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Abstract 18 

Upscaling chamber measurements of soil greenhouse gas (GHG) fluxes from points to landscape scales 19 

remain challenging due to high variability of fluxes in space and time. This study measured GHG fluxes and soil 20 

parameters at selected point locations (n=268), thereby implementing a stratified sampling approach on a mixed 21 

land-use landscape (~5.8 km2). Based on these field-based measurements and remotely-sensed data on landscape and 22 

vegetation properties, we used Random Forest (RF) models to predict GHG fluxes at a landscape scale (1 m 23 

resolution) in summer and autumn. The RF models combining field-measured soil parameters and remotely-sensed 24 

data outperformed those with field-measured predictors or remotely-sensed data alone. The results showed improved 25 

GHG flux prediction performance when combining field-measured soil parameters with remotely-sensed data. 26 

Available satellite data products from Sentinel-2 on vegetation cover and water content played a more significant 27 

role than attributes derived from a digital elevation model, possibly due to their ability to capture both spatial and 28 

seasonal changes of ecosystem parameters within the landscape. Similar seasonal patterns of higher soil/ecosystem 29 

respiration (SR/ER-CO2) and nitrous oxide (N2O) fluxes in summer and higher methane (CH4) uptake in autumn 30 

were observed in both the measured and predicted landscape fluxes. Based on the upscaled fluxes, we also assessed 31 

the contribution of hot spots to total landscape fluxes. The identified emission hot spots occupied a small landscape 32 

area (7 to 16%) but accounted for up to 42% of the landscape GHG fluxes. Our study showed that combining 33 

remotely-sensed data with chamber measurements and soil properties is a promising approach for identifying spatial 34 

patterns and hot spots of GHG fluxes across heterogeneous landscapes. Such information may be used to inform 35 

targeted mitigation strategies at landscape-scale. 36 
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1. Introduction 37 

Atmospheric concentrations of greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and 38 

nitrous oxide (N2O) have increased since the 1750s, substantially driving global climate change (IPCC, 2019). Soils 39 

are key contributors to these GHG fluxes, with recent global emissions of approximately 350 Pg CO2 equivalents per 40 

year (Oertel et al., 2016). Soil GHG emissions have accelerated due to human activities such as land use change for 41 

agricultural land expansion (Dhakal et al., 2022). Globally, agricultural soils are significant sources, accounting for 42 

about 37% of the GHG emissions within the agricultural sector (Tubiello et al., 2013). However, the estimates of soil 43 

GHG fluxes are highly uncertain since soil properties, land use, and land management, which are key indirect drivers 44 

of the emissions, largely differ across landscapes and regions. For instance, global annual estimates range widely 45 

from 67 to 101 Pg C (Jian et al., 2018) for soil respiration, 2.5 – 6.5 Tg N2O-N for annual soil N2O emissions (Tian 46 

et al., 2020), and 12 – 60 Tg for soil CH4 uptake rates (Dutaur & Verchot, 2007). These uncertainties make it 47 

difficult to accurately quantify the GHG source or sink strengths of soils and to develop targeted mitigation options 48 

across scales. 49 

Current upscaling approaches from localized measurements of soil GHG fluxes to landscape or regional 50 

scales using chamber or site-specific micro-meteorological methods such as eddy-covariance (e.g., Sundqvist et al., 51 

2015; Warner et al., 2019; Vainio et al., 2021; Han et al., 2022), fail to capture the spatio-temporal variation of hot- 52 

or cold-spots, resulting in uncertainties in regional and global GHG estimates (Hagedorn & Bellamy, 2011; Levy et 53 

al., 2022). Contrary to the eddy-covariance method, chamber-based approaches can be used to capture fine-scale 54 

spatial variabilities of soil GHG fluxes within landscapes, e.g., when measurements are conducted at sampling sites 55 

representative of the spatial heterogeneities related to land use, land management, and topography (e.g., Warner et 56 

al., 2019; Vainio et al., 2021; Wangari et al., 2022). However, the ability of chambers to accurately quantify 57 

landscape fluxes over relatively larger areas is limited and closely related to the number of chamber measurement 58 

locations per unit area (Wangari et al., 2022). Previous studies have shown that the uncertainties in landscape-scale 59 

fluxes from chamber measurements using area-weighted averages increase exponentially with a decrease in the 60 

number of chamber measurement locations (e.g., Arias-Navarro et al., 2017; Wangari et al., 2022). Nevertheless, the 61 

practicality practicability of increasing the number of chamber measurement locations to quantify landscape fluxes is 62 

constrained by extensive human and technical resource requirements, hence, there is a need for alternative ways of 63 

estimating GHG landscape fluxes. 64 

The limitation of extensive chamber measurements required to quantify landscape fluxes can be overcome 65 

through modeling approaches that offer cost-effective and more practical alternatives. Machine learning (ML) 66 

algorithms are increasingly used to gap-fill spatio-temporal datasets on soil GHG fluxes as they require lesser 67 

computational time and expertise than complex biophysical models (Dorich et al., 2020; Zhang et al., 2020; Saha et 68 

al., 2021; Adjuik & Davis, 2022; Joshi et al., 2022). Amongst the available ML algorithms, the random forest (RF) 69 

algorithm has been evaluated as one of the best for predicting soil GHG fluxes (Hamrani et al., 2020; Adjuik & 70 

Davis, 2021; Han et al., 2022). The RF algorithm has been widely applied to gap-fill and upscale soil GHG fluxes in 71 

temperate ecosystems from point measurements to larger scales, with relatively better prediction accuracies (e.g., 72 

Philibert et al., 2013; Räsänen et al., 2021; Vainio et al., 2021).  73 
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Several studies have explored the use of high-resolution remote-sensing (RS) datasets such as digital 74 

elevation models (DEMs) and indices from spectral characteristics derived from satellite images in combination with 75 

on-site chamber measurements to predict landscape GHG fluxes (e.g., Sundqvist et al., 2015; Warner et al., 2019; 76 

Vainio et al., 2021; Räsänen et al., 2021). These studies used RS datasets on landscape and vegetation parameters as 77 

proxies for soil physical and chemical characteristics such as soil moisture, soil vegetation cover, and nutrient 78 

availability, i.e., key biogeochemical drivers of soil GHG fluxes. However, the above studies have either been 79 

conducted over relatively small areas or have focused on individual land uses and GHG fluxes. For instance, only 80 

one study has applied a RF approach to predict CH4 fluxes for a larger (12.4 km2) peatland-forested landscape based 81 

on RS data and 279 on-site measurements of soil temperature, moisture, and vegetation (Räsänen et al., 2021). In 82 

addition, spatial CO2 and CH4 fluxes have been predicted for relatively small (~0.1 km2) forested landscapes using 83 

DEM-derived terrain attributes and a few site-measured (temperature and moisture) soil variables (Warner et al., 84 

2019; Vainio et al., 2021). Applying RF models using various RS datasets and soil parameters for soil GHG flux 85 

predictions on larger and heterogeneous landscapes in relation to land use, topography, and soil conditions remains 86 

unexplored. It is still uncertain whether such landscape flux predictions would improve if supplemented by multiple 87 

actual field measurements of soil properties (e.g., texture) and variables (e.g., inorganic N content), which may better 88 

describe the geochemical and physical conditions compared to RS-derived indices. 89 

In this study, we aimed to determine the potential of applying the RF algorithm to predict the spatial and 90 

seasonal variability of soil CO2, CH4, and N2O fluxes using a high number of stratified sampling locations (n = 268) 91 

spread across a relatively large (~5.8 km2) landscape with heterogeneous land uses (forest, grassland, and arable 92 

land). Specifically, we: (a) evaluated the effectiveness of high-resolution RS data and relatively low-resolution data 93 

on soil physico-chemical parameters in predicting soil GHG fluxes across different land uses; (b) predicted high-94 

resolution soil GHG fluxes at a landscape scale and detected GHG hot spots and cold spots; and (c) compared 95 

landscape GHG fluxes upscaled from RF-predicted high-resolution maps with aggregated landscape flux estimates 96 

from averaged (point) fluxes multiplied by landscape area. we aimed to: (a) evaluate the effectiveness of high-97 

resolution RS data and relatively low-resolution data on soil physico-chemical parameters in predicting soil GHG 98 

fluxes across different land uses; (b) predict high-resolution soil GHG fluxes at a landscape scale and detect GHG 99 

hot spots and cold spots; and (c) compare landscape GHG fluxes upscaled from RF-predicted high-resolution maps 100 

with aggregated landscape flux estimates from averaged (point) fluxes multiplied by landscape area. We 101 

hypothesized that combining RS data that act as proxies of key drivers of soil GHG fluxes (e.g., vegetation cover and 102 

water content) and site-measured soil parameters representing the actual field conditions would yield improved GHG 103 

flux prediction accuracies in our models than using either RS data or site-measured soil parameters in isolation. We 104 

hypothesized improved prediction accuracies using a combination of RS datasets that act as proxies of key drivers of 105 

soil GHG fluxes (e.g., vegetation cover and water content) and the site-measured soil parameters representing the 106 

actual field conditions. We expected fine-scale hot spots (within a few meters) to occur in cultivated areas and cold 107 

spots in forested areas. We also hypothesized that the high-resolution upscaled fluxes from the RF approach, which 108 

better capturesrepresent most GHG hot and cold spot regions across the landscape, would avoid possible under- or 109 

overestimations of landscape fluxes derived from land use specific area-weighted averages calculated from few point 110 

chamber measurement locations. 111 
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2. Materials and methods 112 

2.1 Study area 113 

The study area is located within the Schwingbach catchment in Hesse, central Germany (50°30'4.23. N, 114 

8°33'2.82. E). The landscape covers an area of approximately 5.8 km2, excluding the human settlement areas and 115 

road networks. Land uses within the landscape are mainly forests (57%) and arable lands (34%). Grasslands cover 116 

about 8% and are primarily located in riparian zones (Figure 1). The forest is mainly covered with mixed (44%) 117 

trees, 32% deciduous, and 23% coniferous trees (Figure 1a). The common species in the forest include European 118 

beech (Fagus sylvatica), spruce (Picea abies), European oak (Quercus robur), and Scots Pine (Pinus sylvestris) 119 

(Wangari et al., 2022). The dominant soil types (World Reference Base classification)s are cambisol (69%, forest 120 

and arable), stagnosol (23%, mainly arable), and gleysol (5%), which are found along grassland riparian zones 121 

(Wangari et al., 2022). The topsoils (0 – 5 cm) in the arable and grasslands have a silt loam texture, while the 122 

topsoils in the forest land mostly have a sandy loam texture (Sahraei et al., 2020). The landscape has an average 123 

slope of 5% with an elevation range of 233 – 415 m a.s.l. The region has a temperate oceanic climate (Cfb, Köppen 124 

climate classification) with annual average precipitation and temperature of 623 mm and 9.6°C based on long-term 125 

data (1969 – 2019) (Sahraei et al., 2021).   126 
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 127 

 128 

Figure 1: Map showing (a) the land uses and the location of the stratified sampling sites (selected based on combined classes of 129 
land use, slope, and soil type) across the study area; (b) the soil types (source: geoportal Hessen, https://www.geoportal.hessen.de/); 130 
and (c) the digital elevation model (DEM; 1 m resolution) of the landscape (source of DEM: Hessische Verwaltung für 131 
Bodenmanagement und Geoinformation, https://hvbg.hessen.de/). 132 
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2.2 Soil physico-chemical parameters and GHG fluxes 133 

2.2.1 Point measurements 134 

Soil sampling and GHG flux measurements (CH4, N2O, and CO2) were conducted at spatially distributed 135 

sampling sites across the study landscape (see Tab. 1 for a list of observed variables). We used a stratified random 136 

sampling approach to distribute 270 sites across different land uses (forest, grassland, and arable), soil types 137 

(cambisol, stagnosol/gleysol, and luvisol), and slopes (0–5, 6–11, and >11%) to capture the spatial variability of soil 138 

GHG fluxes and the driving parameters (Wangari et al., 2022). Out of the 270 targeted locations, field measurements 139 

were conducted at 246 sites in the summer (30th June – 9th July, field measuring campaign 1) and 268 sites in the 140 

autumn (8th – 17th September, field measuring campaign 2) of 2020. The estimated number of measured points for 141 

the forest, grassland, and arable ecosystems was ~25, 150, and 28 per km2 (Table 1). We allocated more grassland 142 

sites due to the hypothesis that riparian grasslands are hot spots of GHG fluxes. 143 

Soil GHG flux measurements were performed during the day (7.00 am – 5.00 pm) using a fast-box chamber 144 

technique (Hensen et al., 2013; Butterbach-Bahl et al., 2020). The CO2 concentrations in the opaque chamber 145 

headspace were measured with an infrared gas analyzer (LI-840A & LI-850, LI-COR Biosciences, Lincoln, NE, 146 

USA), while CH4 and N2O concentrations were measured with an Off-Axis Integrated Cavity Output Spectroscopy 147 

(OA-ICOS) analyzer (Los Gatos Research, Inc., CA, USA). The GHG fluxes were calculated based on the linear 148 

changes of gas concentrations in the chamber headspace in the first 5-7 minutes following chamber closure. The soil 149 

sampling, analysis, and flux measurement methods are detailed in Wangari et al. (2022). The CO2 fluxes quantified 150 

using the opaque chambers represented either soil respiration (SR) (root and microbial respiration) or ecosystem 151 

respiration (ER) (root, microbial, and plant respiration). The CO2 measurements in autumn across the entire 152 

landscape were SR since above-ground biomass was not included in the chambers during measurements. In contrast, 153 

the summer CO2 measurements on arable and grasslands were ER since the above-ground vegetation was 154 

incorporated using chamber extensions, while the forest measurements remained as SR due to minimal above-ground 155 

vegetation on the forest floor. The day-to-day or diurnal variabilities related to our sampling strategy had a negligible 156 

effect on our data, with most of the variability in the data linked to spatial heterogeneities. TheDetails of this finding 157 

as well as soil sampling, analysis, and flux measurement methods, are detailedare described in Wangari et al. (2022).   158 
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Table 1: List of the soil physico-chemical parameters and remotely-sensed data used in this study to upscale the GHG fluxes and 159 
details of the spatial resolutions of the maps.  160 

 161 

2.2.2 Spatial interpolation of soil parameters 162 

Upscaling soil GHG fluxes using the RF algorithm required spatial raster maps of the soil physico-chemical 163 

predictor parameters. Thus, we interpolated our measured point data to continuous landscape maps using the inverse 164 

distance weighted (IDW) approach in the System for Automated Geoscientific Analyses software (SAGA: QGIS) 165 

with a distance coefficient power of 1 (Gradka & Kwinta 2018). The spatial interpolations were performed per land 166 

use (forest, grassland, and arable land) and for each season (summer and autumn) due to significant variations in soil 167 

parameters such as soil moisture or inorganic N content across land uses and seasons (see Wangari et al., 2022).  168 

2.3 Remote sensing data 169 

We retrieved several landscape-scale remote-sensing images with spatial data representing potential drivers 170 

of soil GHG fluxes, such as vegetation cover and vegetation water content. Landscape elevation was acquired from a 171 

high-resolution (1 m) digital elevation model (DEM) retrieved from the Hessische Verwaltung für 172 

Bodenmanagement und Geoinformation on March 1, 2022 (link source). Slope and aspect were calculated from the 173 

Category Predictor variables Original  Final Source

Elevation 1 m 1 m Hessische Verwaltung für 

Bodenmanagement und 

Geoinformation
Slope 1 m 1 m 

Aspect 1 m 1 m 

Topographic wetness index (TWI) 1 m 1 m 

Topographic position index (TPI) 1 m 1 m 

Normalized difference vegetation index (NDVI) 10 m 1 m 

Green normalized difference vegetation index (GNDVI) 10 m 1 m 

Normalized difference moisture index (NDMI) 20 m 1 m 

Soil temperature (°C) 1 m 

Gravimetric soil moisture (%) 1 m 

pH 1 m 

Bulk density (g cm
-3

) 1 m 

NO3-N (mg kg
-1

 dry soil) 1 m 

NH4-N (mg kg
-1

 dry soil) 1 m 

DOC (mg kg
-1

 dry soil) 1 m 

TDN (mg kg
-1

 dry soil) 1 m 

Soil TN (%) 1 m 

Soil TOC (%) 1 m 

CN 1 m 

Sand content (%) 1 m 

Silt content (%) 1 m 

Clay content (%) 1 m 

Resolution

Copernicus Sentinel-2 (European 

Space Agency)

Remotely- 

sensed 

data (RS)

Soil 

physico-

chemical 

parameters 

(SP)

~ 25, 150, 

and 28 sites 

per km
2
 in 

forest, 

grassland, 

and arable 

land

Interpolated from sampling point data 

measured in summer and autumn 

(Wangari et al. 2022)

Calculated from elevation

https://news-hvbg.hessen.de/geoinformation/landesvermessung/geotopographie/3d-daten/digitale-gel%C3%A4ndemodelle-atkis%C2%AE-dgm
https://news-hvbg.hessen.de/geoinformation/landesvermessung/geotopographie/3d-daten/digitale-gel%C3%A4ndemodelle-atkis%C2%AE-dgm
https://news-hvbg.hessen.de/geoinformation/landesvermessung/geotopographie/3d-daten/digitale-gel%C3%A4ndemodelle-atkis%C2%AE-dgm
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DEM using the “r.slope.aspect” function in QGIS. We further computed the topographic position index (TPI) and 174 

topographic wetness index (TWI) from the DEM using the terrain analysis plugin in QGIS. Vegetation information 175 

on chlorophyll and water content was derived from satellite bands of Sentinel-2 images. Satellite images with low 176 

(<1%) cloud cover were accessed from the ESA Copernicus Open Access Hub (link source; accessed on March 177 

2021) using the Semi-Automatic Classification Plugin (Congedo, 2021) in QGIS for each field measuring period. 178 

The normalized difference vegetation index (NDVI) and the green normalized difference vegetation index (GNDVI) 179 

were calculated using the near-infrared (NIR), red, and green bands (Bannari et al., 1995; Gitelson and Merzlyak, 180 

1998; Eq. 1 and 2). Compared to NDVI, GNDVI has a higher ability to detect differences in the chlorophyll content 181 

of plants, especially later in the vegetation period, due to the higher chlorophyll sensitivity of the green band in 182 

GNDVI than the red band in NDVI. The vegetation water content was estimated using the normalized difference 183 

moisture index (NDMI), which was computed using the NIR and short-wave infrared (SWIR) bands (Gao, 1996; 184 

Malakhov and Tsychuyeva, 2020; Eq. 3). We uniformly downscaled the resolutions of these remotely-sensed 185 

vegetation indices to match the 1 m spatial resolution of the DEM-derived data files (Table 1). 186 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
          (Eq. 1) 187 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅+𝐺𝑅𝐸𝐸𝑁
    (Eq. 2) 188 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
        (Eq. 3) 189 

2.4 Random Forest regression model  190 

RF model development and prediction of the GHG fluxes were performed per land use (forest, grassland, 191 

and arable) because there were statistically significant differences observed in the measured fluxes and the 192 

underlying GHG flux controls of soil parameters for the different land uses (Wangari et al., 2022). For instance, N2O 193 

fluxes and soil nitrate concentrations were up to two-fold higher in arable soils than in forestry or grassland soils. 194 

The CH4 uptake rates of grassland and arable soils were lower than those of forest soils due to general differences in 195 

soil structure, nitrogen concentrations, and disturbances (Wangari et al., 2022). Modeling land use-specific GHG 196 

fluxes also enabled the identification of the best remotely-sensed predictors by land use as the dominance of 197 

individual GHG production, consumption and processes may vary in dependence of land use, enabling inferences of 198 

different process mechanisms for each land use. These best predictors can also be used as benchmark parameters in 199 

future studies that use a similar modeling framework to model GHG fluxes in single land-use landscapes. In contrast 200 

to land use, wWe trained models using merged summer and autumn point data to enable larger and temporally 201 

representative datasets for training models that could estimate low and high landscape GHG fluxes (Figure 2).  202 

https://scihub.copernicus.eu/dhus/#/home
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 203 

Figure 2: Workflow summary showing the input data (in blue), the approach used for RF model development and prediction of 204 
landscape fluxes, and the performance evaluation metrics (MAE, RMSE, and r2).   205 

We used the RF algorithm built in the CARET (classification and regression training) package in R to 206 

predict the soil GHG fluxes at a landscape scale (Breiman, 2001; Kuhn, 2008). For model development, the input 207 

datasets were split into a training and internal cross-validation set (70%) and an external test set (30%) using a 208 

stratified random sampling method. In addition to this hold-out approach of model validation, Wwe defined a ten-209 

fold (K=10) repeated cross-validation scheme on the 70% dataset using the ‘trainControl’ function to internally 210 

validate our trained models and prevent model overfitting (Berrar, 2018). This model validation strategy also 211 

minimized the limitation of the initial hold-out approach, providing a more spatially robust model validation step 212 

(Meyer and Pebesma, 2022). A seed value of 123 was specified using the ‘set.seed’ function to enable reproducible 213 

results each time we ran a specific model. The random forest's most important hyperparameters (mtry = number of 214 

variables at each tree, and n.tree = the number of trees) were tuned automatically within the CARET package. 215 

Tuning was done automatically after a sensitivity analysis (based on assessing the mean absolute error: MAE) was 216 

performed 10 times to choose the best mtry and n.tree, resulting in the optimal trained model, i.e., the one with the 217 

lowest MAE. The optimal trained model was automatically selected using the mean absolute error (MAE) metric 218 

with the least value. The predictor variables in the optimal trained model were then ranked according to their 219 
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importance using the RF variable importance measure in the ‘varImp’ function. Subsequently, stepwise elimination 220 

of the least essential variable was performed to quantify the predictive power of landscape GHG fluxes using fewer 221 

predictor variables (Figure 2).  222 

To assess the effectiveness of various types of predictors in modeling landscape fluxes, we defined three 223 

categories of datasets, namely remote-sensing (RS), site-measured soil physico-chemical parameters (SP), and 224 

combined data (CD) (Table 1). Several RF models were trained following the stepwise elimination of the least 225 

important variables in each data category (RS, SP, CD). Since 88% of CH4 fluxes were negative and 86% of N2O 226 

fluxes were positive (Wangari et al., 2022), we additionally trained models using only the negative CH4 and positive 227 

N2O flux datasets to compare their performances with the models built with all (positive and negative) fluxes.  228 

2.5 Model performance assessment and prediction of landscape fluxes 229 

The performance assessment metrics of the trained models included MAE, root mean square error (RMSE), 230 

and the coefficient of determination (r2) from the internal cross-validation. The final models for predicting landscape 231 

fluxes in each data category (RS, SP, CD) were selected based on the highest possible r2 with a relatively low MAE. 232 

For each season and land use, the surface maps of the respective predictor variables in the final models were merged 233 

using the raster brick function in R. The spatial fluxes for each land use were then predicted based on the selected 234 

model and the input raster brick using the ‘predict’ function in R. To improve the prediction performance, the non-235 

normal distributed (SR/ER_CO2 and N2O) fluxes were log-transformed before model development. After prediction, 236 

the transformed fluxes were retransformed using an exponential function.  237 

Further evaluation of the model performances was conducted through linear regression and correlation 238 

analysis of observed against retransformed predicted fluxes for all sampling sites. An additional external validation 239 

step was performed using the measured and predicted fluxes of the sampling sites in the 30% test dataset that was 240 

excluded from the model development. For this analysis, we compared the predicted mean fluxes (using RS, SP, and 241 

CD datasets) with the observed mean fluxes. Analyses of variances (Type II) from linear mixed-effects models 242 

(“nlme” package in R) were used to compare these arithmetic means. The fixed effects in the mixed models were 243 

seasons (summer and autumn) and GHG flux type (measured and predicted fluxes from the RS, SP, and CD 244 

datasets). Random effects of site variability were also included in the mixed models. The measured and predicted 245 

fluxes were log-transformed to the normality assumption. A Tukey post-hoc test (p-value <0.05) of least square 246 

means was used on the mixed models to identify statistically significant differences between the measured, RS-247 

predicted, SP-predicted, and CD-predicted fluxes.  248 

Since many traditional GHG upscaling approaches rely on aggregated fluxes (area-weighted averages), we 249 

also estimated spatial fluxes for the summer and autumn seasons using this technique. GHG fluxes were aggregated 250 

on the landscape scale by multiplying the average fluxes measured for each land use by the area of each land use. We 251 

compared the total landscape fluxes upscaled using this conventional aggregation technique of average fluxes with 252 

the spatial fluxes predicted using the modeling approach. 253 
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2.6 Identification of summer and autumn GHG ‘hot’ and ‘cold’ spots from predicted landscape fluxes 254 

Statistical approaches were deployed to identify areas that may have disproportionately contributed to the 255 

overall landscape GHG fluxes (e.g., van Kessel et al., 1993; Mason et al., 2017). We defined the threshold for hot 256 

spots using the sum of the median (M) flux and the interquartile (Q3-Q1) flux range (Eq. 4). Thus, the hot spots 257 

within the landscape were identified as the areas with flux values greater (lower for CH4 uptake) than the set hot spot 258 

threshold. We fixed an inverse threshold (Eq. 5) for cold spots and identified cold spot patches with fluxes below 259 

(above for CH4 uptake) this threshold. Common emission hot spots were defined as the areas with overlapping 260 

elevated emissions of the three GHG fluxes (SR/ER-CO2, CH4, and N2O) within the landscape. The average 261 

(summer and autumn) landscape fluxes were used to identify the hot and cold spots. We also calculated season-262 

specific thresholds to compare the increase and decrease of hot and cold spot areas between summer and autumn.  263 

𝐻𝑜𝑡 𝑠𝑝𝑜𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑀 + (𝑄3 − 𝑄1)         (Eq. 4)  264 

𝐶𝑜𝑙𝑑 𝑠𝑝𝑜𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑀 − (𝑄3 − 𝑄1)         (Eq. 5) 265 
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3. Results 266 

3.1 RF model performance  267 

The performance of the final models selected for the prediction of landscape fluxes varied across input 268 

datasets (RS, SP, and CD), GHG fluxes (SR/ER_CO2, CH4, and N2O), and land use (forest, grassland, and arable 269 

land) (Table 2). The predictive performance (r2) from the internal cross-validation step was higher in the models 270 

using the CD dataset (range: 0.15 – 0.78) than those using the RS (range: 0.13 – 0.73) and SP (range: 0.15 – 0.63) 271 

datasets (Table 2). The RF models predicting SR/ER_CO2 fluxes had much higher r2 (range: 0.45 – 0.78) than those 272 

predicting N2O and CH4 fluxes (range: 0.13 – 0.56). Arable ecosystem models resulted in much better predictions of 273 

SR/ER_CO2 (r2 range: 0.63 – 0.78) and N2O (r2 range: 0.45 – 0.56) fluxes compared to those for forest and grassland 274 

ecosystems across all data categories (Table 2). The prediction of CH4 fluxes was also better for arable lands, but 275 

only when using the RS data (Table 2). Stepwise elimination of the least important variables had a minimal effect on 276 

the performances of the trained models (Table B1-B5 in Appendices). The selected models for the different 277 

categories of datasets (RS, SP, and CD) had varying predictor variables across land uses. The forest and grassland 278 

models required the most (5 and 6) predictor variables. In contrast, the least number of predictors (2) were mainly 279 

observed for models describing GHG fluxes from arable soils, especially in the RS and SP categories (Table 2).  280 

Comparing the models (CD) applied to predict the landscape fluxes, the site-measured soil moisture content 281 

was a key predictor variable for all three GHG fluxes across land uses. In addition to soil moisture, the measured soil 282 

nitrogen content (NH4 or SN) and remotely sensed vegetation indices (NDVI, GNDVI, or NDMI) were prevalent 283 

predictors of landscape SR/ER_CO2 fluxes. Soil nitrogen content (NO3 or CN) was also a recurrent predictor of CH4 284 

fluxes across land uses. However, the landscape CH4 models had other varying predictors, such as aspect and soil 285 

temperature in forest models, pH and clay in grassland, and vegetation indices in arable ecosystem models. For N2O, 286 

soil inorganic nitrogen (NH4 or NO3) concentrations predicted the fluxes in the forested areas, while vegetation 287 

indices were common predictors in grassland and arable ecosystems (Table 2).  288 

Further assessment of model performance was performed through an external validation step comparing the 289 

mean of observed and predicted fluxes in the test dataset (n=∼140 per flux). The mean measured CO2 and CH4 290 

fluxes were similar to the predicted carbon fluxes across all the data categories (RS, SP, CD) within each season. In 291 

contrast to the carbon fluxes, the measured N2O fluxes were significantly lower than the predicted fluxes in autumn 292 

(Figure A1 in Appendices).   293 
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Table 2: List of predictor variables and the performance of the selected RF models using either remote sensing (RS), soil physico-294 
chemical parameters (SP), or combined (remote sensing and soil parameters) data. The model selection was made after a cross-295 
validation (10-fold) step whereby the model's predictive power was tested based on unseen data to avoid overfitting.  296 

  297 

3.2 Observed versus predicted GHG fluxes 298 

The measured and predicted GHG fluxes for all the sampling points had significant (p<0.001) linear 299 

relationships (Figure 3). The model predictions of SR/ER_CO2 fluxes were better (r2; 0.49 – 0.67) than for soil CH4 300 

(r2; 0.39 – 0.46) or N2O (r2; 0.34 – 0.43) flux predictions across the three input datasets. Based on the estimated 301 

slopes, the predicted values were 35 – 46% lower than the measured values for SR/ER_CO2 fluxes. Compared to 302 

CO2, the CH4 and N2O predicted fluxes were lower (CH4 53 – 58%; N2O 60 – 65%) than the measured fluxes, 303 

primarily due to the underestimation of high fluxes. Based on r2 values, the performances of the different predictor 304 

datasets were in the order of CD>RS>SP for carbon fluxes and CD>SP>RS for N2O fluxes (Figure 3).  305 

Flux type Land use Category Predictor variables R
2 RMSE MAE

Forest (SR) NDVI, GNDVI, NDMI 0.45 1.76 1.55

Grassland (ER) NDVI, GNDVI, NDMI 0.46 1.88 1.61

Arable (ER) Elevation, NDVI, GNDVI, NDMI 0.73 1.76 1.58

Forest Aspect, NDVI, GNDVI 0.14 46.38 36.15

Grassland Elevation, TPI, NDVI, NDMI 0.15 29.23 21.53

Arable GNDVI, NDMI 0.35 50.79 34.72

Forest NDVI, GNDVI, NDMI 0.13 18.46 18.62

Grassland NDVI, GNDVI, NDMI 0.13 17.87 18.26

Arable GNDVI, NDMI 0.53 18.32 18.50

Forest (SR) Soil moisture, pH, NH4-N, DOC 0.49 1.72 1.53

Grassland (ER) Soil moisture, NH4-N, TDN 0.54 1.79 1.55

Arable (ER) Soil moisture, SN 0.63 1.94 1.70

Forest Soil temperature, soil moisture, pH, NO3-N, silt 0.16 44.29 33.87

Grassland Soil moisture, pH, NO3-N, DOC, CN, clay 0.29 25.59 18.62

Arable DOC, CN 0.29 44.51 32.65

Forest Soil moisture, NO3-N, NH4-N 0.15 18.49 18.65

Grassland Soil moisture, NH4-N, CN, clay 0.22 18.02 18.37

Arable Soil moisture, NO3-N, SN, CN 0.46 18.28 18.48

Forest (SR) NDVI, GNDVI, NDMI, soil moisture, NH4-N, DOC 0.57 1.64 1.48

Grassland (ER) GNDVI, soil moisture, NH4-N 0.57 1.76 1.54

Arable (ER) NDVI, GNDVI, soil moisture, SN 0.78 1.68 1.51

Forest Aspect, soil temperature, soil moisture, NO3-N 0.21 43.50 34.58

Grassland Soil moisture, pH, NO3-N, CN, clay 0.30 25.38 18.29

Arable GNDVI, NDMI, CN 0.31 47.59 33.30

Forest Soil moisture, NO3-N, NH4-N 0.15 18.49 18.65

Grassland NDVI, soil moisture 0.25 18.05 18.37

Arable NDVI, GNDVI, NDMI, soil moisture 0.56 18.36 18.52
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 306 

Figure 3: Linear regressions (with 95% confidence bands) of the measured and predicted GHG fluxes using remotely sensed data 307 
(RS), soil physico-chemical parameters (SP), and combined data (CD). GHG fluxes from all the sampling locations (both the 70% 308 
training data and the 30% test data) were considered in this regression analysis. The dotted line represents the 1:1 line.  309 

 

3.3 Spatio-temporal variation in modeled landscape-scale fluxes 310 

Predicted landscape fluxes for the summer and autumn seasons ranged from +27.7 – +733.3 mg m-2 h-1 for 311 

CO2-C, -148.4 – +89.4 µg m-2 h-1 for CH4-C, and from -8.8 – +189.9 µg m-2 h-1 for N2O, and did not differ much in 312 

dependence of the input dataset used (RS, SP, or CD) (Table B6 in Appendices). However, the predicted flux ranges 313 

for the landscape were narrower than the measured fluxes, which ranged from 8.7 to 877.0 mg m-2 h-1 for CO2-C, 314 

from -214.1 – +221.2 µg m-2 h-1 for CH4-C and from -18.1 – +281.8 µg m-2 h-1 for N2O-N. Since the CD dataset 315 

revealed models with better predictions for all GHG fluxes than the RS and SP datasets, we used GHG fluxes 316 

predicted from CD predictors for seasonal and land use comparisons.  317 
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Most of the landscape area (99.2%) had higher SR/ER_CO2 fluxes in summer than in autumn, with a small 318 

proportion of arable and grassland ecosystems having an opposite trend. Around 76% of the landscape also had 319 

higher N2O fluxes in summer than in autumn. Approximately 24% of the landscape, primarily in the forested areas, 320 

had higher N2O fluxes in autumn than in summer.The remaining landscape area (24%) had higher N2O fluxes in 321 

autumn than in summer, particularly in forested areas. CH4 uptake rates were lower in summer than in autumn in 322 

most of the landscape (63%), especially in arable and grassland soils. However, an opposite trend was found for 323 

about 37% of the landscape area, dominated by forests, where CH4 uptake rates were lower in autumn than in 324 

summer (Figure 4c).  325 

High spatial heterogeneities (within short distances of <2 m) of the predicted landscape fluxes were 326 

observed in each land use. Overall, spatial variations were more prominent in summer than in autumn (Figure 4; 327 

Table B6 in Appendices). The spatial variability of SR/ER_CO2 fluxes was higher (with a range of up to 2.6-folds) 328 

on arable soils than forest and grassland soils, with multiple patches of low fluxes surrounded by high fluxes. CH4 329 

fluxes on arable lands were also heterogeneous, with the soils acting as CH4 sinks and sources within a few meters, 330 

especially during summer (Figure 4a). For N2O fluxes, high spatial heterogeneities were observed on grassland soils 331 

in summer, as N2O uptake and emission of the same or even higher order of magnitude occurred at neighboring 332 

pixels. Arable soils in autumn were also highly heterogeneous, with patches of high N2O fluxes surrounded by low 333 

fluxes (Figure 4b).  334 
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 336 

Figure 4: Landscape maps of SR/ER_CO2, CH4, and N2O for (a) summer, (b) autumn seasons, and (c) the difference maps showing 337 
the variation of the autumn from the summer fluxes. The surface fluxes were predicted using RF models trained with combined 338 
(remote-sensing and site-measured soil parameters) data (CD; Table 2).   339 
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 3.4 Summer and autumn Hhot spots and cold spots 340 

The hot and cold spots of the GHG fluxes were identified from the average (summer and autumn) upscaled 341 

landscape fluxes (Figure 5a). Using equation 4, the SR/ER_CO2 and N2O spatial hot spots had threshold values 342 

>231.5 mg CO2-C m-2 h-1 for CO2 and >36.8 µg N2O-N m-2 h-1 for N2O. These hot spots covered a relatively small 343 

portion (~16.7%) of the landscape, yet they played a significant role, especially the N2O hot spots, which accounted 344 

for 42% of the landscape fluxes. Around 29% of the total SR/ER_CO2 landscape flux emanated from the hot spot 345 

areas (Figure 5). Overall, the SR/ER_CO2 and N2O hot spots were mainly located on arable lands (77.0% and 94.5%, 346 

respectively) and grasslands (22.9% and 5.5%, respectively). Compared to the SR/ER_CO2 and N2O hot spots, the 347 

hot and cold spots of CH4 uptake were observed in smaller regions (3.1% and 7.3%) of the landscape with high soil 348 

CH4 uptake rates (>87.3 µg CH4-C m-2 h-1) and low soil CH4 uptake rates (<3.4 µg CH4-C m-2 h-1). The CH4 uptake 349 

hot spots, exclusively on the forested soils, offset 8% of the landscape CH4 fluxes (Figure 5). The cold spots 350 

occupied 7% of the landscape and were primarily on arable soils (99.6%), accounting for 2% of the landscape's CH4 351 

emissions.  352 

Common hot spots, with overlapping areas with elevated GHG emissions (i.e., SR/ER_CO2 and N2O hot 353 

spot areas and CH4 uptake cold spot areas), were mainly on arable soils (99.87%), with few located in grasslands 354 

(0.12%) and forests (0.01%). Overall, these patches covered 1.5% of the landscape area and contributed 5%, 1%, and 355 

8% of the SR/ER_CO2, CH4, and N2O emissions within the landscape (Figure A2 in Appendices). Based on field 356 

observations of the sampling sites (n=14) in the common hot spots, the sites at arable lands were either cropped with 357 

barley or wheat. These arable common hot spots also had higher soil moisture content and NO3 concentrations than 358 

the average values recorded at all the other sampling locations. The common hot spots in the forest were found along 359 

the riparian zones if either nitrogen-fixing alder trees were present or if grazed by cattle. Soil moisture (%), DOC, 360 

NO3, and NH4 concentrations at these sites were also higher than mean values across all sampling points. The 361 

grassland common hot spot regions were densely covered by nitrogen-fixing clover, with some located along the 362 

riparian zones (Figure A3; Table B7 in Appendices).  363 

Comparison of the GHG emission hot spots in summer and autumn using season-specific thresholds 364 

revealed significant shifts in their geo-locations between the two seasons (Figure A4 in Appendices). SR/ER_CO2 365 

hot spot regions expanded by 46% from summer to autumn, even though the emissions from the former season were 366 

higher. Unlike CO2, N2O emission hot spots and CH4 uptake cold spots contracted by 23% and 86%, respectively, 367 

from summer to autumn.  368 
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 370 

Figure 5: Maps showing (a) the average GHG fluxes and (b) the average hot spot and cold spot regions on the landscape for the 371 
summer and autumn seasons. The pie charts show the contribution (%) of hot and cold spots to total landscape fluxes. For this 372 
analysis, landscape fluxes were predicted using the combined data (CD; Table 2; Figure 3).  373 

 

 

3.5 Comparison of upscaling approaches 374 

Seasonal differences in spatial patterns and magnitudes of GHG fluxes were observed for upscaled fluxes 375 

using either RF modeling or mean values of measured fluxes. In both approaches, the SR/ER_CO2 and N2O 376 

landscape fluxes were an order of magnitude higher in summer than in autumn. The CH4 uptake rates were higher in 377 
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autumn than in summer but within the same order of magnitude. In summer, the landscape-scale SR/ER_CO2 and 378 

N2O fluxes estimated using the area-weighted average approach were 26% and 50% higher than the RF-modelled 379 

fluxes. The contrary was observed in autumn, where the later methodology produced slightly (4% and 11%) higher 380 

fluxes than the area-weighted mean estimates.  381 

The entire landscape CH4 uptake estimates for autumn using the area-weighted mean were 16% higher than 382 

the modeled estimates. Contrary to autumn, the area-weighted mean approach had slightly lower estimates of CH4 383 

uptake than the modeling approach in summer. Additionally, the CH4 surface flux estimates for the whole arable land 384 

in summer were net sinks (-0.9 CH4-C g h-1) using the RF modeling approach contrary to the net sources (15.5 CH4-385 

C g h-1) estimated by the area-weighted mean method. Overall, the total landscape fluxes estimated using the area-386 

weighted mean approach had up to two orders of magnitude higher uncertainty (standard error) than the modeled 387 

landscape fluxes (Figure 6).  388 
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 389 

Figure 6: The total landscape fluxes (+SE) predicted using random forest (RF) models (with combined dataset) and the fluxes 390 
estimated using the area-weighted mean approach where the average point-measured fluxes were multiplied by the landscape area.  391 
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4. Discussion 392 

4.1 Efficiency of in-situ soil parameters and remote-sensing data in upscaling GHG fluxes 393 

Our study showed that remotely-sensed (RS) data and measured soil parameters (SP) could effectively 394 

upscale soil-atmosphere CO2, N2O, and CH4 fluxes from point chamber measurements across a heterogeneous 395 

landscape with mixed land uses.  This approach represents a Tier 3 approach of upscaling landscape GHG fluxes, as 396 

it provides spatially explicit GHG fluxes at a high resolution comparable to modeled fluxes using either process-397 

based models or statistical functions (e.g., Haas et al., 2013; Tiemeyer et al., 2020; Koch et al., 2023). The improved 398 

prediction performance of the combined data (CD) sources indicates the importance of incorporating controls of soil 399 

GHG fluxes that are remotely sensed and ground-based field observations. The prediction models in this study 400 

suggested that the Sentinel-2-derived indices (NDVI, GNDVI, and NDMI) were more effective predictors than the 401 

DEM-derived terrain attributes (elevation, slope, aspect, TWI, and TPI). This finding is supported by the appearance 402 

of the Sentinel-2-derived indices in the prediction models of the three GHGs, contrary to only one DEM index 403 

(aspect) that appeared in the CH4 flux prediction models for the forest ecosystem. The minor role of DEM indices in 404 

this study can be attributed to the relatively flat terrain of our study landscape (Figure 1b) and is further backed by 405 

the lack of spatial variation in the measured GHG fluxes with slope, yet slope was considered during site 406 

stratification (Wangari et al., 2022). Another possible explanation could be that soil wetness, a common predictor of 407 

all the GHG fluxes across the landscape, was better represented by the site-measured soil moisture content and the 408 

NDMI index (vegetation water content), than any of the DEM terrain attributes, including the TWI that focuses on 409 

moisture conditions, as they lack a temporal dimension.  410 

Compared with other studies that have upscaled GHG fluxes using the random forest algorithm, we 411 

considered more site-measured data on soil parameters, all three GHG fluxes, and different land uses (Table 3). 412 

Moreover, point selections for measurements were done by implementing a stratified sampling plan that represented 413 

the spatial variability of several landscape characteristics, specifically land use, soil type, and slope (Wangari et al., 414 

2022). The prediction accuracies of soil respiration for our mixed forest ecosystem (3.3 km2) were slightly better 415 

than those reported for a smaller forested headwater watershed (0.12 km2) in Maryland, USA (Warner et al., 2019). 416 

Our CH4 prediction performance for forest soils was comparable to those of a boreal forest landscape (Vainio et al., 417 

2021). However, our CH4 prediction performance was up to 3.6-fold lower than those of a forested headwater 418 

watershed and peatland soils, which can be attributed to higher and more homogenous CH4 production in such 419 

ecosystems (Warner et al., 2019; Räsänen et al., 2021). Our CH4 and N2O model prediction accuracies for arable 420 

soils were better than those for arable soils in New South Wales, Australia, which only considered input data from 421 

ground-based sensors such as soil pH and clay content (McDaniel et al., 2017). Nevertheless, caution has to be taken 422 

when interpreting any conclusions from these study comparisons due to the limitations of different model validation 423 

techniques, different predictor variables used for modeling, and the different ecosystems and spatial scales of 424 

measurement and predictions.  425 
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4.2 Seasonal variability of landscape fluxes 426 

The GHG fluxes predicted by the RF model in this study revealed seasonal trends of up to 3-fold higher 427 

CO2 and N2O fluxes in summer and 1.2-fold higher CH4 uptake in autumn, which were also evident in the measured 428 

fluxes at the sampling points (Wangari et al., 2022). These trends can be attributed to seasonal changes in soil 429 

parameters and vegetation within the landscape that were well captured by the measured soil parameters and 430 

Sentinel-2-derived indices in the prediction models. The higher soil moisture, mineral nitrogen, and vegetation cover 431 

observed during the summer growing season enhanced the respiration rates (SR/ER_CO2) and N2O emissions, 432 

particularly in arable ecosystems, which were flux hot spots for both gases. Root respiration of growing plants can 433 

also enhance N2O production through denitrification by creating anaerobic conditions and supplying labile exudates 434 

to denitrifying microbes (Butterbach-Bahl & Dannenmann, 2011; Malique et al., 2019). Previous studies have shown 435 

that higher mineral nitrogen and soil moisture content can enhance N2O production in soils through an increased 436 

supply of substrates and the creation of anaerobic conditions that enhance denitrification rates (Barton et al., 1999; 437 

Ciarlo et al., 2007; Butterbach-Bahl et al., 2013). The lower CH4 uptake rates in summer can be primarily explained 438 

by the observed higher soil moisture content, which has been previously reported to hinder CH4 oxidation by slowing 439 

down gas (atmospheric CH4) diffusion in soils (Le Mer & Roger, 2001). 440 

The high-resolution (1 m pixel size) scaled-up fluxes could also identify detailed temporal patterns of the 441 

GHG fluxes across the landscape, thus, revealing trends that were otherwise undetectable in the aggregated measured 442 

(point) fluxes. To illustrate, parts of the landscape (24% and 37%) showed even opposite trends of higher N2O fluxes 443 

and lower CH4 uptake rates in autumn, and these areas were predominantly in the mixed forest ecosystem. Such fine-444 

scale patterns of GHG fluxes result from land use-specific local effects depending on the season. For example, 445 

decaying fallen leaves during autumn can favor denitrification in forest soils by increasing carbon and mineral N 446 

availability (e.g., Groffman & Tiedje, 1989), which may not be true for grassland or arable ecosystems due to 447 

harvesting and mowing. The higher CH4 uptake rates in summer could be due to warmer summer temperatures 448 

leading to drier, more aerated forest soils that promote CH4 oxidation (Steinkamp et al., 2000).For example, decaying 449 

fallen leaves during autumn can favor denitrification in forest soils but not in grassland or arable ecosystems. The 450 

higher CH4 uptake rates in summer could be due to the increased exposure of some forest soils to the sun leading to 451 

drier and warmer soils that promote CH4 oxidation (Steinkamp et al., 2000). This finding is supported by the 452 

importance of aspect as a predictor of landscape CH4 fluxes in the forest ecosystem, which influences the amount of 453 

incoming radiation an area receives. 454 

4.3 Importance of hot spots and cold spots of landscape-scale GHG fluxes 455 

The high spatial resolution of our predicted GHG fluxes enabled the identification of areas across the 456 

landscape that functioned as hot spots (of soil CH4 uptake, SR/ER_CO2, and N2O) or cold spots of soil CH4 uptake. 457 

Based on field observations and analyses of important predictor variables, the existence of these hot and cold spots 458 

was primarily driven by human activities such as fertilizer application, crop growing and tillage, and landscape 459 

environmental parameters related to seasonality and proximity to riparian areas. This finding is supported by the 460 

primary association of the SR/ER_CO2 and N2O hot spots and CH4 uptake cold spots within arable ecosystems since 461 
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these systems showed higher soil mineral nitrogen concentrations than grassland and forest soils. The hot spots of 462 

SR/ER_CO2 and N2O observed on the grassland ecosystem can be attributed to the primary location of grasslands 463 

along the riparian areas. Increased soil moisture values and higher soil C contents, key characteristics, a key 464 

characteristic of the riparian regions, have also been reported to drive elevated soil GHG fluxes (Kaiser et al., 2018; 465 

Vainio et al., 2021). 466 

Spatial hot spots of SR/ER_CO2 and N2O played a crucial role in determining total landscape fluxes, 467 

accounting for up to 42% of the total predicted landscape fluxes despite their relatively low (~16%) coverage area. 468 

Such high contributions suggest that failure to capture these hot spots results in large uncertainties in landscape GHG 469 

flux estimates. Overall, the contribution of the hot spot areas (of CO2, N2O, and CH4 emissions) to the landscape 470 

fluxes decreased in the order of N2O>CO2>CH4. This finding emphasizes the importance of increasing the spatial 471 

coverage of N2O measurements to include more hot spot areas, as they can introduce enormous uncertainty in 472 

landscape fluxes if not quantifiedThis finding emphasizes the importance of capturing the N2O hot spots and 473 

improving the spatial coverage of N2O measurements, as it can introduce enormous uncertainty in landscape fluxes. 474 

A similar finding emphasizing the importance of N2O flux heterogeneities has been concluded in a previous study, 475 

which recorded more sampling locations required for improved N2O flux estimates than CO2 and CH4 at a landscape 476 

scale (Wangari et al., 2022). 477 

Identifying common patches with elevated emissions of the all three GHGs can inform priority areas for 478 

implementing localized mitigation measures within a landscape. These common patches covered only 1.5% of our 479 

landscape (~0.2 km2) and had the highest GHG fluxes contributing around 5%, 1%, and 8% of the landscape CO2, 480 

CH4, and N2O emissions. The location of these patches primarily (99.9%) on arable land emphasized the significant 481 

role of focusing on mitigating GHG fluxes from arable soils. Because most of the common GHG hot spots in the 482 

arable soils were also in areas with high water content, mitigation strategies that aim to adjust the fertilizer 483 

application rates at specific areas holding more water may successfully lower the emissions (e.g., Hassan et al., 484 

2022). The mitigation strategies may include adjusting the fertilizer application rates, especially in specific areas that 485 

hold more water, probably due to topographical or soil conditions (e.g., Hassan et al., 2022). This finding is further 486 

supported by the high soil moisture content measured at the sampling sites within the common patches of elevated 487 

GHG fluxes. In contrast to hot spot regions of elevated GHG emissions, CH4 uptake hot spots inform future 488 

mechanisms for leveraging the GHG sink ability of soils, such as expanding local forests. This finding is supported 489 

by uptake hot spots identified on forest soils in this study, offsetting 8% of the total landscape CH4 flux. The 490 

expansion of forested areas will also likely have a much higher high mitigation impact via CO2 sequestration. 491 

Although some of the above strategies are currently applied at broader scales (1 km2), localized mitigation strategies 492 

may be required at smaller scales (<100 m2), especially at highly heterogeneous landscapes with a high variability of 493 

agricultural practices. We also found significant shifts in the geo-locations of hotspot regions between summer and 494 

autumn, suggesting that seasonal changes effects ofin land management (e.g., fertilization, harvesting, and residue 495 

management) and soil conditions may also lead to a temporal expansion or contraction of the hot spot regions. This 496 

finding further emphasizes the need for time-based mitigation strategies, such as considering fertilizer application 497 
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times, which not only target the spatial hot spots but also consider the temporal patterns that result in peak emissions 498 

(e.g., Wagner-Riddle et al., 2020).  499 

4.4 Comparison of upscaling approaches  500 

Contrary to the area-weighted upscaling approach of spatial aggregation of chamber fluxes (Webster et al., 501 

2008; Molodovskaya et al., 2011; Rosenstock et al., 2016), random forest modeling allowed us to estimate the entire 502 

spatial distributions of the fluxes at high spatial resolution (1 m pixel size), capturing both cold spots and hot spots. 503 

In agreement with our hypotheses, the landscape fluxes were either over or under-estimated by the area-weighted 504 

average approach compared to the RF modeling approach. The overestimated landscape CO2 and N2O fluxes by the 505 

area-weighted average approach of up to 50% during the peak summer season suggest an overrepresentation of the 506 

high fluxes measured at most of the sampling points, resulting in elevated mean and upscaled fluxes.The 507 

overestimated landscape CO2 and N2O fluxes by up to 50% during the peak summer season suggest an 508 

overrepresentation of the high fluxes measured at most of the sampling points, resulting in elevated mean and 509 

upscaled fluxes. Furthermore, landscape CH4 uptake rates were overestimated by the area-weighted average 510 

approach during the peak autumn season. Previous studies have also observed a similar trend of elevated mean CH4 511 

uptake rates at measured sites, which they attributed to the over-representation of high uptake rates during the peak 512 

uptake seasons (Warner et al., 2019). Conversely, the underestimation of CO2, N2O, and CH4 uptake by the area-513 

weighted average approach, especially on arable soils, coincided with the low flux season, implying reduced mean 514 

fluxes due to the overrepresentation of the low fluxes. An alternative explanation of the differences in landscape flux 515 

estimates from both approaches could be the underestimation of high fluxes by the RF models, which we also found 516 

in our study. However, the landscape means of RF predicted and measured fluxes from 30% of our sampled sites 517 

were primarily similar (Figure A1 in Appendices), suggesting that the lack of spatial representation of all hot and 518 

cold spots by the area-weighted mean approach rather than the inability of the RF models to reproduce high values 519 

accounted for the findings above. 520 

Collectively, our results illustrated that the representativeness of landscape fluxes using aggregated chamber 521 

fluxes might be influenced by the spatial and temporal heterogeneity of the fluxes. This finding aligns with previous 522 

results on the required number of chamber measurement locations for reliable landscape fluxes that varied with land 523 

use and season (Warner et al., 2019; Wangari et al., 2022). The high (50%) overestimation of landscape N2O fluxes 524 

suggested the higher sensitivity of reliably estimating N2O fluxes using the (aggregated means) conventional method. 525 

Previous studies have also emphasized the importance of N2O fluxes in constraining uncertainties in landscape flux 526 

quantification (e.g., Wangari et al., 2022). Compared to the suggested way of lowering landscape-scale flux 527 

uncertainties in the conventional estimates by increasing the number of chamber measurements within a landscape 528 

(Wangari et al., 2022), the modeling approach can be a less resource-intensive alternative.  529 

Combining high-resolution remote sensing data and measured soil parameters to upscale the chamber fluxes 530 

reduced the biases and the aforementioned landscape-scale flux uncertainties. The reduced uncertainties in the 531 

modeled landscape fluxes can be attributed to the relation of multiple underlying controls of soil GHG fluxes, which 532 

have high seasonal and spatial variability. Remote sensing datasets have unlimited spatial extents with high spatial 533 
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resolution and thus allowing reliable prediction of spatially continuous fluxes that can capture the cold and hot spots 534 

over different seasons across heterogeneous landscapes (Warner et al., 2019; Räsänen et al., 2021). This study's high 535 

spatial resolution upscaling (1 m pixel) enabled capturing small-scale variabilities in GHG fluxes within short 536 

distances, which would have been missed with coarser resolution upscaling. Upscaling at a finer resolution was 537 

especially relevant due to the heterogeneous nature of our study landscape, related to different land uses, soil types, 538 

and slope positions.  539 

It is noteworthy that the applicability of this upscaling approach largely depends on the availability of 540 

spatially extensive chamber measurements. In this study, the 70% modeling dataset represented data from ~20 541 

stratified chamber locations per km2 on the arable land and ~16 chambers per km2 in the forest. These number of 542 

chamber measurement locations are within the range of those recommended (29 for arable and 13 for forest) by 543 

Wangari et al. (2022) for accurate quantification of landscape GHG fluxes. Based on these findings, these chamber 544 

numbers may be adoptable to other studies looking to upscale GHG fluxes using a combination of chamber 545 

measurements and remotely-sensed data, but this will highly depend on the level of similarities in landscape 546 

properties with our study.  547 

5. Conclusions 548 

 This study demonstrated the potential of improved prediction performance when combining field-based 549 

measurements of soil parameters with remotely-sensed data in scaling up flux (chamber) measurements from 550 

stratified sites. Among the remotely-sensed predictors, Sentinel-2 indices played a more significant role than DEM-551 

derived attributes in upscaling the GHG fluxes across our relatively flat landscape terrain. The high-resolution (1 m 552 

pixel size) scaled-up fluxes effectively revealed fine-scale (within a few meters) hot and cold spots of GHG fluxes 553 

across a mixed land use landscape in summer and autumn. The N2O hot spots were more significant sources of 554 

GHGs as they contributed 42% of the landscape N2O fluxes compared to SR/ER_CO2 and CH4 emission hotspots, 555 

which accounted for 29% and 2% of the landscape CO2 and CH4 emissions, respectively. Arable soils, which had 556 

higher N2O fluxes, also had patches with elevated emissions of the three GHGs, especially in areas with high soil 557 

moisture content. These findings emphasize the importance of targeted local mitigation measures, especially for 558 

agricultural soils, in mitigating landscape GHG fluxes. Compared to RF upscaling, the area-weighted average 559 

approach lacked detailed spatiotemporal patterns of landscape fluxes, which can prevent targeted mitigation 560 

measures to some extent.   561 

  While we identified hot and cold spots of soil GHG flux across the Schwingbach landscape through RF 562 

modeling, the entire exercise was limited to two measuring campaigns of a few days in two seasons (summer and 563 

autumn). For this reason, it is still unclear whether these hot and cold spots persist throughout the year and their 564 

overall contribution to the annual landscape GHG flux estimates. Future studies should, therefore, aim at increasing 565 

the temporal resolution of similar spatially extensive measurements to at least monthly scales, which, when 566 

combined with remotely-sensed data, may be able to create similar landscape flux maps and identify the contribution 567 

of GHG hot and cold spots to annual estimates. 568 
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Appendices 570 

Appendix A: Figures 571 

 572 

Figure A1: Bar graphs showing the mean fluxes (±SE) predicted using remote sensing (RS), soil properties (SP), and combined 573 
data (CD) and the measured fluxes at the sampling sites in the 30% model test dataset. The upper-case and lower-case letters indicate 574 
significant differences (p<0.05) in the mean fluxes in the different seasons and across the measured and predicted fluxes.   575 
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 576 

Figure A2: Map showing the common hotspot regions of the three GHG fluxes and the location of the measured sampling points 577 
within these recurrent hotspots (Satellite Image downloaded from Google Maps). 578 

 579 

Figure A3: Clover (Trifolium) on grassland ecosystems. 580 
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 581 

Figure A4: Maps showing the hot spots of the (a) summer and (b) autumn seasons and (c) the percentage change in the area coverage 582 
of the hot spots. These regions were defined using each season's specific hot spot threshold. 583 
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Appendix B: Tables 584 

Table B1 a, b, c: Cross-validation results of different models developed for SR/ER-CO2 fluxes in 1a) forest, 1b) grassland and 1c) 585 
arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  586 
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587 

B1a): Forest SR_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 1.77 0.44 1.56

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 1.77 0.43 1.56

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 1.76 0.44 1.56

Elevation, TPI, NDVI, GNDVI, NDMI 2 1.75 0.46 1.54

Elevation, NDVI, GNDVI, NDMI 2 1.73 0.48 1.54

NDVI, GNDVI, NDMI 2 1.76 0.45 1.55

NDVI, GNDVI 2 1.81 0.42 1.58

NDVI 2 1.88 0.36 1.63

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 1.71 0.50 1.52

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 7 1.70 0.51 1.51

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 7 1.70 0.51 1.51

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 6 1.69 0.52 1.50

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SN, sand, silt 6 1.69 0.52 1.50

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 1.69 0.52 1.50

Moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 1.70 0.51 1.51

Moisture, pH, NH4-N, DOC, TDN, sand, silt 4 1.69 0.52 1.51

Moisture, pH, NH4-N, DOC, TDN, silt 2 1.68 0.53 1.51

Moisture, pH, NH4-N, DOC, TDN 2 1.70 0.51 1.52

Moisture, pH, NH4-N, DOC 2 1.72 0.49 1.53

Moisture, NH4-N, DOC 2 1.77 0.44 1.56

Moisture, NH4-N 2 1.77 0.44 1.56

NH4-N 2 1.82 0.41 1.62

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1.67 0.54 1.49

Slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.67 0.54 1.49

Slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.66 0.55 1.49

Aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 1.67 0.55 1.49

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 1.67 0.55 1.48

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 1.66 0.56 1.48

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 1.65 0.58 1.48

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 8 1.65 0.56 1.48

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 1.64 0.59 1.47

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, silt 2 1.63 0.60 1.47

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, SN, silt 2 1.63 0.60 1.46

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 1.63 0.60 1.46

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 1.63 0.59 1.47

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, silt 2 1.63 0.59 1.47

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN 2 1.64 0.57 1.48

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC, TDN 2 1.65 0.57 1.48

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC 2 1.64 0.57 1.48

NDVI, GNDVI, moisture, NH4-N, DOC 2 1.67 0.55 1.49

NDVI, GNDVI, moisture, NH4-N 3 1.67 0.55 1.49

NDVI, moisture, NH4-N 3 1.68 0.53 1.50

NDVI, NH4-N 2 1.69 0.54 1.50

NH4-N 2 1.82 0.41 1.62

Site 

measured 

soil 

parameters

10-fold cross validation

 Remote 

sensing 
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B1a): Forest SR_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.57 0.44 0.45

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.57 0.43 0.45

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.57 0.44 0.44

Elevation, TPI, NDVI, GNDVI, NDMI 2 0.56 0.46 0.43

Elevation, NDVI, GNDVI, NDMI 2 0.55 0.48 0.43

NDVI, GNDVI, NDMI 2 0.56 0.45 0.44

NDVI, GNDVI 2 0.59 0.42 0.45

NDVI 2 0.63 0.36 0.49

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.54 0.50 0.42

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 7 0.53 0.51 0.41

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 7 0.53 0.51 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 6 0.52 0.52 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SN, sand, silt 6 0.52 0.52 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 0.53 0.52 0.41

Moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 0.53 0.51 0.41

Moisture, pH, NH4-N, DOC, TDN, sand, silt 4 0.53 0.52 0.41

Moisture, pH, NH4-N, DOC, TDN, silt 2 0.52 0.53 0.41

Moisture, pH, NH4-N, DOC, TDN 2 0.53 0.51 0.42

Moisture, pH, NH4-N, DOC 2 0.54 0.49 0.42

Moisture, NH4-N, DOC 2 0.57 0.44 0.44

Moisture, NH4-N 2 0.57 0.44 0.45

NH4-N 2 0.60 0.41 0.48

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.51 0.54 0.40

Slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.51 0.54 0.40

Slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.51 0.55 0.40

Aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.51 0.55 0.40

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.51 0.55 0.40

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 0.51 0.56 0.39

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 0.50 0.58 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 8 0.50 0.56 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 0.49 0.59 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, SN, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 0.49 0.59 0.38

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, silt 2 0.49 0.59 0.39

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN 2 0.50 0.57 0.39

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC, TDN 2 0.50 0.57 0.39

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC 2 0.50 0.57 0.39

NDVI, GNDVI, moisture, NH4-N, DOC 2 0.51 0.55 0.40

NDVI, GNDVI, moisture, NH4-N 3 0.51 0.55 0.40

NDVI, moisture, NH4-N 3 0.52 0.53 0.41

NDVI, NH4-N 2 0.52 0.54 0.41

NH4-N 2 0.60 0.41 0.48

Site 

measured 

soil 

parameters

10-fold cross validation

 Remote 

sensing 
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589 

B1b): Grassland SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 1.87 0.47 1.62

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 1.85 0.48 1.61

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 1.85 0.48 1.60

Elevation, aspect, NDVI, GNDVI, NDMI 2 1.84 0.49 1.59

Elevation, NDVI, GNDVI, NDMI 2 1.85 0.48 1.59

NDVI, GNDVI, NDMI 2 1.88 0.46 1.61

NDVI, GNDVI 2 1.95 0.41 1.67

GNDVI 2 2.06 0.36 1.72

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 1.76 0.56 1.53

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 1.75 0.57 1.53

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 1.75 0.57 1.53

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 6 1.76 0.56 1.53

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 6 1.75 0.57 1.53

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 5 1.75 0.57 1.53

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN 5 1.76 0.56 1.54

Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 1.78 0.55 1.55

Moisture, NH4-N, TDN, SOC, SN, CN 2 1.79 0.54 1.56

Moisture, NH4-N, TDN, SN, CN 2 1.78 0.55 1.55

Moisture, NH4-N, TDN, CN 2 1.79 0.54 1.55

Moisture, NH4-N, TDN 2 1.79 0.54 1.55

Moisture, NH4-N 2 1.83 0.51 1.60

Moisture 2 1.88 0.46 1.65

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1.74 0.58 1.51

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.73 0.59 1.50

Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.73 0.59 1.50

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 1.73 0.59 1.50

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 10 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, clay 7 1.73 0.59 1.50

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 7 1.74 0.58 1.51

Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN, clay 6 1.73 0.59 1.51

Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 1.74 0.59 1.51

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 1.75 0.58 1.52

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, CN 2 1.74 0.59 1.51

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, CN 2 1.73 0.59 1.50

NDVI, GNDVI, moisture, NH4-N, TDN, CN 2 1.73 0.59 1.51

NDVI, GNDVI, moisture, NH4-N, CN 2 1.74 0.58 1.52

NDVI, GNDVI, moisture, NH4-N 2 1.74 0.59 1.53

GNDVI, moisture, NH4-N 2 1.76 0.57 1.54

GNDVI, moisture 2 1.84 0.50 1.59

Moisture 2 1.88 0.46 1.65

10-fold cross validation
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B1b): Grassland SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.62 0.47 0.48

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 0.62 0.48 0.48

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.62 0.48 0.47

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.61 0.49 0.47

Elevation, NDVI, GNDVI, NDMI 2 0.62 0.48 0.46

NDVI, GNDVI, NDMI 2 0.63 0.46 0.48

NDVI, GNDVI 2 0.67 0.41 0.51

GNDVI 2 0.72 0.36 0.54

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.56 0.56 0.43

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 0.56 0.57 0.43

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 0.56 0.57 0.43

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 6 0.56 0.56 0.43

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 6 0.56 0.57 0.43

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 5 0.56 0.57 0.42

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN 5 0.57 0.56 0.43

Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 0.58 0.55 0.44

Moisture, NH4-N, TDN, SOC, SN, CN 2 0.58 0.54 0.44

Moisture, NH4-N, TDN, SN, CN 2 0.58 0.55 0.44

Moisture, NH4-N, TDN, CN 2 0.58 0.54 0.44

Moisture, NH4-N, TDN 2 0.58 0.54 0.44

Moisture, NH4-N 2 0.61 0.51 0.47

Moisture 2 0.63 0.46 0.50

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.55 0.58 0.41

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.55 0.59 0.41

Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.55 0.59 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.55 0.59 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 10 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 0.55 0.59 0.40

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, clay 7 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 7 0.55 0.58 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN, clay 6 0.55 0.59 0.41

Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 0.55 0.59 0.41

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 0.56 0.58 0.42

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, CN 2 0.55 0.59 0.41

NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, CN 2 0.55 0.59 0.41

NDVI, GNDVI, moisture, NH4-N, TDN, CN 2 0.55 0.59 0.41

NDVI, GNDVI, moisture, NH4-N, CN 2 0.55 0.58 0.42

NDVI, GNDVI, moisture, NH4-N 2 0.55 0.59 0.42

GNDVI, moisture, NH4-N 2 0.56 0.57 0.43

GNDVI, moisture 2 0.61 0.50 0.46

Moisture 2 0.63 0.46 0.50

10-fold cross validation
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591 

B1c): Arable SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 1.72 0.75 1.55

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 7 1.72 0.75 1.55

Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 1.72 0.75 1.55

Elevation, aspect, NDVI, GNDVI, NDMI 3 1.73 0.75 1.55

Elevation, NDVI, GNDVI, NDMI 2 1.76 0.73 1.58

NDVI, GNDVI, NDMI 2 1.80 0.72 1.59

NDVI, GNDVI 2 1.82 0.71 1.61

GNDVI 2 1.83 0.71 1.63

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 2.00 0.59 1.76

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 13 1.99 0.60 1.76

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 1.97 0.61 1.74

Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, sand, silt, clay 11 1.96 0.61 1.74

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, silt, clay 10 1.96 0.61 1.74

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, clay 9 1.96 0.61 1.74

Moisture, pH, NH4-N, SOC, SN, CN, sand, clay 8 1.95 0.62 1.72

Moisture, pH, NH4-N, SN, CN, sand, clay 7 1.94 0.62 1.72

Moisture, pH, NH4-N, SN, CN, sand 6 1.94 0.62 1.71

Moisture, NH4-N, SN, CN, sand 5 1.93 0.63 1.70

Moisture, SN, CN, sand 4 1.93 0.63 1.70

Moisture, SN, CN 3 1.88 0.66 1.67

Moisture, SN 2 1.94 0.63 1.70

Moisture 2 2.16 0.50 1.89

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1.70 0.77 1.53

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.70 0.77 1.53

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.70 0.77 1.53

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 1.70 0.77 1.53

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 10 1.70 0.77 1.53

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 17 1.69 0.77 1.52

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, clay 16 1.68 0.77 1.52

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, clay 8 1.68 0.78 1.51

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand 8 1.68 0.78 1.51

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, SOC, SN, sand 7 1.68 0.78 1.51

Elevation, aspect, NDVI, GNDVI, NDMI,  temperature, moisture, pH, NH4-N, SOC, SN, sand 7 1.68 0.78 1.51

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, SOC, SN, sand 6 1.67 0.78 1.50

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, SOC, SN, sand 6 1.67 0.78 1.50

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN, sand 5 1.66 0.78 1.50

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN 5 1.66 0.79 1.49

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SN 7 1.66 0.79 1.50

Elevation, aspect, NDVI, GNDVI, moisture, SN 2 1.64 0.80 1.48

Elevation, NDVI, GNDVI, moisture, SN 2 1.67 0.79 1.51

NDVI, GNDVI, moisture, SN 2 1.68 0.78 1.51

NDVI, GNDVI, moisture 2 1.72 0.75 1.54

NDVI, GNDVI 2 1.82 0.71 1.61

GNDVI 2 1.83 0.71 1.63

Site 

measured 

soil 

parameters

10-fold cross validation
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B1c): Arable SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 0.54 0.75 0.44

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 7 0.54 0.75 0.44

Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 0.54 0.75 0.44

Elevation, aspect, NDVI, GNDVI, NDMI 3 0.55 0.75 0.44

Elevation, NDVI, GNDVI, NDMI 2 0.57 0.73 0.46

NDVI, GNDVI, NDMI 2 0.59 0.72 0.46

NDVI, GNDVI 2 0.60 0.71 0.47

GNDVI 2 0.60 0.71 0.49

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 0.69 0.59 0.57

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 13 0.69 0.60 0.56

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 0.68 0.61 0.56

Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, sand, silt, clay 11 0.67 0.61 0.55

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, silt, clay 10 0.67 0.61 0.56

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, clay 9 0.67 0.61 0.55

Moisture, pH, NH4-N, SOC, SN, CN, sand, clay 8 0.67 0.62 0.54

Moisture, pH, NH4-N, SN, CN, sand, clay 7 0.66 0.62 0.54

Moisture, pH, NH4-N, SN, CN, sand 6 0.66 0.62 0.54

Moisture, NH4-N, SN, CN, sand 5 0.66 0.63 0.53

Moisture, SN, CN, sand 4 0.66 0.63 0.53

Moisture, SN, CN 3 0.63 0.66 0.51

Moisture, SN 2 0.66 0.63 0.53

Moisture 2 0.77 0.50 0.64

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.53 0.77 0.43

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.53 0.77 0.43

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.53 0.77 0.43

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.53 0.77 0.43

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 10 0.53 0.77 0.42

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 17 0.52 0.77 0.42

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, clay 16 0.52 0.77 0.42

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, clay 8 0.52 0.78 0.42

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand 8 0.52 0.78 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, SOC, SN, sand 7 0.52 0.78 0.41

Elevation, aspect, NDVI, GNDVI, NDMI,  temperature, moisture, pH, NH4-N, SOC, SN, sand 7 0.52 0.78 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, SOC, SN, sand 6 0.51 0.78 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, SOC, SN, sand 6 0.51 0.78 0.41

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN, sand 5 0.51 0.78 0.40

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN 5 0.51 0.79 0.40

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SN 7 0.51 0.79 0.40

Elevation, aspect, NDVI, GNDVI, moisture, SN 2 0.49 0.80 0.39

Elevation, NDVI, GNDVI, moisture, SN 2 0.51 0.79 0.41

NDVI, GNDVI, moisture, SN 2 0.52 0.78 0.41

NDVI, GNDVI, moisture 2 0.55 0.75 0.43

NDVI, GNDVI 2 0.60 0.71 0.47

GNDVI 2 0.60 0.71 0.49
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Table B2 a, b, c: Cross-validation results of different models developed for all (positive and negative) CH4 fluxes in 2a) forest, 2b) 593 
grassland and 2c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors 594 
was implemented.  595 

 596 

 

 

 

 

 

B2a): Forest CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 45.35 0.13 36.00

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 45.26 0.13 35.97

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 45.07 0.15 35.75

Elevation, aspect, NDVI, GNDVI, NDMI 2 44.63 0.15 35.00

Aspect, NDVI, GNDVI, NDMI 2 44.79 0.16 35.37

Aspect, NDVI, GNDVI 2 46.38 0.14 36.15

Aspect, NDVI 2 47.90 0.12 37.92

Aspect 2 54.06 0.07 41.44

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 44.79 0.16 34.46

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 2 44.65 0.16 34.36

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 2 44.52 0.17 34.28

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 2 44.67 0.16 34.36

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 44.54 0.16 34.22

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, sand, silt 2 43.98 0.18 33.93

Temperature, moisture, pH, NO3-N, DOC, SOC, sand, silt 2 43.64 0.19 33.73

Temperature, moisture, pH, NO3-N, DOC, sand, silt 2 43.46 0.19 33.49

Temperature, moisture, pH, NO3-N, sand, silt 2 43.07 0.20 33.20

Temperature, moisture, pH, NO3-N, silt 2 44.29 0.16 33.87

Temperature, moisture, pH, NO3-N 2 45.84 0.14 35.18

Temperature, moisture, NO3-N 2 45.31 0.15 35.40

Moisture, NO3-N 2 47.94 0.12 36.80

Moisture 2 51.25 0.08 40.58

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 44.31 0.17 34.18

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.37 0.17 34.29

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.23 0.18 34.15

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.05 0.19 34.05

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 43.90 0.19 33.99

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 43.80 0.19 33.88

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt, clay 2 43.60 0.20 33.74

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.64 0.20 33.88

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.51 0.20 33.78

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.48 0.20 33.79

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, CN, sand, silt 2 43.03 0.22 33.48

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, CN, sand, silt 2 42.76 0.22 33.17

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, CN, silt 2 43.24 0.20 33.49

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, silt 2 42.81 0.21 33.41

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, silt 2 42.49 0.23 33.30

Aspect, GNDVI, temperature, moisture, pH, NO3-N, silt 2 42.71 0.22 33.42

Aspect, temperature, moisture, pH, NO3-N, silt 2 43.29 0.20 33.83

Aspect, temperature, moisture, pH, NO3-N 2 43.92 0.19 34.69

Aspect, temperature, moisture, NO3-N 2 43.50 0.21 34.58

Temperature, moisture, NO3-N 2 45.31 0.15 35.40

Moisture, NO3-N 2 47.94 0.12 36.80

Moisture 2 51.25 0.08 40.58

10-fold cross validation
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B2b): Grassland CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 28.88 0.15 20.98

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 28.73 0.16 20.97

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 29.19 0.15 21.54

Elevation, TPI, NDVI, GNDVI, NDMI 2 28.85 0.14 21.56

Elevation, TPI, NDVI, NDMI 2 29.23 0.15 21.53

Elevation, TPI, NDMI 2 30.08 0.14 22.04

Elevation, NDMI 2 30.46 0.13 22.57

Elevation 2 30.72 0.13 22.84

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 26.98 0.22 19.52

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 7 26.96 0.22 19.42

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 7 26.86 0.23 19.38

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 6 26.66 0.23 19.20

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, CN, clay 6 26.68 0.23 19.28

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 5 26.60 0.24 19.16

Temperature, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.27 0.25 19.00

Moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.16 0.26 19.01

Moisture, pH, NO3-N, DOC, CN, clay 2 25.59 0.29 18.62

Moisture, pH, NO3-N, DOC, CN 2 26.27 0.25 19.58

Moisture, pH, DOC, CN 2 26.81 0.23 19.51

Moisture, DOC, CN 2 26.96 0.24 20.19

Moisture, CN 2 28.73 0.23 21.43

Moisture 2 30.95 0.14 23.49

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 26.91 0.22 19.51

Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 26.89 0.22 19.42

Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 26.74 0.23 19.36

Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 10 26.71 0.23 19.30

Elevation, slope, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.56 0.24 19.22

Elevation, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.68 0.23 19.39

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.75 0.22 19.36

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 2 26.62 0.23 19.29

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.77 0.22 19.35

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.65 0.23 19.27

Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.69 0.22 19.39

Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.45 0.24 19.29

Elevation, TPI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.30 0.24 19.14

TPI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.33 0.25 19.16

TPI, NDMI, moisture, pH, NO3-N, DOC, CN, clay 2 25.91 0.27 18.85

TPI, NDMI, moisture, pH, NO3-N, CN, clay 2 25.83 0.27 18.62

TPI, moisture, pH, NO3-N, CN, clay 2 25.32 0.31 18.18

Moisture, pH, NO3-N, CN, clay 2 25.38 0.30 18.29

Moisture, pH, NO3-N, CN 2 26.65 0.25 19.61

Moisture, pH, NO3-N 2 27.60 0.19 20.52

Moisture, pH 2 29.67 0.14 22.56

Moisture 2 30.95 0.14 23.49

10-fold cross validation
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B2c): Arable CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 48.58 0.28 33.46

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 48.10 0.28 33.16

Elevation, slope, aspect, NDVI, GNDVI, NDMI 2 48.79 0.29 33.46

Elevation, aspect, NDVI, GNDVI, NDMI 2 49.56 0.29 33.54

Aspect, NDVI, GNDVI, NDMI 2 47.59 0.25 32.46

Aspect, GNDVI, NDMI 2 48.56 0.26 33.18

GNDVI, NDMI 2 50.79 0.35 34.72

NDMI 2 52.71 0.30 36.62

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 45.46 0.24 32.35

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 45.74 0.22 32.67

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, silt, clay 2 45.73 0.21 32.67

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 45.79 0.21 32.53

Temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.74 0.21 33.25

Temperature, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.81 0.21 33.69

pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.64 0.23 33.38

pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 45.99 0.23 33.22

Bulk density, NO3-N, DOC, SOC, CN, clay 2 45.03 0.27 31.97

Bulk density, NO3-N, DOC, SOC, CN 2 44.43 0.28 32.08

Bulk density, NO3-N, DOC, CN 2 44.16 0.25 31.82

NO3-N, DOC, CN 2 43.73 0.30 31.45

DOC, CN 2 44.51 0.29 32.65

CN 2 45.77 0.28 34.09

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.85 0.23 33.13

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.91 0.21 33.19

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.60 0.22 32.99

Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.83 0.22 33.03

Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, clay 2 46.87 0.23 33.01

Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 47.11 0.25 33.25

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 46.86 0.23 32.89

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 47.79 0.26 33.60

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.86 0.25 33.69

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.62 0.25 33.38

Elevation, aspect, NDVI, GNDVI, NDMI, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.28 0.24 33.32

Elevation, aspect, NDVI, GNDVI, NDMI, pH, bulk density, NO3-N, DOC, SOC, CN 2 46.41 0.22 32.75

Elevation, aspect, NDVI, GNDVI, NDMI, pH, NO3-N, DOC, SOC, CN 2 46.44 0.22 32.65

Elevation, aspect, NDVI, GNDVI, NDMI, pH, NO3-N, DOC, CN 2 46.67 0.23 32.67

Elevation, aspect, GNDVI, NDMI, pH, NO3-N, DOC, CN 2 46.47 0.23 32.76

Elevation, aspect, GNDVI, NDMI, pH, NO3-N, CN 2 47.43 0.25 33.18

Elevation, aspect, GNDVI, NDMI, pH, CN 2 47.10 0.25 32.74

Elevation, aspect, GNDVI, NDMI, CN 3 47.49 0.26 32.67

Aspect, GNDVI, NDMI, CN 2 46.05 0.23 31.87

GNDVI, NDMI, CN 2 47.59 0.31 33.30

NDMI, CN 2 47.29 0.24 33.50

CN 2 45.77 0.28 34.09

Site 

measured 

soil 

parameters

10-fold cross validation
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Table B3 a, b, c: Cross-validation results of different models developed for all (positive and negative) N2O fluxes in 3a) forest, 3b) 599 
grassland and 3c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors 600 
was implemented.  601 
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B3a): Forest N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.47 0.11 18.65

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.47 0.11 18.65

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 18.48 0.11 18.65

Elevation, aspect, NDVI, GNDVI, NDMI 2 18.46 0.09 18.63

Aspect, NDVI, GNDVI, NDMI 2 18.44 0.12 18.61

NDVI, GNDVI, NDMI 2 18.46 0.13 18.62

NDVI, GNDVI 2 18.43 0.11 18.61

GNDVI 2 18.41 0.12 18.59

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.12 18.66

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.12 18.66

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 18.49 0.13 18.67

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.14 18.67

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, silt 2 18.49 0.12 18.66

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, silt 2 18.49 0.13 18.67

Temperature, moisture, NO3-N, NH4-N, TDN, SN, silt 2 18.49 0.15 18.67

Temperature, moisture, NO3-N, NH4-N, TDN, SN 2 18.49 0.15 18.66

Temperature, moisture, NO3-N, NH4-N, TDN 2 18.48 0.15 18.66

Temperature, moisture, NO3-N, NH4-N 2 18.48 0.13 18.65

Moisture, NO3-N, NH4-N 2 18.49 0.15 18.65

Moisture, NO3-N 2 18.43 0.11 18.60

NO3-N 2 18.38 0.11 18.59

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.11 18.67

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.13 18.67

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.12 18.67

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.12 18.67

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.49 0.12 18.67

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 18.49 0.12 18.67

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.12 18.67

Elevation, aspect, NDVI, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67

Elevation, aspect, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.50 0.13 18.67

Elevation, aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN, silt 2 18.49 0.13 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN 2 18.49 0.14 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN 2 18.49 0.15 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, TDN, SN 2 18.49 0.16 18.67

Aspect, temperature, moisture, NO3-N, NH4-N, TDN 2 18.48 0.16 18.66

Temperature, moisture, NO3-N, NH4-N, TDN 2 18.48 0.15 18.66

Temperature, moisture, NO3-N, NH4-N 2 18.48 0.13 18.65

Moisture, NO3-N, NH4-N 2 18.49 0.15 18.65

Moisture, NO3-N 2 18.43 0.11 18.60

NO3-N 2 18.38 0.11 18.59

10-fold cross validation
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B3a): Forest N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.43 0.11 0.30

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.42 0.11 0.30

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.42 0.11 0.30

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.43 0.09 0.31

Aspect, NDVI, GNDVI, NDMI 2 0.44 0.12 0.33

NDVI, GNDVI, NDMI 2 0.43 0.13 0.32

NDVI, GNDVI 2 0.45 0.11 0.33

GNDVI 2 0.46 0.12 0.34

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 0.41 0.13 0.29

Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.14 0.29

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, silt 2 0.41 0.12 0.29

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, silt 2 0.41 0.13 0.29

Temperature, moisture, NO3-N, NH4-N, TDN, SN, silt 2 0.41 0.15 0.29

Temperature, moisture, NO3-N, NH4-N, TDN, SN 2 0.41 0.15 0.29

Temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.15 0.30

Temperature, moisture, NO3-N, NH4-N 2 0.42 0.13 0.30

Moisture, NO3-N, NH4-N 2 0.42 0.15 0.30

Moisture, NO3-N 2 0.45 0.11 0.33

NO3-N 2 0.48 0.11 0.34

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.11 0.28

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.13 0.28

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.28

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.28

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 0.41 0.12 0.29

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.12 0.29

Elevation, aspect, NDVI, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29

Elevation, aspect, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.28

Elevation, aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.28

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN, silt 2 0.41 0.13 0.28

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN 2 0.41 0.14 0.29

Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN 2 0.41 0.15 0.29

Aspect, temperature, moisture, NO3-N, NH4-N, TDN, SN 2 0.41 0.16 0.29

Aspect, temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.16 0.29

Temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.15 0.30

Temperature, moisture, NO3-N, NH4-N 2 0.42 0.13 0.30

Moisture, NO3-N, NH4-N 2 0.42 0.15 0.30

Moisture, NO3-N 2 0.45 0.11 0.33

NO3-N 2 0.48 0.11 0.34

10-fold cross validation
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B3b): Grassland N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 17.92 0.13 18.30

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 17.93 0.13 18.30

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 17.90 0.12 18.27

Elevation, aspect, NDVI, GNDVI, NDMI 2 17.90 0.14 18.29

Elevation, NDVI, GNDVI, NDMI 2 17.91 0.14 18.27

NDVI, GNDVI, NDMI 2 17.87 0.13 18.26

NDVI, NDMI 2 17.87 0.11 18.23

NDVI 2 17.81 0.11 18.16

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.95 0.12 18.35

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.95 0.12 18.36

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 17.96 0.15 18.37

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.97 0.15 18.38

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 17.97 0.16 18.38

Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, clay 2 17.97 0.15 18.36

Temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 17.97 0.16 18.36

Temperature, moisture, pH, NH4-N, SOC, CN, clay 2 18.01 0.19 18.38

Temperature, moisture, NH4-N, SOC, CN, clay 2 18.00 0.19 18.37

Moisture, NH4-N, SOC, CN, clay 2 17.99 0.18 18.35

Moisture, NH4-N, CN, clay 2 18.02 0.22 18.37

Moisture, NH4-N, clay 2 17.98 0.21 18.32

Moisture, clay 2 17.92 0.22 18.28

Moisture 2 17.96 0.22 18.30

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.14 18.36

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.16 18.37

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.16 18.37

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.15 18.37

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.15 18.37

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.97 0.16 18.37

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 17.98 0.17 18.39

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 18.00 0.19 18.40

NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.99 0.17 18.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 17.98 0.17 18.38

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, TDN, SOC, SN, CN, clay 2 17.99 0.18 18.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 17.99 0.19 18.38

NDVI, GNDVI, NDMI, temperature, moisture, NH4-N, SOC, SN, CN, clay 2 17.98 0.18 18.37

NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, SN, CN, clay 2 17.99 0.19 18.38

NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, CN, clay 2 18.01 0.20 18.38

NDVI, GNDVI, NDMI, moisture, SOC, CN, clay 2 18.01 0.20 18.38

NDVI, NDMI, moisture, SOC, CN, clay 2 18.02 0.21 18.38

NDVI, NDMI, moisture, CN, clay 2 18.03 0.23 18.38

NDVI,  moisture, CN, clay 3 18.05 0.26 18.38

NDVI,  moisture, clay 2 17.98 0.24 18.32

NDVI,  moisture 2 18.05 0.25 18.37

NDVI 2 17.81 0.11 18.16

Site 

measured 

soil 

parameters

10-fold cross validation
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sensing
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B3b): Grassland N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.73 0.13 0.53

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 0.73 0.13 0.53

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.74 0.12 0.55

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.74 0.14 0.54

Elevation, NDVI, GNDVI, NDMI 2 0.74 0.14 0.55

NDVI, GNDVI, NDMI 2 0.76 0.13 0.55

NDVI, NDMI 2 0.75 0.11 0.57

NDVI 2 0.78 0.11 0.61

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.72 0.12 0.50

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.72 0.12 0.50

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 0.71 0.15 0.49

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.71 0.15 0.48

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.71 0.16 0.49

Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, clay 2 0.71 0.15 0.49

Temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 0.71 0.16 0.49

Temperature, moisture, pH, NH4-N, SOC, CN, clay 2 0.69 0.19 0.48

Temperature, moisture, NH4-N, SOC, CN, clay 2 0.70 0.19 0.49

Moisture, NH4-N, SOC, CN, clay 2 0.70 0.18 0.50

Moisture, NH4-N, CN, clay 2 0.68 0.22 0.49

Moisture, NH4-N, clay 2 0.70 0.21 0.52

Moisture, clay 2 0.73 0.22 0.54

Moisture 2 0.71 0.22 0.53

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.14 0.49

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.15 0.49

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.15 0.49

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.70 0.17 0.48

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.69 0.19 0.47

NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.70 0.17 0.48

NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.70 0.17 0.48

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, TDN, SOC, SN, CN, clay 2 0.70 0.18 0.48

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 0.70 0.19 0.49

NDVI, GNDVI, NDMI, temperature, moisture, NH4-N, SOC, SN, CN, clay 2 0.70 0.18 0.49

NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, SN, CN, clay 2 0.70 0.19 0.48

NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, CN, clay 2 0.69 0.20 0.48

NDVI, GNDVI, NDMI, moisture, SOC, CN, clay 2 0.69 0.20 0.48

NDVI, NDMI, moisture, SOC, CN, clay 2 0.68 0.21 0.48

NDVI, NDMI, moisture, CN, clay 2 0.68 0.23 0.48

NDVI,  moisture, CN, clay 3 0.67 0.26 0.48

NDVI,  moisture, clay 2 0.71 0.24 0.52

NDVI,  moisture 2 0.67 0.25 0.49

NDVI 2 0.78 0.11 0.61

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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B3c): Arable N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 18.37 0.56 18.53

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 18.38 0.58 18.54

Elevation, aspect, TWI, NDVI, GNDVI, NDMI 2 18.39 0.58 18.55

Elevation, aspect, NDVI, GNDVI, NDMI 2 18.38 0.58 18.54

Elevation, NDVI, GNDVI, NDMI 4 18.37 0.57 18.53

Elevation, GNDVI, NDMI 2 18.36 0.57 18.53

GNDVI, NDMI 2 18.32 0.53 18.50

GNDVI 2 18.21 0.45 18.42

Tmperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 18.27 0.44 18.45

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 18.28 0.46 18.46

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 18.29 0.46 18.46

Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 11 18.30 0.48 18.47

Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 10 18.29 0.47 18.47

Moisture, pH, NO3-N, DOC, SOC, SN, CN, sand, silt 9 18.29 0.47 18.47

Moisture, NO3-N, DOC, SOC, SN, CN, sand, silt 8 18.29 0.46 18.46

Moisture, NO3-N, SOC, SN, CN, sand, silt 7 18.29 0.47 18.46

Moisture, NO3-N, SN, CN, sand, silt 6 18.30 0.48 18.47

Moisture, NO3-N, SN, CN, sand 2 18.29 0.47 18.47

Moisture, NO3-N, SN, CN 2 18.28 0.46 18.48

Moisture, SN, CN 2 18.22 0.41 18.43

Moisture, SN 2 18.22 0.41 18.43

Moisture 2 18.12 0.33 18.34

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 18.39 0.57 18.55

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 18.38 0.57 18.55

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 11 18.38 0.57 18.54

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 18.38 0.57 18.55

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 18.38 0.57 18.54

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 18.38 0.57 18.54

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 18.38 0.57 18.54

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 18.37 0.57 18.54

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 18.38 0.57 18.54

Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 18.38 0.57 18.54

NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 18.38 0.57 18.54

NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 6 18.38 0.57 18.54

NDVI, GNDVI, NDMI, moisture, NO3-N, DOC, TDN, SOC, SN, CN 6 18.37 0.56 18.54

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, SN, CN 2 18.38 0.57 18.54

NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN, CN 2 18.37 0.56 18.54

NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN 2 18.37 0.55 18.53

NDVI, GNDVI, NDMI, moisture, TDN, SN 2 18.38 0.57 18.54

NDVI, GNDVI, NDMI, moisture, SN 2 18.35 0.54 18.51

NDVI, GNDVI, NDMI, moisture 2 18.36 0.56 18.52

GNDVI, NDMI, moisture 2 18.32 0.52 18.49

GNDVI, NDMI 2 18.32 0.53 18.50

GNDVI 2 18.21 0.45 18.42

Site 
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soil 
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10-fold cross validation

Remote 

sensing



49 
  

 607 

 

 

 

 

 

 

 

 

 

B3c): Arable N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.49 0.56 0.39

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 0.48 0.58 0.38

Elevation, aspect, TWI, NDVI, GNDVI, NDMI 2 0.48 0.58 0.37

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.48 0.58 0.38

Elevation, NDVI, GNDVI, NDMI 4 0.49 0.57 0.38

Elevation, GNDVI, NDMI 2 0.49 0.57 0.39

GNDVI, NDMI 2 0.52 0.53 0.41

GNDVI 2 0.58 0.45 0.45

Tmperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.55 0.44 0.44

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 0.54 0.46 0.43

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 0.54 0.46 0.43

Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 11 0.53 0.48 0.42

Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 10 0.53 0.47 0.43

Moisture, pH, NO3-N, DOC, SOC, SN, CN, sand, silt 9 0.53 0.47 0.43

Moisture, NO3-N, DOC, SOC, SN, CN, sand, silt 8 0.54 0.46 0.43

Moisture, NO3-N, SOC, SN, CN, sand, silt 7 0.54 0.47 0.43

Moisture, NO3-N, SN, CN, sand, silt 6 0.53 0.48 0.42

Moisture, NO3-N, SN, CN, sand 2 0.54 0.47 0.43

Moisture, NO3-N, SN, CN 2 0.54 0.46 0.42

Moisture, SN, CN 2 0.57 0.41 0.45

Moisture, SN 2 0.58 0.41 0.45

Moisture 2 0.63 0.33 0.50

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.48 0.57 0.37

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.48 0.57 0.37

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 11 0.48 0.57 0.38

Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 0.48 0.57 0.37

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 0.48 0.57 0.38

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 0.48 0.57 0.38

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 0.48 0.57 0.38

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 0.49 0.57 0.38

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.48 0.57 0.38

Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 0.48 0.57 0.38

NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 0.48 0.57 0.38

NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 6 0.48 0.57 0.38

NDVI, GNDVI, NDMI, moisture, NO3-N, DOC, TDN, SOC, SN, CN 6 0.49 0.56 0.38

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, SN, CN 2 0.48 0.57 0.38

NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN, CN 2 0.49 0.56 0.38

NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN 2 0.49 0.55 0.38

NDVI, GNDVI, NDMI, moisture, TDN, SN 2 0.48 0.57 0.38

NDVI, GNDVI, NDMI, moisture, SN 2 0.50 0.54 0.40

NDVI, GNDVI, NDMI, moisture 2 0.49 0.56 0.39

GNDVI, NDMI, moisture 2 0.52 0.52 0.41

GNDVI, NDMI 2 0.52 0.53 0.41

GNDVI 2 0.58 0.45 0.45

Site 

measured 

soil 

parameters

10-fold cross validation
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sensing
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Table B4 a, b, c: Cross-validation results of different models developed for negative CH4 fluxes in 4a) forest, 4b) grassland and 608 
4c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  609 
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B4a): Forest CH4-C negative fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 39.38 0.21 32.51

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 39.45 0.20 32.64

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 39.11 0.20 32.45

Elevation, aspect, NDVI, GNDVI, NDMI 5 39.53 0.20 32.43

Elevation, aspect, NDVI, NDMI 4 39.76 0.20 32.57

Elevation, aspect, NDVI 3 40.42 0.19 32.69

Aspect, NDVI 2 41.52 0.17 33.61

Aspect 2 46.08 0.09 35.89

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 40.59 0.14 32.82

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.17 0.16 32.57

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.09 0.17 32.52

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.16 0.16 32.68

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 40.22 0.16 32.65

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand 5 40.66 0.16 32.59

Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand 2 40.33 0.16 32.35

Moisture, pH, NO3-N, DOC, SOC, SN, sand 2 40.02 0.17 32.19

Moisture, pH, NO3-N, SOC, SN, sand 2 40.21 0.17 32.05

Moisture, pH, NO3-N, SOC, sand 2 40.01 0.18 31.78

Moisture, pH, NO3-N, SOC 2 41.27 0.14 32.39

Moisture, pH, NO3-N 2 41.67 0.15 32.38

pH, NO3-N 2 43.94 0.12 34.03

NO3-N 2 47.96 0.10 37.11

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 39.66 0.19 32.09

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 39.59 0.20 32.09

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 20 39.49 0.20 31.90

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 10 39.17 0.21 31.82

Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 10 39.11 0.21 31.73

Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 9 38.95 0.22 31.61

Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, silt, clay 9 38.79 0.23 31.43

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, silt, clay 8 38.73 0.23 31.44

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, SN, sand, silt, clay 8 38.48 0.24 31.20

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, SN, sand, silt 7 38.35 0.24 31.11

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, sand, silt 2 37.86 0.26 30.79

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, sand, silt 2 37.55 0.28 30.57

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, silt 2 37.75 0.27 30.72

Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC, SN, silt 2 37.96 0.25 31.07

Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC, SN 2 38.00 0.25 31.04

Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC 2 37.88 0.25 30.83

Aspect, NDVI, moisture, pH, NO3-N, SOC 2 37.98 0.25 30.87

Aspect, moisture, pH, NO3-N, SOC 2 38.83 0.22 31.24

Aspect, moisture, pH, NO3-N 2 38.25 0.25 30.70

Aspect, pH, NO3-N 2 39.96 0.21 31.88

Aspect, NO3-N 2 41.25 0.19 32.84

Aspect 2 46.08 0.09 35.89

10-fold cross validation

Site 

measured 

soil 

parameters

Remote 

sensing
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B4b): Grassland CH4-C negative fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 17.33 0.15 13.63

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 17.23 0.15 13.58

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 17.28 0.14 13.70

Elevation, TPI, NDVI, GNDVI, NDMI 2 16.93 0.17 13.53

Elevation, NDVI, GNDVI, NDMI 2 17.00 0.16 13.71

NDVI, GNDVI, NDMI 2 17.14 0.16 13.63

NDVI, NDMI 2 17.66 0.15 14.11

NDMI 2 17.72 0.18 13.86

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.86 0.25 12.37

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.70 0.27 12.21

Moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.50 0.29 12.07

Moisture, pH, bulk density, NO3-N, DOC, TDN, SN, CN, sand, silt, clay 2 15.47 0.29 12.04

Moisture, pH, bulk density, NO3-N, DOC, SN, CN, sand, silt, clay 2 15.35 0.31 11.95

Moisture, pH, bulk density, DOC, SN, CN, sand, silt, clay 2 15.39 0.30 12.00

Moisture, pH, bulk density, DOC, CN, sand, silt, clay 2 15.29 0.31 11.94

Moisture, pH, DOC, CN, sand, silt, clay 2 15.36 0.30 12.05

Moisture, pH, DOC, CN, silt, clay 2 15.40 0.30 12.01

Moisture, pH, CN, silt, clay 2 15.14 0.33 11.79

Moisture, pH, CN, clay 2 15.32 0.33 11.77

pH, CN, clay 2 15.61 0.33 11.69

pH, clay 2 15.80 0.33 11.84

pH 2 18.06 0.20 14.43

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 15.70 0.26 12.22

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 11 15.61 0.27 12.12

Elevation, slope, aspect, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 11 15.60 0.27 12.12

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 10 15.56 0.28 12.08

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 10 15.52 0.28 12.03

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 9 15.54 0.27 12.10

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SN, CN, silt, clay 9 15.54 0.28 12.07

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, SN, CN, silt, clay 8 15.37 0.29 11.93

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 8 15.41 0.29 11.94

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.16 0.30 11.87

Elevation, TPI, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 14.98 0.32 11.73

Elevation, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.18 0.29 12.00

Elevation, NDVI, NDMI, moisture, pH, DOC, TDN, CN, silt, clay 2 15.16 0.29 11.98

Elevation, NDVI, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.17 0.30 11.98

Elevation, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.06 0.31 11.76

NDMI, moisture, pH, DOC, CN, silt, clay 2 15.17 0.31 11.83

NDMI, moisture, pH, CN, silt, clay 2 14.84 0.34 11.54

NDMI, moisture, pH, CN, clay 2 14.87 0.34 11.43

Moisture, pH, CN, clay 2 15.32 0.33 11.77

pH, CN, clay 2 15.61 0.33 11.69

pH, clay 2 15.80 0.33 11.84

pH 2 18.06 0.20 14.43

10-fold cross validation

Site 

measured 

soil 

parameters

Remote 

sensing
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B4c): Arable CH4-C negatives flux only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 19.54 0.42 14.72

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 19.05 0.44 14.22

Elevation, slope, aspect, NDVI, GNDVI, NDMI 2 18.72 0.47 13.86

Elevation, aspect, NDVI, GNDVI, NDMI 2 18.88 0.46 13.89

Elevation, NDVI, GNDVI, NDMI 2 19.47 0.39 14.92

Elevation, NDVI, GNDVI 2 19.20 0.40 14.81

Elevation, GNDVI 2 20.71 0.36 15.66

GNDVI 2 17.66 0.48 13.16

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.48 0.50 13.27

Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.27 0.52 13.03

Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 17.26 0.52 13.01

Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.37 0.52 13.01

Moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.38 0.51 12.96

Moisture, pH, bulk density, NH4-N, DOC, SOC, SN, CN, clay 2 17.65 0.50 13.16

Moisture, pH, NH4-N, DOC, SOC, SN, CN, clay 2 17.55 0.51 12.92

Moisture, pH, NH4-N, DOC, SOC, SN, CN 2 17.67 0.49 13.17

Moisture, pH, NH4-N, DOC, SN, CN 2 17.94 0.47 13.27

Moisture, pH, DOC, SN, CN 2 18.01 0.48 13.29

Moisture, pH, SN, CN 2 17.77 0.50 13.11

Moisture, pH, CN 2 17.70 0.50 13.20

Moisture, CN 2 17.20 0.56 12.84

CN 2 18.35 0.47 13.70

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 18.01 0.51 13.33

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 17.96 0.51 13.26

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 20 18.02 0.51 13.29

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 19 17.92 0.51 13.20

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 18 17.80 0.52 13.14

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 17 17.77 0.52 13.15

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 17.48 0.51 13.04

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.66 0.51 13.11

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 2 17.60 0.51 13.04

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, SN, CN, clay 2 17.57 0.52 13.04

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, SN, CN, clay 2 17.85 0.50 13.25

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN, clay 2 17.73 0.51 13.12

Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN 2 17.71 0.51 13.27

Elevation, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN 2 18.25 0.47 14.02

Elevation, NDVI, GNDVI, NDMI, moisture, pH, DOC, CN 2 18.26 0.46 14.10

Elevation, GNDVI, NDMI, moisture, pH, DOC, CN 2 18.45 0.47 14.12

Elevation, GNDVI, NDMI, moisture, pH, CN 2 18.36 0.47 14.13

Elevation, GNDVI, moisture, pH, CN 2 18.12 0.48 13.93

GNDVI, moisture, pH, CN 2 17.79 0.49 13.49

Moisture, pH, CN 2 17.70 0.50 13.20

Moisture, CN 2 17.20 0.56 12.84

CN 2 18.35 0.47 13.70

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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Table B5 a, b, c: Cross-validation results of different models developed for positive N2O fluxes in 5a) forest, 5b) grassland and 5c) 613 
arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  614 
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B5a): Forest N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.60 0.15 18.73

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.60 0.15 18.73

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 18.61 0.17 18.74

Elevation, aspect, NDVI, GNDVI, NDMI 2 18.61 0.19 18.74

Aspect, NDVI, GNDVI, NDMI 2 18.61 0.23 18.74

Aspect, NDVI, NDMI 2 18.60 0.19 18.73

Aspect, NDVI 2 18.61 0.26 18.74

NDVI 2 18.57 0.19 18.72

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 18.63 0.24 18.75

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 18.63 0.23 18.75

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 18.64 0.24 18.75

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 11 18.64 0.25 18.75

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 10 18.64 0.25 18.75

Temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 9 18.64 0.25 18.75

Temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 8 18.64 0.25 18.75

Temperature, moisture, bulk density, NO3-N, DOC, silt, clay 7 18.65 0.26 18.76

Temperature, moisture, bulk density, NO3-N, silt, clay 6 18.64 0.26 18.75

Moisture, bulk density, NO3-N, silt, clay 2 18.64 0.27 18.75

Moisture, bulk density, silt, clay 2 18.62 0.20 18.74

Moisture, silt, clay 2 18.61 0.19 18.73

Silt, clay 2 18.58 0.17 18.71

Silt 2 18.57 0.16 18.70

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 18.64 0.25 18.76

Elevation, slope, aspect, TWI, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 18.65 0.25 18.76

Elevation, slope, aspect, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 20 18.64 0.25 18.76

Elevation, slope, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 19 18.64 0.25 18.76

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 18 18.65 0.25 18.76

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 17 18.64 0.25 18.76

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 16 18.65 0.26 18.76

Aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 15 18.65 0.26 18.76

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 14 18.65 0.26 18.76

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 2 18.65 0.28 18.76

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 18.65 0.28 18.76

Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 18.65 0.26 18.76

Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 2 18.65 0.25 18.76

Aspect, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 5 18.65 0.25 18.75

Aspect, temperature, moisture, bulk density, NO3-N, DOC, silt, clay 2 18.65 0.26 18.76

Aspect, temperature, moisture, bulk density, DOC, silt, clay 7 18.65 0.25 18.76

Aspect, temperature, moisture, DOC, silt, clay 6 18.66 0.26 18.76

Aspect, temperature, moisture, DOC, silt 5 18.67 0.29 18.77

Aspect, temperature, moisture, silt 3 18.66 0.26 18.76

Aspect, moisture, silt 2 18.65 0.27 18.76

Moisture, silt 2 18.62 0.22 18.74

Silt 2 18.57 0.16 18.70

10-fold cross validation

Site 

measured 

soil 

parameters

Remote 

sensing
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B5a): Forest N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.34 0.15 0.24

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.34 0.15 0.24

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.33 0.17 0.23

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.33 0.19 0.24

Aspect, NDVI, GNDVI, NDMI 2 0.33 0.23 0.23

Aspect, NDVI, NDMI 2 0.33 0.19 0.24

Aspect, NDVI 2 0.33 0.26 0.23

NDVI 2 0.36 0.19 0.24

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 0.31 0.24 0.23

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 0.31 0.23 0.23

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.31 0.24 0.22

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 11 0.31 0.25 0.22

Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 10 0.31 0.25 0.22

Temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 9 0.31 0.25 0.22

Temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 8 0.31 0.25 0.22

Temperature, moisture, bulk density, NO3-N, DOC, silt, clay 7 0.30 0.26 0.22

Temperature, moisture, bulk density, NO3-N, silt, clay 6 0.31 0.26 0.22

Moisture, bulk density, NO3-N, silt, clay 2 0.31 0.27 0.22

Moisture, bulk density, silt, clay 2 0.32 0.20 0.23

Moisture, silt, clay 2 0.33 0.19 0.24

Silt, clay 2 0.35 0.17 0.25

Silt 2 0.36 0.16 0.26

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 0.30 0.25 0.22

Elevation, slope, aspect, TWI, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 0.30 0.25 0.22

Elevation, slope, aspect, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 20 0.30 0.25 0.22

Elevation, slope, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 19 0.30 0.25 0.22

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 18 0.30 0.25 0.22

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 17 0.30 0.25 0.22

Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 16 0.30 0.26 0.22

Aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 15 0.30 0.26 0.21

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 14 0.30 0.26 0.21

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 2 0.30 0.28 0.21

Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 0.30 0.28 0.21

Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 0.30 0.26 0.22

Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 2 0.30 0.25 0.22

Aspect, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 5 0.30 0.25 0.22

Aspect, temperature, moisture, bulk density, NO3-N, DOC, silt, clay 2 0.30 0.26 0.22

Aspect, temperature, moisture, bulk density, DOC, silt, clay 7 0.30 0.25 0.22

Aspect, temperature, moisture, DOC, silt, clay 6 0.29 0.26 0.21

Aspect, temperature, moisture, DOC, silt 5 0.28 0.29 0.21

Aspect, temperature, moisture, silt 3 0.29 0.26 0.21

Aspect, moisture, silt 2 0.30 0.27 0.22

Moisture, silt 2 0.32 0.22 0.23

Silt 2 0.36 0.16 0.26

10-fold cross validation

Site 

measured 

soil 

parameters

Remote 
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B5b): Grassland N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.35 0.26 18.54

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 4 18.33 0.26 18.53

Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 18.34 0.27 18.54

Elevation, slope, aspect, NDVI, NDMI 2 18.35 0.27 18.55

Elevation, aspect, NDVI, NDMI 4 18.34 0.25 18.54

Elevation, NDVI, NDMI 3 18.35 0.25 18.56

Elevation, NDMI 2 18.37 0.28 18.55

Elevation 2 18.37 0.35 18.55

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.34 0.18 18.54

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.34 0.19 18.54

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.35 0.19 18.55

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 18.35 0.20 18.55

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 18.34 0.19 18.54

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 18.35 0.22 18.54

Moisture, pH, NO3-N, NH4-N, TDN, SN, CN, clay 2 18.36 0.22 18.55

Moisture, pH, NH4-N, TDN, SN, CN, clay 2 18.36 0.23 18.55

Moisture, NH4-N, TDN, SN, CN, clay 2 18.37 0.25 18.55

Moisture, NH4-N, TDN, CN, clay 2 18.37 0.26 18.56

Moisture, TDN, CN, clay 2 18.40 0.33 18.58

Moisture, TDN, clay 2 18.43 0.37 18.60

Moisture, clay 2 18.36 0.31 18.57

Moisture 2 18.34 0.25 18.58

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.36 0.21 18.55

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.36 0.22 18.55

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.37 0.23 18.56

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.36 0.23 18.55

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.37 0.24 18.55

Elevation, slope, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.37 0.23 18.56

Elevation, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.36 0.23 18.56

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 18.36 0.21 18.55

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 18.36 0.22 18.56

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 18.37 0.23 18.56

Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 18.37 0.24 18.57

Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 18.38 0.24 18.58

Elevation, NDVI, NDMI, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 18.38 0.23 18.57

Elevation, NDVI, NDMI, moisture, NH4-N, TDN, CN, silt, clay 2 18.39 0.26 18.58

Elevation, NDVI, NDMI, moisture, TDN, CN, silt, clay 2 18.40 0.28 18.58

Elevation, NDVI, NDMI, moisture, TDN, CN, clay 2 18.41 0.31 18.59

NDVI, NDMI, moisture, TDN, CN, clay 2 18.41 0.31 18.59

NDMI, moisture, TDN, CN, clay 2 18.41 0.33 18.60

NDMI, moisture, TDN, clay 2 18.44 0.37 18.61

NDMI, moisture, TDN 2 18.42 0.31 18.61

NDMI, moisture 2 18.47 0.38 18.63

NDMI 2 18.22 0.11 18.47

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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B5b): Grassland N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.50 0.26 0.38

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 4 0.51 0.26 0.39

Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 0.51 0.27 0.38

Elevation, slope, aspect, NDVI, NDMI 2 0.50 0.27 0.37

Elevation, aspect, NDVI, NDMI 4 0.51 0.25 0.38

Elevation, NDVI, NDMI 3 0.50 0.25 0.37

Elevation, NDMI 2 0.49 0.28 0.37

Elevation 2 0.49 0.35 0.37

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.51 0.18 0.38

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.51 0.19 0.38

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.50 0.19 0.37

Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.50 0.20 0.37

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.50 0.19 0.38

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.50 0.22 0.38

Moisture, pH, NO3-N, NH4-N, TDN, SN, CN, clay 2 0.50 0.22 0.37

Moisture, pH, NH4-N, TDN, SN, CN, clay 2 0.50 0.23 0.37

Moisture, NH4-N, TDN, SN, CN, clay 2 0.49 0.25 0.37

Moisture, NH4-N, TDN, CN, clay 2 0.49 0.26 0.37

Moisture, TDN, CN, clay 2 0.47 0.33 0.35

Moisture, TDN, clay 2 0.45 0.37 0.33

Moisture, clay 2 0.49 0.31 0.36

Moisture 2 0.51 0.25 0.35

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.21 0.37

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.22 0.37

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.24 0.37

Elevation, slope, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37

Elevation, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.21 0.37

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.49 0.22 0.37

Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 0.49 0.23 0.36

Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 0.49 0.24 0.36

Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 0.48 0.24 0.35

Elevation, NDVI, NDMI, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 0.48 0.23 0.36

Elevation, NDVI, NDMI, moisture, NH4-N, TDN, CN, silt, clay 2 0.48 0.26 0.35

Elevation, NDVI, NDMI, moisture, TDN, CN, silt, clay 2 0.47 0.28 0.35

Elevation, NDVI, NDMI, moisture, TDN, CN, clay 2 0.46 0.31 0.34

NDVI, NDMI, moisture, TDN, CN, clay 2 0.47 0.31 0.34

NDMI, moisture, TDN, CN, clay 2 0.46 0.33 0.34

NDMI, moisture, TDN, clay 2 0.45 0.37 0.33

NDMI, moisture, TDN 2 0.46 0.31 0.33

NDMI, moisture 2 0.42 0.38 0.31

NDMI 2 0.58 0.11 0.43

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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B5c): Arable N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 18.47 0.63 18.59

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 4 18.48 0.64 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 4 18.49 0.65 18.61

Elevation, aspect, NDVI, GNDVI, NDMI 2 18.50 0.66 18.62

Elevation, NDVI, GNDVI, NDMI 2 18.48 0.65 18.61

NDVI, GNDVI, NDMI 2 18.48 0.65 18.61

GNDVI, NDMI 2 18.45 0.63 18.59

GNDVI 2 18.31 0.51 18.51

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 18.26 0.39 18.42

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 18.27 0.40 18.43

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 18.28 0.41 18.43

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 18.28 0.42 18.44

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 18.28 0.42 18.44

Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 18.28 0.41 18.44

Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 18.26 0.38 18.42

Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 18.26 0.39 18.42

Moisture, NO3-N, NH4-N, SOC, SN, CN 4 18.24 0.37 18.42

Moisture, NO3-N, NH4-N, SN, CN 2 18.26 0.39 18.43

Moisture, NO3-N, NH4-N, SN 2 18.27 0.40 18.43

Moisture, NO3-N, SN 2 18.25 0.38 18.42

Moisture, SN 2 18.21 0.34 18.39

Moisture 2 18.09 0.29 18.31

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 18.46 0.62 18.60

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 18.46 0.62 18.60

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 11 18.47 0.62 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 18.47 0.62 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 18.48 0.63 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 18.47 0.63 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 9 18.48 0.63 18.60

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 18.48 0.64 18.61

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 18.48 0.64 18.61

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, CN 7 18.49 0.65 18.62

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 7 18.49 0.65 18.62

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 6 18.48 0.65 18.61

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 6 18.49 0.65 18.62

NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 5 18.49 0.66 18.62

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, CN 5 18.49 0.66 18.62

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, CN 4 18.51 0.68 18.63

NDVI, GNDVI, NDMI, moisture, TDN, CN 6 18.51 0.68 18.63

GNDVI, NDMI, moisture, TDN, CN 5 18.51 0.68 18.63

GNDVI, NDMI, TDN, CN 3 18.52 0.69 18.64

GNDVI, NDMI, TDN 3 18.55 0.72 18.65

GNDVI, NDMI 2 18.45 0.63 18.59

GNDVI 2 18.31 0.51 18.51

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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B5c): Arable N2O-N positive fluxes only

Category Predictor variables mtry RMSE R
2

MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.43 0.63 0.34

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 4 0.42 0.64 0.34

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 4 0.41 0.65 0.33

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.41 0.66 0.32

Elevation, NDVI, GNDVI, NDMI 2 0.42 0.65 0.33

NDVI, GNDVI, NDMI 2 0.42 0.65 0.33

GNDVI, NDMI 2 0.44 0.63 0.34

GNDVI 2 0.52 0.51 0.40

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.55 0.39 0.46

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.55 0.40 0.45

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.54 0.41 0.45

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.54 0.42 0.45

Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.54 0.42 0.44

Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.54 0.41 0.44

Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 0.55 0.38 0.45

Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 0.56 0.39 0.45

Moisture, NO3-N, NH4-N, SOC, SN, CN 4 0.56 0.37 0.46

Moisture, NO3-N, NH4-N, SN, CN 2 0.56 0.39 0.45

Moisture, NO3-N, NH4-N, SN 2 0.55 0.40 0.45

Moisture, NO3-N, SN 2 0.56 0.38 0.46

Moisture, SN 2 0.58 0.34 0.48

Moisture 2 0.65 0.29 0.52

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.43 0.62 0.34

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.43 0.62 0.34

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 11 0.43 0.62 0.34

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 0.43 0.62 0.34

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 0.42 0.63 0.33

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 0.43 0.63 0.34

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 9 0.42 0.63 0.33

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.42 0.64 0.33

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.42 0.64 0.33

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, CN 7 0.41 0.65 0.32

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 7 0.41 0.65 0.33

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 6 0.42 0.65 0.33

Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 6 0.41 0.65 0.32

NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 5 0.41 0.66 0.32

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, CN 5 0.41 0.66 0.32

NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, CN 4 0.40 0.68 0.31

NDVI, GNDVI, NDMI, moisture, TDN, CN 6 0.40 0.68 0.31

GNDVI, NDMI, moisture, TDN, CN 5 0.40 0.68 0.31

GNDVI, NDMI, TDN, CN 3 0.39 0.69 0.31

GNDVI, NDMI, TDN 3 0.37 0.72 0.30

GNDVI, NDMI 2 0.44 0.63 0.34

GNDVI 2 0.52 0.51 0.40

Site 

measured 

soil 

parameters

10-fold cross validation

Remote 

sensing
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Table B6: The minimum, maximum, mean, standard deviation, and standard error of the measured fluxes at all the sampling points 621 
and the predicted landscape fluxes using remote sensing (RS), soil properties (SP), and combined data (CD).  622 

 623 

 

 

 

Land use Flux type Min Max Mean STDEV SE Min Max Mean STDEV SE

Forest 60 589 210 111 12.0 10 446 74 53 5.5
Grassland 136 693 350 123 14.1 9 419 131 82 8.6
Arable 78 877 431 192 23.3 14 238 84 51 6.1

Forest -201 176 -62 47 5.1 -214 7 -68 48 4.9
Grassland -84 221 -9 43 5.2 -100 28 -23 21 2.4
Arable -133 157 8 74 12.3 -43 11 -17 10 1.4

Forest -13 117 14 24 2.9 -17 78 5 11 1.3
Grassland -17 281 32 57 7.0 -18 154 12 30 3.7
Arable 13 282 84 65 8.4 -15 54 12 12 1.6

Forest 37 327 171 51 0.03 38 288 74 26 0.01
Grassland 59 484 294 70 0.10 39 477 186 89 0.13
Arable 35 668 324 111 0.08 28 559 102 86 0.06

Forest -147 65 -70 21 0.01 -148 65 -72 25 0.01
Grassland -60 50 -15 17 0.02 -64 32 -18 11 0.02
Arable -60 89 -5 23 0.02 -60 75 -16 11 0.01

Forest -8 38 7 5 0.003 -6 27 4 4 0.002
Grassland -8 144 26 34 0.05 -9 69 12 8 0.01
Arable 0 190 60 33 0.02 -1 183 18 17 0.01

Forest 55 343 194 34 0.02 41 214 70 14 0.01
Grassland 72 470 320 38 0.05 52 319 128 44 0.06
Arable 36 733 266 90 0.06 28 733 124 60 0.04

Forest -123 54 -51 11 0.01 -138 -29 -51 10 0.01
Grassland -65 37 -8 8 0.01 -65 13 -10 6 0.01
Arable -87 85 -7 26 0.02 -67 85 -13 17 0.01

Forest -9 49 9 7 0.00 -9 23 6 4 0.00
Grassland -6 124 20 8 0.01 -7 54 7 7 0.01
Arable 12 157 45 10 0.01 0 150 19 9 0.01

Forest 82 325 185 31 0.02 42 195 66 14 0.01
Grassland 155 496 322 47 0.07 52 349 145 61 0.09
Arable 68 694 321 105 0.08 29 568 110 59 0.04

Forest -125 55 -57 18 0.01 -136 -27 -59 19 0.01
Grassland -69 36 -6 9 0.01 -69 13 -11 6 0.01
Arable -72 78 0 24 0.02 -72 53 -17 11 0.01

Forest -9 49 9 7 0.00 -9 23 6 4 0.00
Grassland -9 152 25 31 0.05 -8 83 6 7 0.01
Arable 16 168 58 21 0.02 1 128 16 12 0.01

N2O-N (µg m
-2

 h
-1

)

Predicted landscape fluxes (RS data)

SR/ER-CO2-C (mg m
-2

 h
-1

)

CH4-C (µg m
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-1

)

N2O-N (µg m
-2

 h
-1

)

Predicted landscape fluxes (SP data)

SR/ER-CO2-C (mg m
-2

 h
-1

)

CH4-C (µg m
-2

 h
-1

)

N2O-N (µg m
-2

 h
-1

)

Predicted landcsape fluxes (CD data)

SR/ER-CO2-C (mg m
-2

 h
-1

)

CH4-C (µg m
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 h
-1

)

N2O-N (µg m
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)

Measured fluxes at sampling points Summer Autumn 
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-2
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-1

)
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)
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Table B7: Description of the sampling locations within the common hotspot patches of all three GHG fluxes.  624 

 625 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site ID Land use Site description and observed soil properties 

Q10 Forest Riparian forest with alder (Alnus ) trees, higher soil moisture, nitrate, 

ammonium and DOC concentrations

Q73 Grassland
Riparian grassland with higher soil moisture, ammonium and DOC 

concentrations

Q80 Grassland Riparian grassland with Clover (Trifolium ) and higher soil moisture

C23 Grassland Higher soil moisture, nitrate, ammonium and DOC concentrations

C79 Grassland Higher ammonium and DOC concentrations

C45 Grassland A lot of Clover (Trifolium )

C37 Grassland A lot of Clover (Trifolium )

E7 Grassland A lot of Clover (Trifolium)

C3 Arable land Barley crops 

C13 Arable land Barley crops and the soils had higher nitrate concentrations

Q20 Arable land Barley crops 

C12 Arable land Barley crops and the soils had higher soil moisture

C56 Arable land Wheat crops and the soils had higher soil moisture

C97 Arable land Wheat crops and the soils had higher nitrate concentrations
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Plain text summary 

Agricultural landscapes act as sinks or sources of the greenhouse gases (GHG) CO2, CH4 or N2O. Fluxes of these 

GHGs between ecosystems and the atmosphere are controlled by various physico-chemical and biological 

processes. Therefore, fluxes depend on environmental conditions such as moisture, temperature, or soil 

parameters, which results in large spatial and temporal variations of GHG fluxes. Here we describe an example 

how this variation may be studied and analyzed.  


