numbers could still apply this model 

setup. The remaining 30% of the data was then used only as an extra external validation step for 

comparing the means of the measured and the predicted values and was also included in the 

supplementary material (Figure A1). Plotting this 30% dataset on a 1:1 line will not be appropriate as it 
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will introduce biases in the comparison due to the lower number of data points and lack of 

representativeness due to the simple random split approach. Therefore, Table 2 was only used to represent 

the results from the k-fold cross-validation method, which represents the true robustness of the model and 

is free from the biases discussed above.  

Based on these explanations, Fig 3 includes all our data (100%) since the model training was 

independent of any single data point because of the sophisticated k-fold repeated cross-validation 

methodology, and the additional 30% data was totally not used in model training. We have edited the Fig 

3 caption to make it clear.  

“Figure 3: Linear regressions (with 95% confidence bands) of the measured and predicted GHG fluxes 

using remotely sensed data (RS), soil physico-chemical parameters (SP), and combined data (CD). GHG 

fluxes from all the sampling locations (both the 70% training data and the 30% test data) were considered 

in this regression analysis. The dotted line represents the 1:1 line.”  

 

Also, please discuss the limitations of a simple random split sample strategy taking inspiration in the 

following articles: 

Bjerre, E., Fienen, M. N., Schneider, R., Koch, J., & Højberg, A. L. (2022). Assessing spatial 

transferability of a random forest metamodel for predicting drainage fraction. Journal of Hydrology, 612, 

128177. 

Meyer, H., & Pebesma, E. (2022). Machine learning-based global maps of ecological variables and the 

challenge of assessing them. Nature Communications, 13(1), 2208. 

Response: Thank you for your critical comment and also the references shared. As mentioned above, and 

also referred to by the above articles, we realized that our initial simple random split sample strategy or 

the hold-out validation methodology was biased as it depends heavily on which data points end up in the 

training set and which end up in the test set, and the evaluation may be significantly different depending 

on how the division is made. To address this, we switched our main validation method to a more 

sophisticated repeated k-fold cross-validation method. Based on the description we have given of the 

method in our previous response, we do believe that the limitation related to the traditional simple and 

random test/training dataset split was minimized. We have added this information to the materials and 

methods section and cited the relevant papers. 

“In addition to this the hold-out approach of model validation, we defined a ten-fold (K=10) repeated 

cross-validation scheme on the 70% dataset using the ‘trainControl’ function to internally validate our 

trained models and prevent model overfitting (Berrar, 2018). This model validation strategy also 

minimized the limitation of the initial hold-out approach, providing a more spatially robust model 

validation step (Meyer & Pebesma, 2022).” 

 

It is unclear how random forest hyperparameters were set and if a sensitivity analysis or tuning has been 

carried out.   

Response: Thank you for your critical comment. The random forest's most important hyperparameters 

(mtry= = number of variables at each tree, and n.tree = the number of trees) were tuned automatically 

within the caret package. Tuning was done automatically after a sensitivity analysis (based on MAE 

values) was performed ten times to choose the best mtry and n.tree resulting in the optimal trained model  

i.e., the one with the lowest MAE. We have added this information to the methods section.   

“The random forest's most important hyperparameters (mtry = number of variables at each tree, and n.tree 

= the number of trees) were tuned automatically within the CARET package. Tuning was done 

automatically after a sensitivity analysis (based on assesing the mean absolute error: MAE) was performed 

10 times to choose the best mtry and n.tree resulting in the optimal trained model, i.e., the one with the 

lowest MAE” 
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I lack a discussion on how many chamber measurements are needed for the proposed upscaling approach. 

This would be interesting for future design of upscaling experiments.  

Response: Thank you for your critical comment. We have added text in the discussion section to reflect 

on this more.  

“It is note worththy that the applicability of this upscaling approach largely depends on the availability of 

spatially extensive chamber measurements. In this study, the 70% modeling dataset represented data from 

~20 stratified chamber locations per km2 on the arable land and ~16 chambers per km2 in the forest. These 

number of chamber measurement locations are within the range of those recommended by Wangari et al., 

2022 (29 for arable and 13 for forest) for accurate quantification of landscape GHG fluxes. Based on these 

findings, these chamber numbers may be adoptable to other studies looking to upscale GHG fluxes using a 

combination of chamber measurements and remotely-sensed data, but this will highly depend on the level 

of similarities in landscape properties with our study.” 

 

Moreover, the measurement campaigns were carried out over a little more than a week. How does day-to-

day and diurnal variability introduce uncertainty to the dataset? I also assume that the predictor variable 

soil temperature can be affected by temporal variability. How did the authors account for that in their 

analysis? 

Response: Thank you for your comment. We totally agree that day-to-day and diurnal variability can be 

misinterpreted as spatial variability based on our sampling strategy. To minimize the effect of day-to-day 

variability, we limited the duration of each campaign to 10 days. The diurnal effect was minimized by 

conducting measurements at random sites spread across different land uses and different parts of the 

landscape. We showed in our earlier publication (Figure S2, S3, S4, S5, and Table S2 in supporting 

information; Wangari et al. 2022) that day-to-day or diurnal variabilities were negligible on our datasets 

from each campaign. We have added this point in the methods and referenced it using our earlier 

publication. 

“The day-to-day or diurnal variabilities related to our sampling strategy had a negligible effect on our 

data, with most of the variability in the data linked to spatial heterogeneities. Details of this finding as well 

as soil sampling, analysis, and flux measurement methods are described in Wangari et al. (2022).” 

 

I think the authors should broaden their discussion up for alternative upscaling methods. Such a discussion 

should include process-based modelling and water table depth-based upscaling using empirical response 

functions. 

Tiemeyer, B., Freibauer, A., Borraz, E. A., Augustin, J., Bechtold, M., Beetz, S., ... & Drösler, M. (2020). 

A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation 

and application. Ecological Indicators, 109, 105838. 

Koch, J., Elsgaard, L., Greve, M. H., Gyldenkærne, S., Hermansen, C., Levin, G., ... & Stisen, S. (2023). 

Water-table-driven greenhouse gas emission estimates guide peatland restoration at national 

scale. Biogeosciences, 20(12), 2387-2403. 

Response: Thank you for your comment. As requested, we have broadened our discussion on alternative 

methods of upscaling based on your recommendations and the references provided. 

“This approach represents a Tier 3 approach of upscaling landscape GHG fluxes, as it provides spatially 

explicit GHG fluxes at a high resolution comparable to modeled fluxes using either process-based models 

or statistical functions (e.g., Haas et al., 2013; Tiemeyer et al., 2020; Koch et al., 2023).” 
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Maybe I missed it, but SR/ER_CO2 needs a clear definition. 

Response: Thank you for your comment. We forgot to add the definition in the methods section of this 

study, as we had described the definitions in our earlier publication. We have now updated our current 

methods section to include a clear definition of SR and ER.  

“The CO2 fluxes quantified using the opaque chambers represented either soil respiration (SR) (root and 

microbial respiration) or ecosystem respiration (ER) (root, microbial, and plant respiration). The CO2 

measurements in autumn across the entire landscape were SR since above-ground biomass was not 

included in the chambers during measurements. In contrast, the summer CO2 measurements on arable and 

grasslands were ER since the above-ground vegetation was incorporated using chamber extensions while 

the forest measurements remained as SR due to minimal above-ground vegetation on the forest floor.” 

I enjoyed reading the manuscript and look forward to seeing a revised version. 

Response: 

Thank you for your kind words and for taking the time to review our manuscript. We do appreciate the 

constructive feedback given.  

 

Community Referee 

L24-25: The results showed improved GHG flux prediction performance when combining field-measured 

soil parameters with remotely-sensed data. 

Comment: “improved” compared with what? 

Response: Thank you for the comment. We have made the changes to indicate that performance was 

better than models trained with isolated field-measured soil parameters and remotely sensed data only.   

“The RF models combining field-measured soil parameters and remotely-sensed data outperformed those 

with field-measured predictors or remotely-sensed data alone.” 

L28-30: Similar seasonal patterns of higher soil/ecosystem respiration (SR/ER-CO2) and nitrous oxide 

(N2O) fluxes in summer and higher methane (CH4) uptake in autumn were observed in both the measured 

and predicted landscape fluxes. 

Comment: Are you really measuring ecosystem respiration with a “fast-box” technique? Aren’t you 

missing above-ground respiration? Particularly for the forests. 

Response: Thanks for raising this issue. We forgot to define the SR/ER-CO2 fluxes in this study. The 

forest CO2 fluxes were measured only on the forest floor with little or no above-ground biomass; thus, 

they were termed soil respiration (SR). The CO2 fluxes measured on grassland and arable land in autumn 

were also categorized as soil respiration (SR) since the grass was mowed and the arable fields were 

harvested and plowed. However, the arable and grassland measurements in summer were termed 

ecosystem respiration (ER) since we incorporated the above-ground biomass using chamber extensions. 

We have added these details in the methods section.  

 “The CO2 fluxes quantified using the opaque chambers represented either soil respiration (SR) (root and 

microbial respiration) or ecosystem respiration (ER) (root, microbial, and plant respiration). The CO2 

measurements in autumn across the entire landscape were SR since above-ground biomass was not 

included in the chambers during measurements. In contrast, the summer CO2 measurements on arable and 

grasslands were ER since the above-ground vegetation was incorporated using chamber extensions while 

the forest measurements remained as SR due to minimal above-ground vegetation on the forest floor.” 
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L59-62: Nevertheless, the practicability of increasing the number of chamber measurement locations to 

quantify landscape fluxes is constrained by extensive human and technical resource requirements, hence 

there is a need for alternative ways of estimating GHG landscape fluxes. 

Response: Thanks for the grammar correction of practicability to practicality. We have made the changes.  

 

L69-71: The RF algorithm has been widely applied to gap-fill and upscale soil GHG fluxes in temperate 

ecosystems from point measurements to larger scales, with relatively better prediction accuracies (e.g., 

Philibert et al., 2013; Räsänen et al., 2021; Vainio et al., 2021). 

Comment: Better compared with what? 

Response: Thanks for the comment. We have adjusted the statement since the comparison of the ML 

algorithms was already made in the previous statement (L67-69).  

 “The RF algorithm has been widely applied to gap-fill and upscale soil GHG fluxes in temperate 

ecosystems from point measurements to larger scales (e.g., Philibert et al., 2013; Räsänen et al., 2021; 

Vainio et al., 2021).” 

 

L88-95: In this study, we aimed to determine the potential of applying the RF algorithm to predict the 

spatial and seasonal variability of soil CO2, CH4, and N2O fluxes using a high number of stratified 

sampling locations (n = 268) spread across a relatively large (~5.8 km2) landscape with heterogeneous 

land uses (forest, grassland, and arable land). Specifically, we aimed to: (a) evaluate the effectiveness of 

high-resolution RS data and relatively low-resolution data on soil physico-chemical parameters in 

predicting soil GHG fluxes across different land uses; (b) predict high-resolution soil GHG fluxes at a 

landscape scale and detect GHG hot spots and cold spots; and (c) compare landscape GHG fluxes 

upscaled from RF-predicted high-resolution maps with aggregated landscape flux estimates from averaged 

(point) fluxes multiplied by landscape area. 

Response: Thanks for the editorial changes.  

 “In this study, we determined the potential of applying the RF algorithm to predict the spatial and 

seasonal variability of soil CO2, CH4, and N2O fluxes using a high number of stratified sampling locations 

(n = 268) spread across a relatively large (~5.8 km2) landscape with heterogeneous land uses (forest, 

grassland, and arable land). Specifically, we: (a) evaluated the effectiveness of high-resolution RS data 

and relatively low-resolution data on soil physico-chemical parameters in predicting soil GHG fluxes 

across different land uses; (b) predicted high-resolution soil GHG fluxes at a landscape scale and detected 

GHG hot spots and cold spots; and (c) compared landscape GHG fluxes upscaled from RF-predicted high-

resolution maps with aggregated landscape flux estimates from averaged (point) fluxes multiplied by 

landscape area.” 

 

L88-97: We hypothesized improved prediction accuracies using a combination of RS datasets that act as 

proxies of key drivers of soil GHG fluxes (e.g., vegetation cover and water content) and the site-measured 

soil parameters representing the actual field conditions.  

Comment: improved compared with what? 

Response: Thanks for the comment. We compared the prediction accuracies of models trained with soil 

parameters only and remotely-sensed data only to those with combined predictors. We have revised the 

statement to make it clear.  

“We hypothesized that combining RS data that act as proxies of key drivers of soil GHG fluxes (e.g., 

vegetation cover and water content) and site-measured soil parameters representing the actual field 
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conditions would yield improved GHG flux prediction accuracies in our models than using either RS data 

or site-measured soil parameters in isolation.” 

 

L97-101: We also hypothesized that the high-resolution upscaled fluxes from the RF approach, which 

better captures hot and cold spot regions across the landscape, would avoid possible under- or 

overestimations of landscape fluxes derived from land use specific area-weighted averages calculated 

from few point chamber measurement locations. 

This seems a bit out of place here. You haven’t really mentioned why the RF better captures hot and cold 

spots on the landscape, so it seems odd to put it here in your hypotheses. 

Response: Thank you for your observation. We have removed the RF to make the hypothesis more 

general.  

“We also hypothesized that the high-resolution upscaled fluxes, which represent most GHG hot and cold 

spot regions across the landscape, would avoid possible under- or overestimations of landscape fluxes 

derived from land use specific area-weighted averages calculated from few point chamber measurement 

locations.” 

 

L106-107: Land uses within the landscape are mainly forests (57%) and arable lands (34%). Grasslands 

cover about 8% and are primarily located in riparian zones (Figure 1).  

Comment: What type of forests? Beech? coniferous? a bit more precision here would be helpful. 

Response: Thanks, this was expounded on the other publication. We have added the details now.  

“The forest is mainly covered with mixed (44%) trees, 32% deciduous, and 23% coniferous trees (Figure 

1a). The common species in the forest include European beech (Fagus sylvatica), spruce (Picea abies), 

European oak (Quercus robur), and Scots Pine (Pinus sylvestris) (Wangari et al., 2022).” 

 

L107-109: The dominant soil types are cambisol (69%, forest and arable), stagnosol (23%, mainly arable), 

and gleysol (5%) which are found along grassland riparian zones (Wangari et al., 2022).  

Comment: please indicate the classification system. I assume that this uses the WRB classification 

system? 

Response: Thank you for your comment. The system is indeed the WRB classification. We have indicated 

this in the manuscript.  

“The dominant soil types (World Reference Base classification) are cambisol (69%, forest and arable), 

stagnosol (23%, mainly arable), and gleysol (5%), which are found along grassland riparian zones 

(Wangari et al., 2022).” 

 

L185-186: The optimal trained model was automatically selected using the mean absolute error (MAE) 

metric with the least value. 

Response: Thanks for the grammar correction: least to lowest. We have corrected in the text. 

 

L235-237: The performance of the final models selected for the prediction of landscape fluxes varied 

across input datasets (RS, SP, and CD), GHG fluxes (SR/ER_CO2, CH4, and N2O), and land use (forest, 

grassland, and arable land) (Table 2). 

Comment: is it really “ER” if you aren’t measuring the respiration from the above-ground biomass (at 

least not in the forested area). 
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Response: Thanks again for the comment. As mentioned earlier, we have added the definition of the 

SR/ER CO2 fluxes measured in this study.  

“The CO2 fluxes quantified using the opaque chambers represented either soil respiration (SR) (root and 

microbial respiration) or ecosystem respiration (ER) (root, microbial, and plant respiration). The CO2 

measurements in autumn across the entire landscape were SR since above-ground biomass was not 

included in the chambers during measurements. In contrast, the summer CO2 measurements on arable and 

grasslands were ER since the above-ground vegetation was incorporated using chamber extensions while 

the forest measurements remained as SR due to minimal above-ground vegetation on the forest floor.” 

 

L287-288: The remaining landscape area (24%) had higher N2O fluxes in autumn than in summer, 

particularly in forested areas. 

Comment: I am not sure what you are trying to say here. Possibly that the majority of the landscape area 

with higher autumn N2O fluxes were forests? Please clarify. 

Response: We have modified the statement for clarity.  

“Around 24% of the landscape, primarily on the forested areas, had higher N2O fluxes in autumn than in 

summer.” 

 

L401-402: To illustrate, parts of the landscape (24% and 37%) showed even opposite trends of higher 

N2O fluxes and lower CH4 uptake rates in autumn, and these areas were predominantly in the forested 

ecosystem. 

Comment: Were these the same types of forests as the rest? Were there different tree species?  

Response: Thank you for your comment. These findings were predominately in the mixed forest area. We 

have added this information to the text. 

“To illustrate, parts of the landscape (24% and 37%) showed even opposite trends of higher N2O fluxes 

and lower CH4 uptake rates in autumn, and these areas were predominantly in the mixed forest 

ecosystem.” 

 

L403-405: For example, decaying fallen leaves during autumn can favor denitrification in forest soils but 

not in grassland or arable ecosystems. 

Comment: Can you explain why? and a citation here would be very useful. 

Response: Thank you for your comment. We have added an explanation of the mechanism based on the 

increase of carbon and nitrogen availability through the mineralization of the leaves when decaying.  

“For example, decaying fallen leaves during autumn can favor denitrification in forest soils by increasing 

carbon and mineral N availability (e.g., Groffman & Tiedje, 1989), which may not be true for grassland or 

arable ecosystems due to harvesting and mowing.” 

 

L405-406: The higher CH4 uptake rates in summer could be due to the increased exposure of some forest 

soils to the sun leading to drier and warmer soils that promote CH4 oxidation (Steinkamp et al., 2000). 

Wouldn’t there be less sun in the summer? Weren’t the forests predominantly deciduous cover? 

Response: Thank you for your critical comment. The landscape was mainly dominated by mixed forests. 

We were motivated to include the sun because aspect was a key driver of CH4 trends within the landscape. 

We have, however edited the text to link our findings to warmer temperatures rather than sun exposure.  

“The higher CH4 uptake rates in summer could be due to warmer summer temperatures leading to drier, 

more aerated forest soils that promote CH4 oxidation (Steinkamp et al., 2000).” 



14 
 

 

L418-419: Increased soil moisture values, a key characteristic of the riparian regions, has also been 

reported to drive elevated soil GHG fluxes (Kaiser et al., 2018; Vainio et al., 2021). 

I’m pretty sure that soil C content tends to be quite high in riparian areas as well. Which could also lead to 

higher SR_CO2. 

Response: Thank you for your suggestion. We have added it in the discussion.  

“Increased soil moisture values and higher soil C contents, key characteristics of the riparian regions, have 

also been reported to drive elevated soil GHG fluxes (Kaiser et al., 2018; Vainio et al., 2021).” 

 

L424-425: This finding emphasizes the importance of capturing the N2O hot spots and improving the 

spatial coverage of N2O measurements, as it can introduce enormous uncertainty in landscape fluxes. 

What do you mean by “capturing”? Do you mean both measuring emissions from these and determining 

how much of these are spread across the landscape? This may require a bit of clarification. 

Response: Thank you for your comment and suggestion. We have rephrased the statement and made it 

clear.  

“This finding emphasizes the importance of increasing the spatial coverage of N2O measurements to 

include more hot spot areas, as they can introduce enormous uncertainty in landscape fluxes if not 

quantified.” 

L429-430: Identifying common patches with elevated emissions of the three GHGs can inform priority 

areas for implementing localized mitigation measures within a landscape. 

Response: Thanks for the grammar correction. 

 

L433-435: The mitigation strategies may include adjusting the fertilizer application rates, especially in 

specific areas that hold more water, probably due to topographical or soil conditions (e.g., Hassan et al., 

2022). 

Maybe mention above that these “common” hot spots were in arable soils with high water? Otherwise this 

comment seems a bit out of place 

Response: Thank you for your comment. We have rephrased the text to give context to the discussion 

point.  

“Because most of the common GHG hotspots in the arable soils were also in areas with high water 

content, mitigation strategies that aim at adjusting the fertilizer application rates at specific areas that hold 

more water may successfully lower the emissions (e.g., Hassan et al., 2022).” 

 

L439-440: The expansion of forested areas will also likely have a much higher mitigation impact via CO2 

sequestration. 

Much higher than what? Perhaps just use “high”. 

Response: Thank you for your comment. We have rephrased the statement as advised.  

“The expansion of forested areas will also likely have a high mitigation impact via CO2 sequestration”. 

 

L442-444: We also found significant shifts in the geo-locations of hotspot regions between summer and 

autumn, suggesting that seasonal changes in land management and soil conditions may also lead to a 

temporal expansion or contraction of the hot spot regions. 

Is there really a lot of “seasonal changes in land management”? 

Response: Thank you for your questions. Yes, there is. For example, synthetic fertilizer application is 

only limited to periods before the growing season, i.e., early and late spring, while harvesting mainly 
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occurs at the end of summer. Both these land management practices can have an effect on the temporal 

trends of GHGs. We supplemented the sentence for clarification: “We also found significant shifts in the 

geo-locations of hotspot regions between summer and autumn, suggesting that seasonal effects of land 

management (e.g., fertilization, harvesting, and residue management) and soil conditions may also lead to 

a temporal expansion or contraction of the hot spot regions.” 

 

L452-453: In agreement with our hypotheses, the landscape fluxes were either over or under-estimated by 

the area-weighted average approach compared to the RF modeling approach. 

According to Figure 3, your predicted fluxes were biased towards underestimation. Wouldn’t that suggest 

that the RF is underestimating landscape fluxes rather than that the area-weighted average approach over-

estimates? 

Response: Thank you for your critical comment. While we acknowledge that some of the overestimation 

we found was due to the general trend where the RF models underestimated high fluxes, we were 

convinced that the number of averaged sampling sites, biased with either high or low values, was 

responsible for the differences in the two approaches. For example, we found no significant differences 

when we compared one-to-one means between the measured and the RF-predicted fluxes (for the 

sampling sites) within the same season (See Figures 1 and 2 here). However, if our model underestimation 

had a strong effect, one would expect the area-weighted average from the measured to be higher than the 

RF predicted fluxes.  

When we compared the area-weighted approach to the cumulative landscape fluxes from the RF-

generated maps, which in theory includes fluxes from most cold and hot spots, we found biases in the 

former approach due to seasonality. The area-weighted approach tended to overestimate during the 

summer and underestimate during autumn. These findings could mean that the simple area-weighted 

approach failed to represent cold spots in the summer due to biases toward measuring high-flux regions 

and hot spots in the autumn due to biases toward measuring low-flux regions. We had added some 

explanations in the discussion.  

“An alternative explanation of the differences in landscape flux estimates from both approaches 

could be the underestimation of high fluxes by the RF models, which we also found in our study. 

However, the landscape means of RF predicted and measured fluxes from 30% of our sampled sites were 

primarily similar (Figure A1 in Appendices), suggesting that the lack of spatial representation of all hot 

and cold spots by the area-weighted mean approach rather than the inability of the RF models to reproduce 

high values accounted for the findings above.” 

 

L453-455: The overestimated landscape CO2 and N2O fluxes by up to 50% during the peak summer 

season suggest an overrepresentation of the high fluxes measured at most of the sampling points, resulting 

in elevated mean and upscaled fluxes. 

is this the overestimate by the “area-weighted average approach”? because you say that this approach both 

over- and under-estimated the fluxes (compared with RF). 

Response: Thank you for your critical comment. We have rephrased the statement to make it clearer that 

it is an overestimate from the area-weighted approach.  

“The overestimated landscape CO2 and N2O fluxes by the area-weighted average approach of up to 50% 

during the peak summer season suggest an overrepresentation of the high fluxes measured at most of the 

sampling points, resulting in elevated mean and upscaled fluxes.” 
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L460-461: An alternative explanation of the differences in landscape flux estimates from both approaches 

could be the underestimation of high fluxes by the RF models, which we also found in our study. 

Wouldn’t this be a bigger problem when trying to calculate annual fluxes than underestimating the low 

fluxes? 

Response: Thank you for your question. We think missing out on cold or hot spots may be a bigger 

problem in estimating the annual fluxes of an entire landscape. This conclusion is motivated by the fact 

that when we compared one-to-one means between the measured and the predicted fluxes, we found no 

significant differences, which could mean that the error from the RF underestimation may not be that 

important when the fluxes are averaged. In addition, as we have shown for N2O and CO2, missing out on 

hot spots, for example, will result in significant uncertainties in calculating the final landscape fluxes.  

 

L461-464: However, the landscape means of RF predicted and measured fluxes from 30% of our sampled 

sites were primarily similar (Figure A1 in Appendices), suggesting that the lack of spatial representation 

of all hot and cold spots by the area-weighted mean approach rather than the inability of the RF models to 

reproduce high values accounted for the findings above. 

What about the other 70%? Were they randomly distributed? or was there some bias that could be noted? 

Response: Thank you for the question. The split was done randomly; hence, the distribution of the sites 

was also random. The mean comparison results for both the test and the training dataset were primarily 

similar (See Figure 1: test data and Figure 2: training data).  
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Figure 1: Bar graphs showing the mean fluxes (±SE) predicted using remote sensing (RS), soil properties 

(SP), and combined data (CD) and the measured fluxes at the sampling sites in the 30% model test dataset. 

The upper-case and lower-case letters indicate significant differences (p<0.05) in the mean fluxes in the 

different seasons and across the measured and predicted fluxes.   
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Figure 2: Bar graphs showing the mean fluxes (±SE) predicted using remote sensing (RS), soil properties 

(SP), and combined data (CD) and the measured fluxes at the sampling sites in the 70% model training 

dataset. The upper-case and lower-case letters indicate significant differences (p<0.05) in the mean fluxes 

in the different seasons and across the measured and predicted fluxes.   
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L468-469: The high (50%) overestimation of landscape N2O fluxes suggested the higher sensitivity of 

reliably estimating N2O fluxes using the (aggregated means) conventional method. 

you keep mentioning that the aggregated means over (or under) estimates landscape fluxes. But that is 

only when compared to the RF method. Do we really know that the RF method is more accurate? For me, 

the only way to know for sure would be to compare with a tall flux tower that actually measures the 

landscape flux.  

Response: Thank you for your critical comment. You are correct that there is no way of exactly validating 

the results from the RF maps in our study to determine how accurate they are in representing total 

landscape fluxes. However, on purely methodological grounds, an average that better represents the 

heterogeneity of GHGs across an entire landscape, such as that computed by the RF models, offers 

improved estimates than only a few measured points. We also showed this in our earlier publication, 

where the mean flux uncertainties decrease logarithmically with the number of measurements done 

(Wangari et al., 2022). The next steps are to use the results from the RF maps to guide field measurements 

by chambers or flux towers and check the validity of the model. We plan to work on this in a follow-up 

project. 

 

L479-481: This study’s high spatial resolution upscaling (1 m pixel) enabled capturing small-scale 

variabilities in GHG fluxes within short distances, which would have been missed out with coarser 

resolution upscaling. 

Response: Thank you for the grammar correction. We have made the changes.  

 

L497: Table 3: Comparison of other that have upscaled landscape fluxes using the random forest 

algorithm.  

other what? Other “studies”? 

Response: Thanks for the grammar correction. We have rephrased the statement to make it clearer. 

“Comparison with other studies that have upscaled landscape fluxes using the random forest algorithm.” 

 

L510-511: Figure A4: Maps showing the hot and cold spots of the (a) summer and (b) autumn seasons. 

These regions were defined using each season’s specific threshold. 

I’m not sure of this “hot” and “cold” spot designation. To me, hot spots are places in the landscape that 

have high annual emissions. And I think it may be difficult to determine a hot spot from two 

measurements across an entire year. Areas that had relatively high emissions during both campaigns could 

probably be considered hot spot, but I’m not sure if we should consider a site a “hotspot” if it had 

relatively high emissions during only one of the campaigns.   

Response: Thank you for your critical comment. You are right that it will be very interesting to see if 

these spatial hot or cold spots in our study are persistent throughout the year, which would clearly 

designate them as such. However, due to our study's temporal limitation, we only designated them as 

summer/autumn hot or cold spots. We have added this clarity in the materials and methods section where 

we calculated the hot and cold spots to indicate that these are only for summer and autumn. We have also 

added a reflection of this in the conclusion.  

Materials and methods: 

“2.6 Identification of summer and autumn GHG ‘hot’ and ‘cold’ spots from predicted landscape fluxes” 

Results:  

“3.4 Summer and autumn hot spots and cold spots” 

 



20 
 

 

Conclusion: 

“While we identified hot and cold spots of soil GHG flux across the Schwingbach landscape through RF 

modeling, the entire exercise was limited to two seasons (summer and autumn). For this reason, it is still 

unclear whether these hot and cold spots persist throughout the year and their overall contribution to the 

annual landscape GHG flux estimates. Future studies should, therefore, aim at increasing the temporal 

resolution of similar spatially extensive measurements to at least monthly scales, which, when combined 

with remotely-sensed data, may be able to create similar landscape flux maps and identify the contribution 

of GHG hot and cold spots to annual estimates.” 

 

L513-514: Table B1 a, b, c: Cross-validation results of different models developed for SR/ER-CO2 fluxes 

in 1a) forest, 1b) grassland and 1c) arable land using different predictors in the training dataset. Stepwise 

elimination of the least important predictors was implemented.  

This does not agree with Table 2. I think that this is for the calibration data and Table 2 is for the 

validation data, but that is not clear with the Table captions. 

Response: Thank you for your critical comment. Table 2 and Tables B1-B5 show the cross-validation 

results of the trained models. We have seen the issue of why Table 2 is different: i.e., Tables B1, B3, and 

B5 have the log-transformed RMSE and MAE values for CO2 and N2O fluxes. We have now adjusted 

Tables B1, B3, and B5 to have retransformed values of RMSE and MAE to align with Table 2.  

   

  
Is this really “ecosystem respiration”? I would guess that your chamber was not big enough to measure 

respiration from the forest above-ground biomass. 

Response: Thanks for raising this issue. As mentioned earlier, we have added these details in the methods 

section.  


