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Abstract 18 

Upscaling chamber measurements of soil greenhouse gas (GHG) fluxes from points to landscape scales 19 
remain challenging due to high variability of fluxes in space and time. This study measured GHG fluxes and soil 20 
parameters at selected point locations (n=268), thereby implementing a stratified sampling approach on a mixed 21 
land-use landscape (~5.8 km2). Based on these field-based measurements and remotely-sensed data on landscape and 22 
vegetation properties, we used Random Forest models to predict GHG fluxes at a landscape scale (1 m resolution) in 23 
summer and autumn. The results showed improved GHG flux prediction performance when combining field-24 
measured soil parameters with remotely-sensed data. Available satellite data products from Sentinel-2 on vegetation 25 
cover and water content played a more significant role than attributes derived from a digital elevation model, 26 
possibly due to their ability to capture both spatial and seasonal changes of ecosystem parameters within the 27 
landscape. Similar seasonal patterns of higher soil/ecosystem respiration (SR/ER-CO2) and nitrous oxide (N2O) 28 
fluxes in summer and higher methane (CH4) uptake in autumn were observed in both the measured and predicted 29 
landscape fluxes. Based on the upscaled fluxes, we also assessed the contribution of hot spots to total landscape 30 
fluxes. The identified emission hot spots occupied a small landscape area (7 to 16%) but accounted for up to 42% of 31 
the landscape GHG fluxes. Our study showed that combining remotely-sensed data with chamber measurements and 32 
soil properties is a promising approach for identifying spatial patterns and hot spots of GHG fluxes across 33 
heterogeneous landscapes. Such information may be used to inform targeted mitigation strategies at landscape-scale. 34 
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1. Introduction 35 

Atmospheric concentrations of greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and 36 
nitrous oxide (N2O) have increased since the 1750s, substantially driving global climate change (IPCC, 2019). Soils 37 
are key contributors to these GHG fluxes, with recent global emissions of approximately 350 Pg CO2 equivalents per 38 
year (Oertel et al., 2016). Soil GHG emissions have accelerated due to human activities such as land use change for 39 
agricultural land expansion (Dhakal et al., 2022). Globally, agricultural soils are significant sources accounting for 40 
about 37% of the GHG emissions within the agricultural sector (Tubiello et al., 2013). However, the estimates of soil 41 
GHG fluxes are highly uncertain since soil properties, land use, and land management, which are key indirect drivers 42 
of the emissions, largely differ across landscapes and regions. For instance, global annual estimates range widely 43 
from 67 to 101 Pg C (Jian et al., 2018) for soil respiration, 2.5 – 6.5 Tg N2O-N for annual soil N2O emissions (Tian 44 
et al., 2020), and 12 – 60 Tg for soil CH4 uptake rates (Dutaur & Verchot, 2007). These uncertainties make it 45 
difficult to accurately quantify the GHG source or sink strengths of soils and to develop targeted mitigation options 46 
across scales. 47 

Current upscaling approaches from localized measurements of soil GHG fluxes to landscape or regional 48 
scales using chamber or site-specific micro-meteorological methods such as eddy-covariance (e.g., Sundqvist et al., 49 
2015; Vainio et al., 2021, Warner et al., 2018; Han et al., 2022), fail to capture the spatio-temporal variation of hot- 50 
or cold-spots, resulting in uncertainties in regional and global GHG estimates (Hagedorn & Bellamy, 2011; Levy et 51 
al., 2022). Contrary to the eddy-covariance method, chamber-based approaches can be used to capture fine-scale 52 
spatial variabilities of soil GHG fluxes within landscapes, e.g., when measurements are conducted at sampling sites 53 
representative of the spatial heterogeneities related to land use, land management, and topography (e.g., Warner et 54 
al., 2018; Vainio et al., 2021; Wangari et al., 2022). However, the ability of chambers to accurately quantify 55 
landscape fluxes over relatively larger areas is limited and closely related to the number of chamber measurement 56 
locations per unit area (Wangari et al., 2022). Previous studies have shown that the uncertainties in landscape-scale 57 
fluxes from chamber measurements using area-weighted averages increase exponentially with a decrease in the 58 
number of chamber measurement locations (e.g., Arias-Navarro et al., 2017; Wangari et al., 2022). Nevertheless, the 59 
practicability of increasing the number of chamber measurement locations to quantify landscape fluxes is constrained 60 
by extensive human and technical resource requirements, hence there is a need for alternative ways of estimating 61 
GHG landscape fluxes. 62 

The limitation of extensive chamber measurements required to quantify landscape fluxes can be overcome 63 
through modeling approaches that offer cost-effective and more practical alternatives. Machine learning (ML) 64 
algorithms are increasingly used to gap-fill spatio-temporal datasets on soil GHG fluxes as they require lesser 65 
computational time and expertise than complex biophysical models (Dorich et al., 2020; Zhang et al., 2020; Saha et 66 
al., 2021; Adjuik & Davis, 2022; Joshi et al., 2022). Amongst the available ML algorithms, the random forest (RF) 67 
algorithm has been evaluated as one of the best for predicting soil GHG fluxes (Hamrani et al., 2020; Adjuik & 68 
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Davis, 2021; Han et al., 2022). The RF algorithm has been widely applied to gap-fill and upscale soil GHG fluxes in 69 
temperate ecosystems from point measurements to larger scales, with relatively better prediction accuracies (e.g., 70 
Philibert et al., 2013; Räsänen et al., 2021; Vainio et al., 2021).  71 

Several studies have explored the use of high-resolution remote-sensing (RS) datasets such as digital 72 
elevation models (DEMs) and indices from spectral characteristics derived from satellite images in combination with 73 
on-site chamber measurements to predict landscape GHG fluxes (e.g., Sundqvist et al., 2015; Warner et al., 2018; 74 
Vainio et al., 2021; Räsänen et al., 2021). These studies used RS datasets on landscape and vegetation parameters as 75 
proxies for soil physical and chemical characteristics such as soil moisture, soil vegetation cover, and nutrient 76 
availability, i.e., key biogeochemical drivers of soil GHG fluxes. However, the above studies have either been 77 
conducted over relatively small areas or have focused on individual land uses and GHG fluxes. For instance, only 78 
one study has applied a RF approach to predict CH4 fluxes for a larger (12.4 km2) peatland-forested landscape based 79 
on RS data and 279 on-site measurements of soil temperature, moisture, and vegetation (Räsänen et al., 2021). In 80 
addition, spatial CO2 and CH4 fluxes have been predicted for relatively small (~0.1 km2) forested landscapes using 81 
DEM-derived terrain attributes and a few site-measured (temperature and moisture) soil variables (Warner et al., 82 
2018; Vainio et al., 2021). Applying RF models using various RS datasets and soil parameters for soil GHG flux 83 
predictions on larger and heterogeneous landscapes in relation to land use, topography, and soil conditions remains 84 
unexplored. It is still uncertain whether such landscape flux predictions would improve if supplemented by multiple 85 
actual field measurements of soil properties (e.g., texture) and variables (e.g., inorganic N content), which may better 86 
describe the geochemical and physical conditions compared to RS-derived indices. 87 

In this study, we aimed to determine the potential of applying the RF algorithm to predict the spatial and 88 
seasonal variability of soil CO2, CH4, and N2O fluxes using a high number of stratified sampling locations (n = 268) 89 
spread across a relatively large (~5.8 km2) landscape with heterogeneous land uses (forest, grassland, and arable 90 
land). Specifically, we aimed to: (a) evaluate the effectiveness of high-resolution RS data and relatively low-91 
resolution data on soil physico-chemical parameters in predicting soil GHG fluxes across different land uses; (b) 92 
predict high-resolution soil GHG fluxes at a landscape scale and detect GHG hot spots and cold spots; and (c) 93 
compare landscape GHG fluxes upscaled from RF-predicted high-resolution maps with aggregated landscape flux 94 
estimates from averaged (point) fluxes multiplied by landscape area. We hypothesized improved prediction 95 
accuracies using a combination of RS datasets that act as proxies of key drivers of soil GHG fluxes (e.g., vegetation 96 
cover and water content) and the site-measured soil parameters representing the actual field conditions. We expected 97 
fine-scale hot spots (within a few meters) to occur in cultivated areas and cold spots in forested areas. We also 98 
hypothesized that the high-resolution upscaled fluxes from the RF approach, which better captures hot and cold spot 99 
regions across the landscape, would avoid possible under- or overestimations of landscape fluxes derived from land 100 
use specific area-weighted averages calculated from few point chamber measurement locations. 101 

 

 

 

https://doi.org/10.5194/bg-2023-99
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
  

 

 

2. Materials and methods 102 

2.1 Study area 103 

The study area is located within the Schwingbach catchment in Hesse, central Germany (50°30'4.23. N, 104 
8°33'2.82. E). The landscape covers an area of approximately 5.8 km2, excluding the human settlement areas and 105 
road networks. Land uses within the landscape are mainly forests (57%) and arable lands (34%). Grasslands cover 106 
about 8% and are primarily located in riparian zones (Figure 1). The dominant soil types are cambisol (69%, forest 107 
and arable), stagnosol (23%, mainly arable), and gleysol (5%) which are found along grassland riparian zones 108 
(Wangari et al., 2022). The topsoils (0 – 5 cm) in the arable and grasslands have a silt loam texture, while the 109 
topsoils in the forest land mostly have a sandy loam texture (Sahraei et al., 2020). The landscape has an average 110 
slope of 5% with an elevation range of 233 – 415 m a.s.l. The region has a temperate oceanic climate (Cfb, Köppen 111 
climate classification) with annual average precipitation and temperature of 623 mm and 9.6°C based on long-term 112 
data (1969 – 2019) (Sahraei et al., 2021).   113 

 114 

Figure 1: Map showing (a) the land uses and the location of the stratified sampling sites (selected based on combined classes of 115 
land use, slope, and soil type) across the study area; (b) the soil types; and (c) the digital elevation model (DEM; 1 m resolution) of 116 
the landscape (source of DEM: Hessische Verwaltung für Bodenmanagement und Geoinformation, https://hvbg.hessen.de/).  117 
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2.2 Soil physico-chemical parameters and GHG fluxes 118 

2.2.1 Point measurements 119 

Soil sampling and GHG flux measurements (CH4, N2O, and CO2) were conducted at spatially distributed 120 
sampling sites across the study landscape (see Tab. 1 for a list of observed variables). We used a stratified random 121 
sampling approach to distribute 270 sites across different land uses (forest, grassland, and arable), soil types 122 
(cambisol, stagnosol/gleysol, and luvisol), and slopes (0–5, 6–11, and >11%) to capture the spatial variability of soil 123 
GHG fluxes and the driving parameters (Wangari et al., 2022). Out of the 270 targeted locations, field measurements 124 
were conducted at 246 sites in the summer (30th June – 9th July, field measuring campaign 1) and 268 sites in the 125 
autumn (8th – 17th September, field measuring campaign 2) of 2020. The estimated number of measured points for 126 
the forest, grassland, and arable ecosystems was ~25, 150, and 28 per km2 (Table 1). We allocated more grassland 127 
sites due to the hypothesis that riparian grasslands are hot spots of GHG fluxes. 128 

Soil GHG flux measurements were performed during the day (7.00 am – 5.00 pm) using a fast-box chamber 129 
technique (Hensen et al., 2013; Butterbach-Bahl et al., 2020). The CO2 concentrations in the opaque chamber 130 
headspace were measured with an infrared gas analyzer (LI-840A & LI-850, LI-COR Biosciences, Lincoln, NE, 131 
USA), while CH4 and N2O concentrations were measured with an Off-Axis Integrated Cavity Output Spectroscopy 132 
(OA-ICOS) analyzer (Los Gatos Research, Inc., CA, USA). The GHG fluxes were calculated based on the linear 133 
changes of gas concentrations in the chamber headspace in the first 5-7 minutes following chamber closure. The soil 134 
sampling, analysis, and flux measurement methods are detailed in Wangari et al. (2022). 135 
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Table 1: List of the soil physico-chemical parameters and remotely-sensed data used in this study to upscale the GHG fluxes and 136 
details of the spatial resolutions of the maps.  137 

 138 

2.2.2 Spatial interpolation of soil parameters 139 

Upscaling soil GHG fluxes using the RF algorithm required spatial raster maps of the soil physico-chemical 140 
predictor parameters. Thus, we interpolated our measured point data to continuous landscape maps using the inverse 141 
distance weighted (IDW) approach in the System for Automated Geoscientific Analyses software (SAGA: QGIS) 142 
with a distance coefficient power of 1 (Gradka & Kwinta 2018). The spatial interpolations were performed per land 143 
use (forest, grassland, and arable land) and for each season (summer and autumn) due to significant variations in soil 144 
parameters such as soil moisture or inorganic N content across land uses and seasons (see Wangari et al., 2022).  145 

2.3 Remote sensing data 146 

We retrieved several landscape-scale remote-sensing images with spatial data representing potential drivers 147 
of soil GHG fluxes, such as vegetation cover and vegetation water content. Landscape elevation was acquired from a 148 
high-resolution (1 m) digital elevation model (DEM) retrieved from the Hessische Verwaltung für 149 
Bodenmanagement und Geoinformation on March 1, 2022 (link source). Slope and aspect were calculated from the 150 

Category Predictor variables Original  Final Source
Elevation 1 m 1 m Hessische Verwaltung für 

Bodenmanagement und 

Slope 1 m 1 m 
Aspect 1 m 1 m 
Topographic wetness index (TWI) 1 m 1 m 
Topographic position index (TPI) 1 m 1 m 

Normalized difference vegetation index (NDVI) 10 m 1 m 
Green normalized difference vegetation index (GNDVI) 10 m 1 m 
Normalized difference moisture index (NDMI) 20 m 1 m 

Soil temperature (°C) 1 m 
Gravimetric soil moisture (%) 1 m 
pH 1 m 

Bulk density (g cm-3) 1 m 

NO3-N (mg kg-1 dry soil) 1 m 

NH4-N (mg kg-1 dry soil) 1 m 

DOC (mg kg-1 dry soil) 1 m 

TDN (mg kg-1 dry soil) 1 m 
Soil TN (%) 1 m 
Soil TOC (%) 1 m 
CN 1 m 
Sand content (%) 1 m 
Silt content (%) 1 m 
Clay content (%) 1 m 

Resolution

Copernicus Sentinel-2 (European 
Space Agency)

Remotely- 
sensed 
data (RS)

Soil 
physico-
chemical 
parameters 
(SP)

~ 25, 150, 
and 28 sites 
per km2 in 
forest, 
grassland, 
and arable 
land

Interpolated from sampling point data 
measured in summer and autumn 
(Wangari et al. 2022)

Calculated from elevation
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DEM using the “r.slope.aspect” function in QGIS. We further computed the topographic position index (TPI) and 151 
topographic wetness index (TWI) from the DEM using the terrain analysis plugin in QGIS. Vegetation information 152 
on chlorophyll and water content was derived from satellite bands of Sentinel-2 images. Satellite images with low 153 
(<1%) cloud cover were accessed from the ESA Copernicus Open Access Hub (link source; accessed on March 154 
2021) using the Semi-Automatic Classification Plugin (SCP) in QGIS for each field measuring period. The 155 
normalized difference vegetation index (NDVI) and the green normalized difference vegetation index (GNDVI) were 156 
calculated using the near-infrared (NIR), red, and green bands (Bannari et al. 1995; Gitelson and Merzlyak, 1998; 157 
Eq. 1 and 2). Compared to NDVI, GNDVI has a higher ability to detect differences in the chlorophyll content of 158 
plants, especially later in the vegetation period, due to the higher chlorophyll sensitivity of the green band in GNDVI 159 
than the red band in NDVI. The vegetation water content was estimated using the normalized difference moisture 160 
index (NDMI), which was computed using the NIR and short-wave infrared (SWIR) bands (Gao, 1996; Malakhov 161 
and Tsychuyeva, 2020; Eq. 3). We uniformly downscaled the resolutions of these remotely-sensed vegetation indices 162 
to match the 1 m spatial resolution of the DEM-derived data files (Table 1). 163 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑅𝑅+𝑅𝑅𝑅𝑅𝑅𝑅

          (Eq. 1) 164 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

    (Eq. 2) 165 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

        (Eq. 3) 166 

2.4 Random Forest regression model  167 

RF model development and prediction of the GHG fluxes were performed per land use (forest, grassland, 168 
and arable) because there were statistically significant differences observed in the measured fluxes and the 169 
underlying GHG flux controls of soil parameters for the different land uses (Wangari et al., 2022). For instance, N2O 170 
fluxes and soil nitrate concentrations were up to two-fold higher in arable soils than in forestry or grassland soils. 171 
The CH4 uptake rates of grassland and arable soils were lower than those of forest soils due to general differences in 172 
soil structure, nitrogen concentrations, and disturbances (Wangari et al., 2022). We trained models using merged 173 
summer and autumn point data to enable larger and temporally representative datasets for training models that could 174 
estimate low and high landscape GHG fluxes (Figure 2).  175 
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 176 
Figure 2: Workflow summary showing the input data (in blue), the approach used for RF model development and prediction of 177 
landscape fluxes, and the performance evaluation metrics (MAE, RMSE, and r2).   178 

We used the RF algorithm built in the CARET (classification and regression training) package in R to 179 
predict the soil GHG fluxes at a landscape scale (Breiman, 2001; Kuhn, 2008). For model development, the input 180 
datasets were split into a training and internal cross-validation set (70%) and an external test set (30%) using a 181 
stratified random sampling method. We defined a ten-fold (K=10) repeated cross-validation scheme using the 182 
‘trainControl’ function to internally validate our trained models and prevent model overfitting (Berrar, 2018). A seed 183 
value of 123 was specified using the ‘set.seed’ function to enable reproducible results each time we ran a specific 184 
model. The optimal trained model was automatically selected using the mean absolute error (MAE) metric with the 185 
least value. The predictor variables in the optimal trained model were then ranked according to their importance 186 
using the RF variable importance measure in the ‘varImp’ function. Subsequently, stepwise elimination of the least 187 
essential variable was performed to quantify the predictive power of landscape GHG fluxes using fewer predictor 188 
variables (Figure 2).  189 

 To assess the effectiveness of various types of predictors in modeling landscape fluxes, we defined 190 
three categories of datasets, namely remote-sensing (RS), site-measured soil physico-chemical parameters (SP), and 191 
combined data (CD) (Table 1). Several RF models were trained following the stepwise elimination of the least 192 
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important variables in each data category (RS, SP, CD). Since 88% of CH4 fluxes were negative and 86% of N2O 193 
fluxes were positive (Wangari et al., 2022), we additionally trained models using only the negative CH4 and positive 194 
N2O flux datasets to compare their performances with the models built with all (positive and negative) fluxes.  195 

2.5 Model performance assessment and prediction of landscape fluxes 196 

The performance assessment metrics of the trained models included MAE, root mean square error (RMSE), 197 
and the coefficient of determination (r2) from the internal cross-validation. The final models for predicting landscape 198 
fluxes in each data category (RS, SP, CD) were selected based on the highest possible r2 with a relatively low MAE. 199 
For each season and land use, the surface maps of the respective predictor variables in the final models were merged 200 
using the raster brick function in R. The spatial fluxes for each land use were then predicted based on the selected 201 
model and the input raster brick using the ‘predict’ function in R. To improve the prediction performance, the non-202 
normal distributed (SR/ER_CO2 and N2O) fluxes were log-transformed before model development. After prediction, 203 
the transformed fluxes were retransformed using an exponential function.  204 

Further evaluation of the model performances was conducted through linear regression and correlation 205 
analysis of observed against retransformed predicted fluxes for all sampling sites. An additional external validation 206 
step was performed using the measured and predicted fluxes of the sampling sites in the 30% test dataset that was 207 
excluded from the model development. For this analysis, we compared the predicted mean fluxes (using RS, SP, and 208 
CD datasets) with the observed mean fluxes. Analyses of variances (Type II) from linear mixed-effects models 209 
(“nlme” package in R) were used to compare these arithmetic means. The fixed effects in the mixed models were 210 
seasons (summer and autumn) and GHG flux type (measured and predicted fluxes from the RS, SP, and CD 211 
datasets). Random effects of site variability were also included in the mixed models. The measured and predicted 212 
fluxes were log-transformed to the normality assumption. A Tukey post-hoc test (p-value <0.05) of least square 213 
means was used on the mixed models to identify statistically significant differences between the measured, RS-214 
predicted, SP-predicted, and CD-predicted fluxes.  215 

Since many traditional GHG upscaling approaches rely on aggregated fluxes (area-weighted averages), we 216 
also estimated spatial fluxes for the summer and autumn seasons using this technique. GHG fluxes were aggregated 217 
on the landscape scale by multiplying the average fluxes measured for each land use by the area of each land use. We 218 
compared the total landscape fluxes upscaled using this conventional aggregation technique of average fluxes with 219 
the spatial fluxes predicted using the modeling approach. 220 

2.6 Identification of GHG ‘hot’ and ‘cold’ spots from predicted landscape fluxes 221 

Statistical approaches were deployed to identify areas that may have disproportionately contributed to the 222 
overall landscape GHG fluxes (e.g., van Kessel et al., 1993; Mason et al., 2017). We defined the threshold for hot 223 
spots using the sum of the median (M) flux and the interquartile (Q3-Q1) flux range (Eq. 4). Thus, the hot spots 224 
within the landscape were identified as the areas with flux values greater (lower for CH4 uptake) than the set hot spot 225 
threshold. We fixed an inverse threshold (Eq. 5) for cold spots and identified cold spot patches with fluxes below 226 
(above for CH4 uptake) this threshold. Common emission hot spots were defined as the areas with overlapping 227 
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elevated emissions of the three GHG fluxes (SR/ER-CO2, CH4, and N2O) within the landscape. The average 228 
(summer and autumn) landscape fluxes were used to identify the hot and cold spots. We also calculated season-229 
specific thresholds to compare the increase and decrease of hot and cold spot areas between summer and autumn.  230 

𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀 + (𝑄𝑄3 − 𝑄𝑄1)         (Eq. 4)  231 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀 − (𝑄𝑄3 − 𝑄𝑄1)         (Eq. 5) 232 
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3. Results 233 

3.1 RF model performance  234 

The performance of the final models selected for the prediction of landscape fluxes varied across input 235 
datasets (RS, SP, and CD), GHG fluxes (SR/ER_CO2, CH4, and N2O), and land use (forest, grassland, and arable 236 
land) (Table 2). The predictive performance (r2) from the internal cross-validation step was higher in the models 237 
using the CD dataset (range: 0.15 – 0.78) than those using the RS (range: 0.13 – 0.73) and SP (range: 0.15 – 0.63) 238 
datasets (Table 2). The RF models predicting SR/ER_CO2 fluxes had much higher r2 (range: 0.45 – 0.78) than those 239 
predicting N2O and CH4 fluxes (range: 0.13 – 0.56). Arable ecosystem models resulted in much better predictions of 240 
SR/ER_CO2 (r2 range: 0.63 – 0.78) and N2O (r2 range: 0.45 – 0.56) fluxes compared to those for forest and grassland 241 
ecosystems across all data categories (Table 2). The prediction of CH4 fluxes was also better for arable lands, but 242 
only when using the RS data (Table 2). Stepwise elimination of the least important variables had a minimal effect on 243 
the performances of the trained models (Table B1-B5 in Appendices). The selected models for the different 244 
categories of datasets (RS, SP, and CD) had varying predictor variables across land uses. The forest and grassland 245 
models required the most (5 and 6) predictor variables. In contrast, the least number of predictors (2) were mainly 246 
observed for models describing GHG fluxes from arable soils, especially in the RS and SP categories (Table 2).  247 

Comparing the models (CD) applied to predict the landscape fluxes, the site-measured soil moisture content 248 
was a key predictor variable for all three GHG fluxes across land uses. In addition to soil moisture, the measured soil 249 
nitrogen content (NH4 or SN) and remotely sensed vegetation indices (NDVI, GNDVI, or NDMI) were prevalent 250 
predictors of landscape SR/ER_CO2 fluxes. Soil nitrogen content (NO3 or CN) was also a recurrent predictor of CH4 251 
fluxes across land uses. However, the landscape CH4 models had other varying predictors, such as aspect and soil 252 
temperature in forest models, pH and clay in grassland, and vegetation indices in arable ecosystem models. For N2O, 253 
soil inorganic nitrogen (NH4 or NO3) concentrations predicted the fluxes in the forested areas, while vegetation 254 
indices were common predictors in grassland and arable ecosystems (Table 2).  255 

Further assessment of model performance was performed through an external validation step comparing the 256 

mean of observed and predicted fluxes in the test dataset (n=∼140 per flux). The mean measured CO2 and CH4 257 

fluxes were similar to the predicted carbon fluxes across all the data categories (RS, SP, CD). In contrast to the 258 
carbon fluxes, the measured N2O fluxes were significantly lower than the predicted fluxes in autumn (Figure A1 in 259 
Appendices).   260 
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Table 2: List of predictor variables and the performance of the selected RF models using either remote sensing (RS), soil physico-261 
chemical parameters (SP), or combined (remote sensing and soil parameters) data. The model selection was made after a cross-262 
validation (10-fold) step whereby the model's predictive power was tested based on unseen data to avoid overfitting.  263 

 264 

3.2 Observed versus predicted GHG fluxes 265 

The measured and predicted GHG fluxes for all the sampling points had significant (p<0.001) linear 266 
relationships (Figure 3). The model predictions of SR/ER_CO2 fluxes were better (r2; 0.49 – 0.67) than for soil CH4 267 
(r2; 0.39 – 0.46) or N2O (r2; 0.34 – 0.43) flux predictions across the three input datasets. Based on the estimated 268 
slopes, the predicted values were 35 – 46% lower than the measured values for SR/ER_CO2 fluxes. Compared to 269 
CO2, the CH4 and N2O predicted fluxes were lower (CH4 53 – 58%; N2O 60 – 65%) than the measured fluxes, 270 

Flux type Land use Category Predictor variables R2 RMSE MAE
Forest (SR) NDVI, GNDVI, NDMI 0.45 1.76 1.55
Grassland (ER) NDVI, GNDVI, NDMI 0.46 1.88 1.61
Arable (ER) Elevation, NDVI, GNDVI, NDMI 0.73 1.76 1.58

Forest Aspect, NDVI, GNDVI 0.14 46.38 36.15
Grassland Elevation, TPI, NDVI, NDMI 0.15 29.23 21.53
Arable GNDVI, NDMI 0.35 50.79 34.72

Forest NDVI, GNDVI, NDMI 0.13 18.46 18.62
Grassland NDVI, GNDVI, NDMI 0.13 20.00 18.26
Arable GNDVI, NDMI 0.53 20.00 18.50

Forest (SR) Soil moisture, pH, NH4-N, DOC 0.49 1.72 1.53
Grassland (ER) Soil moisture, NH4-N, TDN 0.54 1.79 1.55
Arable (ER) Soil moisture, SN 0.63 1.94 1.70

Forest Soil temperature, soil moisture, pH, NO3-N, silt 0.16 44.29 33.87
Grassland Soil moisture, pH, NO3-N, DOC, CN, clay 0.29 25.59 18.62
Arable DOC, CN 0.29 44.51 32.65

Forest Soil moisture, NO3-N, NH4-N 0.15 18.49 18.65
Grassland Soil moisture, NH4-N, CN, clay 0.22 18.02 18.37
Arable Soil moisture, NO3-N, SN, CN 0.46 18.28 18.48

Forest (SR) NDVI, GNDVI, NDMI, soil moisture, NH4-N, DOC 0.57 1.64 1.48
Grassland (ER) GNDVI, soil moisture, NH4-N 0.57 1.76 1.54
Arable (ER) NDVI, GNDVI, soil moisture, SN 0.78 1.68 1.51

Forest Aspect, soil temperature, soil moisture, NO3-N 0.21 43.50 34.58
Grassland Soil moisture, pH, NO3-N, CN, clay 0.30 25.38 18.29
Arable GNDVI, NDMI, CN 0.31 47.59 33.30

Forest Soil moisture, NO3-N, NH4-N 0.15 18.49 18.65
Grassland NDVI, soil moisture 0.25 18.05 18.37
Arable NDVI, GNDVI, NDMI, soil moisture 0.56 18.36 18.52

SR/ER-CO2-C (mg m-2 h-1) Combined 
data (CD)

CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

SR/ER-CO2-C (mg m-2 h-1) Soil 
physico-
chemical 
parameters 
(SP)CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

SR/ER-CO2-C (mg m-2 h-1) Remotely- 
sensed 
data (RS) 

CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

10-fold cross validation
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primarily due to the underestimation of high fluxes. Based on r2 values, the performances of the different predictor 271 
datasets were in the order of CD>RS>SP for carbon fluxes and CD>SP>RS for N2O fluxes (Figure 3).  272 

 273 
Figure 3: Linear regressions (with 95% confidence bands) of the measured and predicted GHG fluxes using remotely sensed data 274 
(RS), soil physico-chemical parameters (SP), and combined data (CD). GHG fluxes from all the sampling locations were considered 275 
in this regression analysis. The dotted line represents the 1:1 line.  276 

 

3.3 Spatio-temporal variation in modeled landscape-scale fluxes 277 

Predicted landscape fluxes for the summer and autumn seasons ranged from +27.7 – +733.3 mg m-2 h-1 for 278 
CO2-C, -148.4 – +89.4 µg m-2 h-1 for CH4-C, and from -8.8– +189.9 µg m-2 h-1 for N2O, and did not differ much in 279 
dependence of the input dataset used (RS, SP, or CD) (Table B6 in Appendices). However, the predicted flux ranges 280 
for the landscape were narrower than the measured fluxes, which ranged from 8.7 to 877.0 mg m-2 h-1 for CO2-C, 281 
from -214.1 – +221.2 µg m-2 h-1 for CH4-C and from -18.1 – +281.8 µg m-2 h-1 for N2O-N. Since the CD dataset 282 
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revealed models with better predictions for all GHG fluxes than the RS and SP datasets, we used GHG fluxes 283 
predicted from CD predictors for seasonal and land use comparisons.  284 

Most of the landscape area (99.2%) had higher SR/ER_CO2 fluxes in summer than in autumn, with a small 285 
proportion of arable and grassland ecosystems having an opposite trend. Around 76% of the landscape also had 286 
higher N2O fluxes in summer than in autumn. The remaining landscape area (24%) had higher N2O fluxes in autumn 287 
than in summer, particularly in forested areas. CH4 uptake rates were lower in summer than autumn in most of the 288 
landscape (63%), especially in arable and grassland soils. However, an opposite trend was found for about 37% of 289 
the landscape area, dominated by forests, where CH4 uptake rates were lower in autumn than in summer (Figure 4c).  290 

High spatial heterogeneities (within short distances of <2 m) of the predicted landscape fluxes were 291 
observed in each land use. Overall, spatial variations were more prominent in summer than in autumn (Figure 4; 292 
Table B6 in Appendices). The spatial variability of SR/ER_CO2 fluxes was higher (with a range of up to 2.6-folds) 293 
on arable soils than forest and grassland soils, with multiple patches of low fluxes surrounded by high fluxes. CH4 294 
fluxes on arable lands were also heterogenous, with the soils acting as CH4 sinks and sources within a few meters, 295 
especially during summer (Figure 4a). For N2O fluxes, high spatial heterogeneities were observed on grassland soils 296 
in summer, as N2O uptake and emission of the same or even higher order of magnitude occurred at neighboring 297 
pixels. Arable soils in autumn were also highly heterogeneous, with patches of high N2O fluxes surrounded by low 298 
fluxes (Figure 4b).  299 
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 300 
Figure 4: Landscape maps of SR/ER_CO2, CH4, and N2O for (a) summer, (b) autumn seasons, and (c) the difference maps showing 301 
the variation of the autumn from the summer fluxes. The surface fluxes were predicted using RF models trained with combined 302 
(remote-sensing and site-measured soil parameters) data (CD; Table 2).   303 

 

https://doi.org/10.5194/bg-2023-99
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



17 
  

 3.4 Hot spots and cold spots 304 

The hot and cold spots of the GHG fluxes were identified from the average (summer and autumn) upscaled 305 
landscape fluxes (Figure 5a). Using equation 4, the SR/ER_CO2 and N2O spatial hot spots had threshold values 306 
>231.5 mg CO2-C m-2 h-1 for CO2 and >36.8 µg N2O-N m-2 h-1 for N2O. These hot spots covered a relatively small 307 
portion (~16.7%) of the landscape, yet they played a significant role, especially the N2O hot spots which accounted 308 
for 42% of the landscape fluxes. Around 29% of the total SR/ER_CO2 landscape flux emanated from the hot spot 309 
areas (Figure 5). Overall, the SR/ER_CO2 and N2O hot spots were mainly located on arable lands (77.0% and 94.5%, 310 
respectively) and grasslands (22.9% and 5.5%, respectively). Compared to the SR/ER_CO2 and N2O hot spots, the 311 
hot and cold spots of CH4 uptake were observed in smaller regions (3.1% and 7.3%) of the landscape with high soil 312 
CH4 uptake rates (>87.3 µg CH4-C m-2 h-1) and low soil CH4 uptake rates (<3.4 µg CH4-C m-2 h-1). The CH4 uptake 313 
hot spots, exclusively on the forested soils, offset 8% of the landscape CH4 fluxes (Figure 5). The cold spots 314 
occupied 7% of the landscape and were primarily on arable soils (99.6%), accounting for 2% of the landscape's CH4 315 
emissions.  316 

Common hot spots, with overlapping areas with elevated GHG emissions (i.e., SR/ER_CO2 and N2O hot 317 
spot areas and CH4 uptake cold spot areas), were mainly on arable soils (99.87%), with few located in grasslands 318 
(0.12%) and forests (0.01%). Overall, these patches covered 1.5% of the landscape area and contributed 5%, 1%, and 319 
8% of the SR/ER_CO2, CH4, and N2O emissions within the landscape (Figure A2 in Appendices). Based on field 320 
observations of the sampling sites (n=14) in the common hot spots, the sites at arable lands were either cropped with 321 
barley or wheat. These arable common hot spots also had higher soil moisture content and NO3 concentrations than 322 
the average values recorded at all the other sampling locations. The common hot spots in the forest were found along 323 
the riparian zones if either nitrogen-fixing alder trees were present or if grazed by cattle. Soil moisture (%), DOC, 324 
NO3, and NH4 concentrations at these sites were also higher than mean values across all sampling points. The 325 
grassland common hot spot regions were densely covered by nitrogen-fixing clover, with some located along the 326 
riparian zones (Figure A3; Table B7 in Appendices).  327 

Comparison of the GHG emission hot spots in summer and autumn using season-specific thresholds 328 
revealed significant shifts in their geo-locations between the two seasons (Figure A4 in Appendices). SR/ER_CO2 329 
hot spot regions expanded by 46% from summer to autumn, even though the emissions from the former season were 330 
higher. Unlike CO2, N2O emission hot spots and CH4 uptake cold spots contracted by 23% and 86%, respectively, 331 
from summer to autumn.  332 

 

https://doi.org/10.5194/bg-2023-99
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



18 
  

 333 
Figure 5: Maps showing (a) the average GHG fluxes and (b) the average hot spot and cold spot regions on the landscape for the 334 
summer and autumn seasons. The pie charts show the contribution (%) of hot and cold spots to total landscape fluxes. For this 335 
analysis, landscape fluxes were predicted using the combined data (CD; Table 2; Figure 3).  336 

 

3.5 Comparison of upscaling approaches 337 

Seasonal differences in spatial patterns and magnitudes of GHG fluxes were observed for upscaled fluxes 338 
using either RF modeling or mean values of measured fluxes. In both approaches, the SR/ER_CO2 and N2O 339 
landscape fluxes were an order of magnitude higher in summer than in autumn. The CH4 uptake rates were higher in 340 
autumn than in summer but within the same order of magnitude. In summer, the landscape-scale SR/ER_CO2 and 341 
N2O fluxes estimated using the area-weighted average approach were 26% and 50% higher than the RF-modelled 342 
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fluxes. The contrary was observed in autumn, where the later methodology produced slightly (4% and 11%) higher 343 
fluxes than the area-weighted mean estimates.  344 

The entire landscape CH4 uptake estimates for autumn using the area-weighted mean were 16% higher than 345 
the modeled estimates. Contrary to autumn, the area-weighted mean approach had slightly lower estimates of CH4 346 
uptake than the modeling approach in summer. Additionally, the CH4 surface flux estimates for the whole arable land 347 
in summer were net sinks (-0.9 CH4-C g h-1) using the RF modeling approach contrary to the net sources (15.5 CH4-348 
C g h-1) estimated by the area-weighted mean method. Overall, the total landscape fluxes estimated using the area-349 
weighted mean approach had up to two orders of magnitude higher uncertainty (standard error) than the modeled 350 
landscape fluxes (Figure 6).  351 
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 352 
Figure 6: The total landscape fluxes (+SE) predicted using random forest (RF) models (with combined dataset) and the fluxes 353 
estimated using the area-weighted mean approach where the average point-measured fluxes were multiplied by the landscape area.  354 
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4. Discussion 355 

4.1 Efficiency of in-situ soil parameters and remote-sensing data in upscaling GHG fluxes 356 

Our study showed that remotely-sensed (RS) data and measured soil parameters (SP) could effectively 357 
upscale soil-atmosphere CO2, N2O, and CH4 fluxes from point chamber measurements across a heterogenous 358 
landscape with mixed land uses. The improved prediction performance of the combined data (CD) sources indicates 359 
the importance of incorporating controls of soil GHG fluxes that are remotely sensed and ground-based field 360 
observations. The prediction models in this study suggested that the Sentinel-2-derived indices (NDVI, GNDVI, and 361 
NDMI) were more effective predictors than the DEM-derived terrain attributes (elevation, slope, aspect, TWI, and 362 
TPI). This finding is supported by the appearance of the Sentinel-2-derived indices in the prediction models of the 363 
three GHGs, contrary to only one DEM index (aspect) that appeared in the CH4 flux prediction models for the forest 364 
ecosystem. The minor role of DEM indices in this study can be attributed to the relatively flat terrain of our study 365 
landscape (Figure 1b) and is further backed by the lack of spatial variation in the measured GHG fluxes with slope, 366 
yet slope was considered during site stratification (Wangari et al., 2022). Another possible explanation could be that 367 
soil wetness, a common predictor of all the GHG fluxes across the landscape, was better represented by the site-368 
measured soil moisture content and the NDMI index (vegetation water content), than any of the DEM terrain 369 
attributes, including the TWI that focuses on moisture conditions, as they lack a temporal dimension.  370 

Compared with other studies that have upscaled GHG fluxes using the random forest algorithm, we 371 
considered more site-measured data on soil parameters, all three GHG fluxes, and different land uses (Table 3). The 372 
prediction accuracies of soil respiration for our mixed forest ecosystem (3.3 km2) were slightly better than those 373 
reported for a smaller forested headwater watershed (0.12 km2) in Maryland, USA (Warner et al., 2019). Our CH4 374 
prediction performance for forest soils was comparable to those of a boreal forest landscape (Vainio et al., 2021). 375 
However, our CH4 prediction performance was up to 3.6-folds lower than those of a forested headwater watershed 376 
and peatland soils, which can be attributed to higher and more homogenous CH4 production in such ecosystems 377 
(Warner et al., 2019; Räsänen et al., 2021). Our CH4 and N2O model prediction accuracies for arable soils were 378 
better than those for arable soils in New South Wales, Australia, which only considered input data from ground-379 
based sensors such as soil pH and clay content (McDaniel et al., 2017). Nevertheless, caution has to be taken when 380 
interpreting any conclusions from these study comparisons due to the limitations of different model validation 381 
techniques, different predictor variables used for modeling, and the different ecosystems and spatial scales of 382 
measurement and predictions.  383 

4.2 Seasonal variability of landscape fluxes 384 

The GHG fluxes predicted by the RF model in this study revealed seasonal trends of up to 3-fold higher 385 
CO2 and N2O fluxes in summer and 1.2-fold higher CH4 uptake in autumn, which were also evident in the measured 386 
fluxes at the sampling points (Wangari et al., 2022). These trends can be attributed to seasonal changes in soil 387 
parameters and vegetation within the landscape that were well captured by the measured soil parameters and 388 
Sentinel-2-derived indices in the prediction models. The higher soil moisture, mineral nitrogen, and vegetation cover 389 
observed during the summer growing season enhanced the respiration rates (SR/ER_CO2) and N2O emissions, 390 
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particularly in arable ecosystems, which were flux hot spots for both gases. Root respiration of growing plants can 391 
also enhance N2O production through denitrification by creating anaerobic conditions and supplying labile exudates 392 
to denitrifying microbes (Butterbach-Bahl & Dannenmann, 2011; Malique et al., 2019). Previous studies have shown 393 
that higher mineral nitrogen and soil moisture content can enhance N2O production in soils through an increased 394 
supply of substrates and the creation of anaerobic conditions that enhance denitrification rates (Barton et al., 1999; 395 
Ciarlo et al., 2006; Butterbach-Bahl et al., 2013). The lower CH4 uptake rates in summer can be primarily explained 396 
by the observed higher soil moisture content, which has been previously reported to hinder CH4 oxidation by slowing 397 
down gas (atmospheric CH4) diffusion in soils (Le Mer & Roger, 2001). 398 

The high-resolution (1 m pixel size) scaled-up fluxes could also identify detailed temporal patterns of the 399 
GHG fluxes across the landscape, thus, revealing trends that were otherwise undetectable in the aggregated measured 400 
(point) fluxes. To illustrate, parts of the landscape (24% and 37%) showed even opposite trends of higher N2O fluxes 401 
and lower CH4 uptake rates in autumn, and these areas were predominantly in the forested ecosystem. Such fine-402 
scale patterns of GHG fluxes result from land use-specific local effects depending on the season. For example, 403 
decaying fallen leaves during autumn can favor denitrification in forest soils but not in grassland or arable 404 
ecosystems. The higher CH4 uptake rates in summer could be due to the increased exposure of some forest soils to 405 
the sun leading to drier and warmer soils that promote CH4 oxidation (Steinkamp et al., 2000). This finding is 406 
supported by the importance of aspect as a predictor of landscape CH4 fluxes in the forest ecosystem, which 407 
influences the amount of incoming radiation an area receives. 408 

4.3 Importance of hot spots and cold spots of landscape-scale GHG fluxes 409 

The high spatial resolution of our predicted GHG fluxes enabled the identification of areas across the 410 
landscape that functioned as hot spots (of soil CH4 uptake, SR/ER_CO2, and N2O) or cold spots of soil CH4 uptake. 411 
Based on field observations and analyses of important predictor variables, the existence of these hot and cold spots 412 
was primarily driven by human activities such as fertilizer application, crop growing and tillage, and landscape 413 
environmental parameters related to seasonality and proximity to riparian areas. This finding is supported by the 414 
primary association of the SR/ER_CO2 and N2O hot spots and CH4 uptake cold spots within arable ecosystems since 415 
these systems showed higher soil mineral nitrogen concentrations than grassland and forest soils. The hot spots of 416 
SR/ER_CO2 and N2O observed on the grassland ecosystem can be attributed to the primary location of grasslands 417 
along the riparian areas. Increased soil moisture values, a key characteristic of the riparian regions, has also been 418 
reported to drive elevated soil GHG fluxes (Kaiser et al., 2018; Vainio et al., 2021). 419 

Spatial hot spots of SR/ER_CO2 and N2O played a crucial role in determining total landscape fluxes, 420 
accounting for up to 42% of the total predicted landscape fluxes, despite their relatively low (~16%) coverage area. 421 
Such high contributions suggest that failure to capture these hot spots results in large uncertainties in landscape GHG 422 
flux estimates. Overall, the contribution of the hot spot areas (of CO2, N2O, and CH4 emissions) to the landscape 423 
fluxes decreased in the order of N2O>CO2>CH4. This finding emphasizes the importance of capturing the N2O hot 424 
spots and improving the spatial coverage of N2O measurements, as it can introduce enormous uncertainty in 425 
landscape fluxes. A similar finding emphasizing the importance of N2O flux heterogeneities has been concluded in a 426 
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previous study, which recorded more sampling locations required for improved N2O flux estimates than CO2 and 427 
CH4 at a landscape scale (Wangari et al., 2022). 428 

Identifying common patches with elevated emissions of the three GHGs can inform priority areas for 429 
implementing localized mitigation measures within a landscape. These common patches covered only 1.5% of our 430 
landscape (~0.2 km2) and had the highest GHG fluxes contributing around 5%, 1%, and 8% of the landscape CO2, 431 
CH4, and N2O emissions. The location of these patches primarily (99.9%) on arable land emphasized the significant 432 
role of focusing on mitigating GHG fluxes from arable soils. The mitigation strategies may include adjusting the 433 
fertilizer application rates, especially in specific areas that hold more water, probably due to topographical or soil 434 
conditions (e.g., Hassan et al., 2022). This finding is further supported by the high soil moisture content measured at 435 
the sampling sites within the common patches of elevated GHG fluxes. In contrast to hot spot regions of elevated 436 
GHG emissions, CH4 uptake hotspots inform future mechanisms for leveraging the GHG sink ability of soils, such as 437 
expanding local forests. This finding is supported by uptake hot spots identified on forest soils in this study, 438 
offsetting 8% of the total landscape CH4 flux. The expansion of forested areas will also likely have a much higher 439 
mitigation impact via CO2 sequestration. Although some of the above strategies are currently applied at broader 440 
scales (1 km2), localized mitigation strategies may be required at smaller scales (<100 m2), especially at highly 441 
heterogeneous landscapes with a high variability of agricultural practices. We also found significant shifts in the geo-442 
locations of hotspot regions between summer and autumn, suggesting that seasonal changes in land management and 443 
soil conditions may also lead to a temporal expansion or contraction of the hot spot regions. This finding further 444 
emphasizes the need for time-based mitigation strategies, such as considering fertilizer application times, which not 445 
only target the spatial hotspots but also consider the temporal patterns that result in peak emissions (e.g., Wagner-446 
Riddle et al., 2020).  447 

4.4 Comparison of upscaling approaches  448 

Contrary to the area-weighted upscaling approach of spatial aggregation of chamber fluxes (Webster et al., 449 
2008; Molodovskaya et al., 2011; Rosenstock et al., 2016), random forest modeling allowed us to estimate the entire 450 
spatial distributions of the fluxes at high spatial resolution (1 m pixel size), capturing both cold spots and hot spots. 451 
In agreement with our hypotheses, the landscape fluxes were either over or under-estimated by the area-weighted 452 
average approach compared to the RF modeling approach. The overestimated landscape CO2 and N2O fluxes by up 453 
to 50% during the peak summer season suggest an overrepresentation of the high fluxes measured at most of the 454 
sampling points, resulting in elevated mean and upscaled fluxes. Furthermore, landscape CH4 uptake rates were 455 
overestimated during the peak autumn season. Previous studies have also observed a similar trend of elevated mean 456 
CH4 uptake rates at measured sites, which they attributed to the over-representation of high uptake rates during the 457 
peak uptake seasons (Warner et al., 2019). Conversely, the underestimation of CO2, N2O, and CH4 uptake, especially 458 
on arable soils, coincided with the low flux season, implying reduced mean fluxes due to the overrepresentation of 459 
the low fluxes. An alternative explanation of the differences in landscape flux estimates from both approaches could 460 
be the underestimation of high fluxes by the RF models, which we also found in our study. However, the landscape 461 
means of RF predicted and measured fluxes from 30% of our sampled sites were primarily similar (Figure A1 in 462 
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Appendices), suggesting that the lack of spatial representation of all hot and cold spots by the area-weighted mean 463 
approach rather than the inability of the RF models to reproduce high values accounted for the findings above. 464 

Collectively, our results illustrated that the representativeness of landscape fluxes using aggregated chamber 465 
fluxes might be influenced by the spatial and temporal heterogeneity of the fluxes. This finding aligns with previous 466 
results on the required number of chamber measurement locations for reliable landscape fluxes that varied with land 467 
use and season (Warner et al., 2019, Wangari et al., 2022). The high (50%) overestimation of landscape N2O fluxes 468 
suggested the higher sensitivity of reliably estimating N2O fluxes using the (aggregated means) conventional method. 469 
Previous studies have also emphasized the importance of N2O fluxes in constraining uncertainties in landscape flux 470 
quantification (e.g., Wangari et al., 2022). Compared to the suggested way of lowering landscape-scale flux 471 
uncertainties in the conventional estimates by increasing the number of chamber measurements within a landscape 472 
(Wangari et al., 2022), the modeling approach can be a less resource-intensive alternative.  473 

Combining high-resolution remote sensing data and measured soil parameters to upscale the chamber fluxes 474 
reduced the biases and the aforementioned landscape-scale flux uncertainties. The reduced uncertainties in the 475 
modeled landscape fluxes can be attributed to the relation of multiple underlying controls of soil GHG fluxes, which 476 
have high seasonal and spatial variability. Remote sensing datasets have unlimited spatial extents with high spatial 477 
resolution and thus allowing reliable prediction of spatially continuous fluxes that can capture the cold and hot spots 478 
over different seasons across heterogeneous landscapes (Warner et al., 2019; Räsänen et al., 2021). This study's high 479 
spatial resolution upscaling (1 m pixel) enabled capturing small-scale variabilities in GHG fluxes within short 480 
distances, which would have been missed out with coarser resolution upscaling. Upscaling at a finer resolution was 481 
especially relevant due to the heterogeneous nature of our study landscape, related to different land uses, soil types, 482 
and slope positions.  483 

5. Conclusions 484 

 This study demonstrated the potential of improved prediction performance when combining field-based 485 
measurements of soil parameters with remotely-sensed data in scaling up flux (chamber) measurements from 486 
stratified sites. Among the remotely-sensed predictors, Sentinel-2 indices played a more significant role than DEM-487 
derived attributes in upscaling the GHG fluxes across our relatively flat landscape terrain. The high-resolution (1 m 488 
pixel size) scaled-up fluxes effectively revealed fine-scale (within a few meters) hot and cold spots of GHG fluxes 489 
across a mixed land use landscape. The N2O hot spots were more significant sources of GHGs as they contributed 490 
42% of the landscape N2O fluxes compared to SR/ER_CO2 and CH4 emission hotspots, which accounted for 29% 491 
and 2% of the landscape CO2 and CH4 emissions, respectively. Arable soils, which had higher N2O fluxes, also had 492 
patches with elevated emissions of the three GHGs, especially in areas with high soil moisture content. These 493 
findings emphasize the importance of targeted local mitigation measures, especially for agricultural soils, in 494 
mitigating landscape GHG fluxes. Compared to RF upscaling, the area-weighted average approach lacked detailed 495 
spatiotemporal patterns of landscape fluxes, which can prevent targeted mitigation measures to some extent.   496 
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Appendices 498 

Appendix A: Figures 499 

 500 

Figure A1: Bar graphs showing the mean fluxes (±SE) predicted using remote sensing (RS), soil properties (SP), and combined 501 
data (CD) and the measured fluxes at the sampling sites in the 30% model test dataset. The upper-case and lower-case letters indicate 502 
significant differences (p<0.05) in the mean fluxes in the different seasons and across the measured and predicted fluxes.   503 
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 504 

Figure A2: Map showing the common hotspot regions of the three GHG fluxes and the location of the measured sampling points 505 

 507 

Figure A3: Clover (Trifolium) on grassland ecosystems. 508 

506 within these recurrent hotspots (Satellite Image downloaded from © Google Maps).  
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 509 

Figure A4: Maps showing the hot and cold spots of the (a) summer and (b) autumn seasons. These regions were defined using each 510 
season's specific threshold. 511 
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Appendix B: Tables 512 

Table B1 a, b, c: Cross-validation results of different models developed for SR/ER-CO2 fluxes in 1a) forest, 1b) grassland and 1c) 513 
arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  514 

 515 

 

 

 

 

B1a): Forest SR_CO2-C flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.57 0.44 0.45

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.57 0.43 0.45

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.57 0.44 0.44

Elevation, TPI, NDVI, GNDVI, NDMI 2 0.56 0.46 0.43

Elevation, NDVI, GNDVI, NDMI 2 0.55 0.48 0.43

NDVI, GNDVI, NDMI 2 0.56 0.45 0.44

NDVI, GNDVI 2 0.59 0.42 0.45

NDVI 2 0.63 0.36 0.49

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.54 0.50 0.42

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 7 0.53 0.51 0.41

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 7 0.53 0.51 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 6 0.52 0.52 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SN, sand, silt 6 0.52 0.52 0.41

Temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 0.53 0.52 0.41

Moisture, pH, bulk density, NH4-N, DOC, TDN, sand, silt 5 0.53 0.51 0.41

Moisture, pH, NH4-N, DOC, TDN, sand, silt 4 0.53 0.52 0.41

Moisture, pH, NH4-N, DOC, TDN, silt 2 0.52 0.53 0.41

Moisture, pH, NH4-N, DOC, TDN 2 0.53 0.51 0.42

Moisture, pH, NH4-N, DOC 2 0.54 0.49 0.42

Moisture, NH4-N, DOC 2 0.57 0.44 0.44

Moisture, NH4-N 2 0.57 0.44 0.45

NH4-N 2 0.60 0.41 0.48

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.51 0.54 0.40

Slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.51 0.54 0.40

Slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.51 0.55 0.40

Aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.51 0.55 0.40

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.51 0.55 0.40

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 0.51 0.56 0.39

TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 0.50 0.58 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 8 0.50 0.56 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 0.49 0.59 0.39

NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, SN, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 0.49 0.60 0.38

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, SOC, silt 2 0.49 0.59 0.38

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, silt 2 0.49 0.59 0.39

NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN 2 0.50 0.57 0.39

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC, TDN 2 0.50 0.57 0.39

NDVI, GNDVI, NDMI, moisture, NH4-N, DOC 2 0.50 0.57 0.39

NDVI, GNDVI, moisture, NH4-N, DOC 2 0.51 0.55 0.40

NDVI, GNDVI, moisture, NH4-N 3 0.51 0.55 0.40

NDVI, moisture, NH4-N 3 0.52 0.53 0.41

NDVI, NH4-N 2 0.52 0.54 0.41

NH4-N 2 0.60 0.41 0.48

Site 
measured 
soil 
parameters

10-fold cross validation

 Remote 
sensing 
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B1b): Grassland SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.62 0.47 0.48

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 0.62 0.48 0.48

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.62 0.48 0.47

Elevation, aspect, NDVI, GNDVI, NDMI 2 0.61 0.49 0.47

Elevation, NDVI, GNDVI, NDMI 2 0.62 0.48 0.46

NDVI, GNDVI, NDMI 2 0.63 0.46 0.48

NDVI, GNDVI 2 0.67 0.41 0.51

GNDVI 2 0.72 0.36 0.54

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.56 0.56 0.43

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 0.56 0.57 0.43

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 7 0.56 0.57 0.43

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 6 0.56 0.56 0.43

Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 6 0.56 0.57 0.43

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 5 0.56 0.57 0.42

Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN 5 0.57 0.56 0.43

Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 0.58 0.55 0.44

Moisture, NH4-N, TDN, SOC, SN, CN 2 0.58 0.54 0.44

Moisture, NH4-N, TDN, SN, CN 2 0.58 0.55 0.44

Moisture, NH4-N, TDN, CN 2 0.58 0.54 0.44

Moisture, NH4-N, TDN 2 0.58 0.54 0.44

Moisture, NH4-N 2 0.61 0.51 0.47

Moisture 2 0.63 0.46 0.50
Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.55 0.58 0.41

Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.55 0.59 0.41
Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.55 0.59 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.55 0.59 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 10 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 0.55 0.59 0.40
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 9 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 8 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, clay 7 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 7 0.55 0.58 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN, clay 6 0.55 0.59 0.41
Elevation, NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 0.55 0.59 0.41
NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, SN, CN 2 0.56 0.58 0.42
NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, SOC, CN 2 0.55 0.59 0.41
NDVI, GNDVI, NDMI, moisture, NH4-N, TDN, CN 2 0.55 0.59 0.41
NDVI, GNDVI, moisture, NH4-N, TDN, CN 2 0.55 0.59 0.41
NDVI, GNDVI, moisture, NH4-N, CN 2 0.55 0.58 0.42
NDVI, GNDVI, moisture, NH4-N 2 0.55 0.59 0.42
GNDVI, moisture, NH4-N 2 0.56 0.57 0.43
GNDVI, moisture 2 0.61 0.50 0.46
Moisture 2 0.63 0.46 0.50

10-fold cross validation

Site 
measured 
soil 
parameters

Remote 
sensing

https://doi.org/10.5194/bg-2023-99
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
  

 517 

 

 

 

 

 

 

 

B1c): Arable SR/ER_CO2-C flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 0.54 0.75 0.44

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 7 0.54 0.75 0.44

Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 0.54 0.75 0.44

Elevation, aspect, NDVI, GNDVI, NDMI 3 0.55 0.75 0.44

Elevation, NDVI, GNDVI, NDMI 2 0.57 0.73 0.46

NDVI, GNDVI, NDMI 2 0.59 0.72 0.46

NDVI, GNDVI 2 0.60 0.71 0.47

GNDVI 2 0.60 0.71 0.49

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 0.69 0.59 0.57

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 13 0.69 0.60 0.56

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 0.68 0.61 0.56

Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, sand, silt, clay 11 0.67 0.61 0.55

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, silt, clay 10 0.67 0.61 0.56

Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, clay 9 0.67 0.61 0.55

Moisture, pH, NH4-N, SOC, SN, CN, sand, clay 8 0.67 0.62 0.54

Moisture, pH, NH4-N, SN, CN, sand, clay 7 0.66 0.62 0.54

Moisture, pH, NH4-N, SN, CN, sand 6 0.66 0.62 0.54

Moisture, NH4-N, SN, CN, sand 5 0.66 0.63 0.53

Moisture, SN, CN, sand 4 0.66 0.63 0.53

Moisture, SN, CN 3 0.63 0.66 0.51

Moisture, SN 2 0.66 0.63 0.53

Moisture 2 0.77 0.50 0.64
Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.53 0.77 0.43

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.53 0.77 0.43
Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.53 0.77 0.43
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 0.53 0.77 0.43
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 10 0.53 0.77 0.42
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 17 0.52 0.77 0.42
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, clay 16 0.52 0.77 0.42
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, clay 8 0.52 0.78 0.42
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand 8 0.52 0.78 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, DOC, SOC, SN, sand 7 0.52 0.78 0.41
Elevation, aspect, NDVI, GNDVI, NDMI,  temperature, moisture, pH, NH4-N, SOC, SN, sand 7 0.52 0.78 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, SOC, SN, sand 6 0.51 0.78 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, SOC, SN, sand 6 0.51 0.78 0.41
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN, sand 5 0.51 0.78 0.40
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN 5 0.51 0.79 0.40
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SN 7 0.51 0.79 0.40
Elevation, aspect, NDVI, GNDVI, moisture, SN 2 0.49 0.80 0.39
Elevation, NDVI, GNDVI, moisture, SN 2 0.51 0.79 0.41
NDVI, GNDVI, moisture, SN 2 0.52 0.78 0.41
NDVI, GNDVI, moisture 2 0.55 0.75 0.43
NDVI, GNDVI 2 0.60 0.71 0.47
GNDVI 2 0.60 0.71 0.49

Site 
measured 
soil 
parameters
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Table B2 a, b, c: Cross-validation results of different models developed for all (positive and negative) CH4 fluxes in 2a) forest, 2b) 518 
grassland and 2c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors 519 
was implemented.  520 

 521 

 

 

 

 

 

B2a): Forest CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 45.35 0.13 36.00

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 45.26 0.13 35.97

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 45.07 0.15 35.75

Elevation, aspect, NDVI, GNDVI, NDMI 2 44.63 0.15 35.00

Aspect, NDVI, GNDVI, NDMI 2 44.79 0.16 35.37

Aspect, NDVI, GNDVI 2 46.38 0.14 36.15

Aspect, NDVI 2 47.90 0.12 37.92

Aspect 2 54.06 0.07 41.44

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 44.79 0.16 34.46

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 2 44.65 0.16 34.36

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 2 44.52 0.17 34.28

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 2 44.67 0.16 34.36

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 44.54 0.16 34.22

Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, sand, silt 2 43.98 0.18 33.93

Temperature, moisture, pH, NO3-N, DOC, SOC, sand, silt 2 43.64 0.19 33.73

Temperature, moisture, pH, NO3-N, DOC, sand, silt 2 43.46 0.19 33.49

Temperature, moisture, pH, NO3-N, sand, silt 2 43.07 0.20 33.20

Temperature, moisture, pH, NO3-N, silt 2 44.29 0.16 33.87

Temperature, moisture, pH, NO3-N 2 45.84 0.14 35.18

Temperature, moisture, NO3-N 2 45.31 0.15 35.40

Moisture, NO3-N 2 47.94 0.12 36.80

Moisture 2 51.25 0.08 40.58

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 44.31 0.17 34.18

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.37 0.17 34.29

Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.23 0.18 34.15

Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 44.05 0.19 34.05

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 43.90 0.19 33.99

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, CN, sand, silt, clay 2 43.80 0.19 33.88

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt, clay 2 43.60 0.20 33.74

Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.64 0.20 33.88

Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.51 0.20 33.78

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, CN, sand, silt 2 43.48 0.20 33.79

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, CN, sand, silt 2 43.03 0.22 33.48

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, CN, sand, silt 2 42.76 0.22 33.17

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, CN, silt 2 43.24 0.20 33.49

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, silt 2 42.81 0.21 33.41

Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, silt 2 42.49 0.23 33.30
Aspect, GNDVI, temperature, moisture, pH, NO3-N, silt 2 42.71 0.22 33.42

Aspect, temperature, moisture, pH, NO3-N, silt 2 43.29 0.20 33.83

Aspect, temperature, moisture, pH, NO3-N 2 43.92 0.19 34.69

Aspect, temperature, moisture, NO3-N 2 43.50 0.21 34.58

Temperature, moisture, NO3-N 2 45.31 0.15 35.40

Moisture, NO3-N 2 47.94 0.12 36.80

Moisture 2 51.25 0.08 40.58

10-fold cross validation

Site 
measured 
soil 
parameters
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B2b): Grassland CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 28.88 0.15 20.98

Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 28.73 0.16 20.97

Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 29.19 0.15 21.54

Elevation, TPI, NDVI, GNDVI, NDMI 2 28.85 0.14 21.56

Elevation, TPI, NDVI, NDMI 2 29.23 0.15 21.53

Elevation, TPI, NDMI 2 30.08 0.14 22.04

Elevation, NDMI 2 30.46 0.13 22.57

Elevation 2 30.72 0.13 22.84

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 26.98 0.22 19.52

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 7 26.96 0.22 19.42

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 7 26.86 0.23 19.38

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 6 26.66 0.23 19.20

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, CN, clay 6 26.68 0.23 19.28

Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 5 26.60 0.24 19.16

Temperature, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.27 0.25 19.00

Moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.16 0.26 19.01

Moisture, pH, NO3-N, DOC, CN, clay 2 25.59 0.29 18.62

Moisture, pH, NO3-N, DOC, CN 2 26.27 0.25 19.58

Moisture, pH, DOC, CN 2 26.81 0.23 19.51

Moisture, DOC, CN 2 26.96 0.24 20.19

Moisture, CN 2 28.73 0.23 21.43

Moisture 2 30.95 0.14 23.49

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 26.91 0.22 19.51
Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 26.89 0.22 19.42
Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 26.74 0.23 19.36

Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 10 26.71 0.23 19.30

Elevation, slope, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.56 0.24 19.22

Elevation, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.68 0.23 19.39

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, clay 2 26.75 0.22 19.36
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 2 26.62 0.23 19.29

Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.77 0.22 19.35
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.65 0.23 19.27
Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.69 0.22 19.39
Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.45 0.24 19.29

Elevation, TPI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.30 0.24 19.14

TPI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.33 0.25 19.16

TPI, NDMI, moisture, pH, NO3-N, DOC, CN, clay 2 25.91 0.27 18.85
TPI, NDMI, moisture, pH, NO3-N, CN, clay 2 25.83 0.27 18.62

TPI, moisture, pH, NO3-N, CN, clay 2 25.32 0.31 18.18

Moisture, pH, NO3-N, CN, clay 2 25.38 0.30 18.29

Moisture, pH, NO3-N, CN 2 26.65 0.25 19.61

Moisture, pH, NO3-N 2 27.60 0.19 20.52

Moisture, pH 2 29.67 0.14 22.56

Moisture 2 30.95 0.14 23.49

10-fold cross validation
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B2c): Arable CH4-C (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 48.58 0.28 33.46
Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 48.10 0.28 33.16
Elevation, slope, aspect, NDVI, GNDVI, NDMI 2 48.79 0.29 33.46
Elevation, aspect, NDVI, GNDVI, NDMI 2 49.56 0.29 33.54
Aspect, NDVI, GNDVI, NDMI 2 47.59 0.25 32.46
Aspect, GNDVI, NDMI 2 48.56 0.26 33.18
GNDVI, NDMI 2 50.79 0.35 34.72
NDMI 2 52.71 0.30 36.62
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 45.46 0.24 32.35
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 45.74 0.22 32.67
Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, silt, clay 2 45.73 0.21 32.67
Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 45.79 0.21 32.53
Temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.74 0.21 33.25
Temperature, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.81 0.21 33.69
pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 46.64 0.23 33.38
pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 45.99 0.23 33.22
Bulk density, NO3-N, DOC, SOC, CN, clay 2 45.03 0.27 31.97
Bulk density, NO3-N, DOC, SOC, CN 2 44.43 0.28 32.08
Bulk density, NO3-N, DOC, CN 2 44.16 0.25 31.82
NO3-N, DOC, CN 2 43.73 0.30 31.45
DOC, CN 2 44.51 0.29 32.65
CN 2 45.77 0.28 34.09

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.85 0.23 33.13
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.91 0.21 33.19
Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.60 0.22 32.99
Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 46.83 0.22 33.03
Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, clay 2 46.87 0.23 33.01
Elevation, slope, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 47.11 0.25 33.25
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, clay 2 46.86 0.23 32.89
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, SN, CN, clay 2 47.79 0.26 33.60
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.86 0.25 33.69
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.62 0.25 33.38
Elevation, aspect, NDVI, GNDVI, NDMI, pH, bulk density, NO3-N, DOC, SOC, CN, clay 2 47.28 0.24 33.32
Elevation, aspect, NDVI, GNDVI, NDMI, pH, bulk density, NO3-N, DOC, SOC, CN 2 46.41 0.22 32.75
Elevation, aspect, NDVI, GNDVI, NDMI, pH, NO3-N, DOC, SOC, CN 2 46.44 0.22 32.65
Elevation, aspect, NDVI, GNDVI, NDMI, pH, NO3-N, DOC, CN 2 46.67 0.23 32.67
Elevation, aspect, GNDVI, NDMI, pH, NO3-N, DOC, CN 2 46.47 0.23 32.76
Elevation, aspect, GNDVI, NDMI, pH, NO3-N, CN 2 47.43 0.25 33.18
Elevation, aspect, GNDVI, NDMI, pH, CN 2 47.10 0.25 32.74
Elevation, aspect, GNDVI, NDMI, CN 3 47.49 0.26 32.67
Aspect, GNDVI, NDMI, CN 2 46.05 0.23 31.87
GNDVI, NDMI, CN 2 47.59 0.31 33.30
NDMI, CN 2 47.29 0.24 33.50
CN 2 45.77 0.28 34.09
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Table B3 a, b, c: Cross-validation results of different models developed for all (positive and negative) N2O fluxes in 3a) forest, 3b) 524 
grassland and 3c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors 525 
was implemented.  526 
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B3a): Forest N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.43 0.11 0.30
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.42 0.11 0.30
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.42 0.11 0.30
Elevation, aspect, NDVI, GNDVI, NDMI 2 0.43 0.09 0.31
Aspect, NDVI, GNDVI, NDMI 2 0.44 0.12 0.33
NDVI, GNDVI, NDMI 2 0.43 0.13 0.32
NDVI, GNDVI 2 0.45 0.11 0.33
GNDVI 2 0.46 0.12 0.34
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29
Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29
Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 0.41 0.13 0.29
Temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.14 0.29
Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29
Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, silt 2 0.41 0.12 0.29
Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, silt 2 0.41 0.13 0.29
Temperature, moisture, NO3-N, NH4-N, TDN, SN, silt 2 0.41 0.15 0.29
Temperature, moisture, NO3-N, NH4-N, TDN, SN 2 0.41 0.15 0.29
Temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.15 0.30
Temperature, moisture, NO3-N, NH4-N 2 0.42 0.13 0.30
Moisture, NO3-N, NH4-N 2 0.42 0.15 0.30
Moisture, NO3-N 2 0.45 0.11 0.33
NO3-N 2 0.48 0.11 0.34

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.11 0.28
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.13 0.28
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.28
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.28
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.41 0.12 0.29
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 2 0.41 0.12 0.29
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.12 0.29
Elevation, aspect, NDVI, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29
Elevation, aspect, GNDVI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.28
Elevation, aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.28
Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 2 0.41 0.13 0.29
Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN, silt 2 0.41 0.13 0.28
Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN, CN 2 0.41 0.14 0.29
Aspect, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SN 2 0.41 0.15 0.29
Aspect, temperature, moisture, NO3-N, NH4-N, TDN, SN 2 0.41 0.16 0.29
Aspect, temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.16 0.29
Temperature, moisture, NO3-N, NH4-N, TDN 2 0.42 0.15 0.30
Temperature, moisture, NO3-N, NH4-N 2 0.42 0.13 0.30
Moisture, NO3-N, NH4-N 2 0.42 0.15 0.30
Moisture, NO3-N 2 0.45 0.11 0.33
NO3-N 2 0.48 0.11 0.34

10-fold cross validation
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B3b): Grassland N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.73 0.13 0.53
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 0.73 0.13 0.53
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.74 0.12 0.55
Elevation, aspect, NDVI, GNDVI, NDMI 2 0.74 0.14 0.54
Elevation, NDVI, GNDVI, NDMI 2 0.74 0.14 0.55
NDVI, GNDVI, NDMI 2 0.76 0.13 0.55
NDVI, NDMI 2 0.75 0.11 0.57
NDVI 2 0.78 0.11 0.61
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.72 0.12 0.50
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.72 0.12 0.50
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 0.71 0.15 0.49
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.71 0.15 0.48
Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.71 0.16 0.49
Temperature, moisture, pH, NO3-N, NH4-N, SOC, SN, CN, clay 2 0.71 0.15 0.49
Temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 0.71 0.16 0.49
Temperature, moisture, pH, NH4-N, SOC, CN, clay 2 0.69 0.19 0.48
Temperature, moisture, NH4-N, SOC, CN, clay 2 0.70 0.19 0.49
Moisture, NH4-N, SOC, CN, clay 2 0.70 0.18 0.50
Moisture, NH4-N, CN, clay 2 0.68 0.22 0.49
Moisture, NH4-N, clay 2 0.70 0.21 0.52
Moisture, clay 2 0.73 0.22 0.54
Moisture 2 0.71 0.22 0.53

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.14 0.49
Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49
Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.15 0.49
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.15 0.49
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.71 0.16 0.49
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.70 0.17 0.48
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.69 0.19 0.47
NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.70 0.17 0.48
NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.70 0.17 0.48
NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, TDN, SOC, SN, CN, clay 2 0.70 0.18 0.48
NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4-N, SOC, SN, CN, clay 2 0.70 0.19 0.49
NDVI, GNDVI, NDMI, temperature, moisture, NH4-N, SOC, SN, CN, clay 2 0.70 0.18 0.49
NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, SN, CN, clay 2 0.70 0.19 0.48
NDVI, GNDVI, NDMI, moisture, NH4-N, SOC, CN, clay 2 0.69 0.20 0.48
NDVI, GNDVI, NDMI, moisture, SOC, CN, clay 2 0.69 0.20 0.48
NDVI, NDMI, moisture, SOC, CN, clay 2 0.68 0.21 0.48
NDVI, NDMI, moisture, CN, clay 2 0.68 0.23 0.48
NDVI,  moisture, CN, clay 3 0.67 0.26 0.48
NDVI,  moisture, clay 2 0.71 0.24 0.52
NDVI,  moisture 2 0.67 0.25 0.49
NDVI 2 0.78 0.11 0.61

Site 
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soil 
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B3c): Arable N2O-N (positive & negative) flux

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.49 0.56 0.39
Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 0.48 0.58 0.38
Elevation, aspect, TWI, NDVI, GNDVI, NDMI 2 0.48 0.58 0.37
Elevation, aspect, NDVI, GNDVI, NDMI 2 0.48 0.58 0.38
Elevation, NDVI, GNDVI, NDMI 4 0.49 0.57 0.38
Elevation, GNDVI, NDMI 2 0.49 0.57 0.39
GNDVI, NDMI 2 0.52 0.53 0.41
GNDVI 2 0.58 0.45 0.45
Tmperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 0.55 0.44 0.44
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 0.54 0.46 0.43
Temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 12 0.54 0.46 0.43
Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 11 0.53 0.48 0.42
Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 10 0.53 0.47 0.43
Moisture, pH, NO3-N, DOC, SOC, SN, CN, sand, silt 9 0.53 0.47 0.43
Moisture, NO3-N, DOC, SOC, SN, CN, sand, silt 8 0.54 0.46 0.43
Moisture, NO3-N, SOC, SN, CN, sand, silt 7 0.54 0.47 0.43
Moisture, NO3-N, SN, CN, sand, silt 6 0.53 0.48 0.42
Moisture, NO3-N, SN, CN, sand 2 0.54 0.47 0.43
Moisture, NO3-N, SN, CN 2 0.54 0.46 0.42
Moisture, SN, CN 2 0.57 0.41 0.45
Moisture, SN 2 0.58 0.41 0.45
Moisture 2 0.63 0.33 0.50

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.48 0.57 0.37
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.48 0.57 0.37
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 11 0.48 0.57 0.38
Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 0.48 0.57 0.37
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 0.48 0.57 0.38
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 0.48 0.57 0.38
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 0.48 0.57 0.38
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 0.49 0.57 0.38
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.48 0.57 0.38
Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 0.48 0.57 0.38
NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 0.48 0.57 0.38
NDVI, GNDVI, NDMI, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 6 0.48 0.57 0.38
NDVI, GNDVI, NDMI, moisture, NO3-N, DOC, TDN, SOC, SN, CN 6 0.49 0.56 0.38
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, SN, CN 2 0.48 0.57 0.38
NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN, CN 2 0.49 0.56 0.38
NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN 2 0.49 0.55 0.38
NDVI, GNDVI, NDMI, moisture, TDN, SN 2 0.48 0.57 0.38
NDVI, GNDVI, NDMI, moisture, SN 2 0.50 0.54 0.40
NDVI, GNDVI, NDMI, moisture 2 0.49 0.56 0.39
GNDVI, NDMI, moisture 2 0.52 0.52 0.41
GNDVI, NDMI 2 0.52 0.53 0.41
GNDVI 2 0.58 0.45 0.45
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Table B4 a, b, c: Cross-validation results of different models developed for negative CH4 fluxes in 4a) forest, 4b) grassland and 530 
4c) arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  531 
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B4a): Forest CH4-C negative fluxes only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 39.38 0.21 32.51
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 39.45 0.20 32.64
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 39.11 0.20 32.45
Elevation, aspect, NDVI, GNDVI, NDMI 5 39.53 0.20 32.43
Elevation, aspect, NDVI, NDMI 4 39.76 0.20 32.57
Elevation, aspect, NDVI 3 40.42 0.19 32.69
Aspect, NDVI 2 41.52 0.17 33.61
Aspect 2 46.08 0.09 35.89
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 40.59 0.14 32.82
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.17 0.16 32.57
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.09 0.17 32.52
Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 2 40.16 0.16 32.68
Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt 2 40.22 0.16 32.65
Moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand 5 40.66 0.16 32.59
Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand 2 40.33 0.16 32.35
Moisture, pH, NO3-N, DOC, SOC, SN, sand 2 40.02 0.17 32.19
Moisture, pH, NO3-N, SOC, SN, sand 2 40.21 0.17 32.05
Moisture, pH, NO3-N, SOC, sand 2 40.01 0.18 31.78
Moisture, pH, NO3-N, SOC 2 41.27 0.14 32.39
Moisture, pH, NO3-N 2 41.67 0.15 32.38
pH, NO3-N 2 43.94 0.12 34.03
NO3-N 2 47.96 0.10 37.11

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 39.66 0.19 32.09
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 39.59 0.20 32.09
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 20 39.49 0.20 31.90
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 10 39.17 0.21 31.82
Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 10 39.11 0.21 31.73
Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, sand, silt, clay 9 38.95 0.22 31.61
Elevation, aspect, TPI, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, silt, clay 9 38.79 0.23 31.43
Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, sand, silt, clay 8 38.73 0.23 31.44
Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, SN, sand, silt, clay 8 38.48 0.24 31.20
Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, DOC, SOC, SN, sand, silt 7 38.35 0.24 31.11
Elevation, aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, sand, silt 2 37.86 0.26 30.79
Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, sand, silt 2 37.55 0.28 30.57
Aspect, NDVI, GNDVI, temperature, moisture, pH, NO3-N, SOC, SN, silt 2 37.75 0.27 30.72
Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC, SN, silt 2 37.96 0.25 31.07
Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC, SN 2 38.00 0.25 31.04
Aspect, NDVI, GNDVI, moisture, pH, NO3-N, SOC 2 37.88 0.25 30.83
Aspect, NDVI, moisture, pH, NO3-N, SOC 2 37.98 0.25 30.87
Aspect, moisture, pH, NO3-N, SOC 2 38.83 0.22 31.24
Aspect, moisture, pH, NO3-N 2 38.25 0.25 30.70
Aspect, pH, NO3-N 2 39.96 0.21 31.88
Aspect, NO3-N 2 41.25 0.19 32.84
Aspect 2 46.08 0.09 35.89

10-fold cross validation
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B4b): Grassland CH4-C negative fluxes only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 17.33 0.15 13.63
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 17.23 0.15 13.58
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 17.28 0.14 13.70

Elevation, TPI, NDVI, GNDVI, NDMI 2 16.93 0.17 13.53

Elevation, NDVI, GNDVI, NDMI 2 17.00 0.16 13.71
NDVI, GNDVI, NDMI 2 17.14 0.16 13.63

NDVI, NDMI 2 17.66 0.15 14.11

NDMI 2 17.72 0.18 13.86

Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.86 0.25 12.37

Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.70 0.27 12.21
Moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.50 0.29 12.07

Moisture, pH, bulk density, NO3-N, DOC, TDN, SN, CN, sand, silt, clay 2 15.47 0.29 12.04

Moisture, pH, bulk density, NO3-N, DOC, SN, CN, sand, silt, clay 2 15.35 0.31 11.95

Moisture, pH, bulk density, DOC, SN, CN, sand, silt, clay 2 15.39 0.30 12.00
Moisture, pH, bulk density, DOC, CN, sand, silt, clay 2 15.29 0.31 11.94

Moisture, pH, DOC, CN, sand, silt, clay 2 15.36 0.30 12.05
Moisture, pH, DOC, CN, silt, clay 2 15.40 0.30 12.01

Moisture, pH, CN, silt, clay 2 15.14 0.33 11.79
Moisture, pH, CN, clay 2 15.32 0.33 11.77
pH, CN, clay 2 15.61 0.33 11.69
pH, clay 2 15.80 0.33 11.84

pH 2 18.06 0.20 14.43
Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 15.70 0.26 12.22

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 11 15.61 0.27 12.12
Elevation, slope, aspect, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 11 15.60 0.27 12.12

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, sand, silt, clay 10 15.56 0.28 12.08

Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 10 15.52 0.28 12.03

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SN, CN, silt, clay 9 15.54 0.27 12.10

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NH4-N, DOC, TDN, SN, CN, silt, clay 9 15.54 0.28 12.07
Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, SN, CN, silt, clay 8 15.37 0.29 11.93

Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 8 15.41 0.29 11.94
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.16 0.30 11.87
Elevation, TPI, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 14.98 0.32 11.73
Elevation, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.18 0.29 12.00

Elevation, NDVI, NDMI, moisture, pH, DOC, TDN, CN, silt, clay 2 15.16 0.29 11.98

Elevation, NDVI, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.17 0.30 11.98

Elevation, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.06 0.31 11.76
NDMI, moisture, pH, DOC, CN, silt, clay 2 15.17 0.31 11.83

NDMI, moisture, pH, CN, silt, clay 2 14.84 0.34 11.54

NDMI, moisture, pH, CN, clay 2 14.87 0.34 11.43

Moisture, pH, CN, clay 2 15.32 0.33 11.77

pH, CN, clay 2 15.61 0.33 11.69

pH, clay 2 15.80 0.33 11.84
pH 2 18.06 0.20 14.43

10-fold cross validation
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B4c): Arable CH4-C negatives flux only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 19.54 0.42 14.72
Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 19.05 0.44 14.22
Elevation, slope, aspect, NDVI, GNDVI, NDMI 2 18.72 0.47 13.86
Elevation, aspect, NDVI, GNDVI, NDMI 2 18.88 0.46 13.89
Elevation, NDVI, GNDVI, NDMI 2 19.47 0.39 14.92
Elevation, NDVI, GNDVI 2 19.20 0.40 14.81
Elevation, GNDVI 2 20.71 0.36 15.66
GNDVI 2 17.66 0.48 13.16
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.48 0.50 13.27
Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 17.27 0.52 13.03
Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 17.26 0.52 13.01
Moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.37 0.52 13.01
Moisture, pH, bulk density, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.38 0.51 12.96
Moisture, pH, bulk density, NH4-N, DOC, SOC, SN, CN, clay 2 17.65 0.50 13.16
Moisture, pH, NH4-N, DOC, SOC, SN, CN, clay 2 17.55 0.51 12.92
Moisture, pH, NH4-N, DOC, SOC, SN, CN 2 17.67 0.49 13.17
Moisture, pH, NH4-N, DOC, SN, CN 2 17.94 0.47 13.27
Moisture, pH, DOC, SN, CN 2 18.01 0.48 13.29
Moisture, pH, SN, CN 2 17.77 0.50 13.11
Moisture, pH, CN 2 17.70 0.50 13.20
Moisture, CN 2 17.20 0.56 12.84
CN 2 18.35 0.47 13.70

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 18.01 0.51 13.33
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 17.96 0.51 13.26
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 20 18.02 0.51 13.29
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 19 17.92 0.51 13.20
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 18 17.80 0.52 13.14
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 17 17.77 0.52 13.15
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, clay 2 17.48 0.51 13.04
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 17.66 0.51 13.11
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SN, CN, clay 2 17.60 0.51 13.04
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, TDN, SN, CN, clay 2 17.57 0.52 13.04
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, DOC, SN, CN, clay 2 17.85 0.50 13.25
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN, clay 2 17.73 0.51 13.12
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN 2 17.71 0.51 13.27
Elevation, NDVI, GNDVI, NDMI, moisture, pH, DOC, SN, CN 2 18.25 0.47 14.02
Elevation, NDVI, GNDVI, NDMI, moisture, pH, DOC, CN 2 18.26 0.46 14.10
Elevation, GNDVI, NDMI, moisture, pH, DOC, CN 2 18.45 0.47 14.12
Elevation, GNDVI, NDMI, moisture, pH, CN 2 18.36 0.47 14.13
Elevation, GNDVI, moisture, pH, CN 2 18.12 0.48 13.93
GNDVI, moisture, pH, CN 2 17.79 0.49 13.49
Moisture, pH, CN 2 17.70 0.50 13.20
Moisture, CN 2 17.20 0.56 12.84
CN 2 18.35 0.47 13.70

Site 
measured 
soil 
parameters

10-fold cross validation

Remote 
sensing
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Table B5 a, b, c: Cross-validation results of different models developed for positive N2O fluxes in 5a) forest, 5b) grassland and 5c) 535 
arable land using different predictors in the training dataset. Stepwise elimination of least important predictors was implemented.  536 

 537 

 

 

 

 

 

 

 

 

B5a): Forest N2O-N positive fluxes only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.34 0.15 0.24
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.34 0.15 0.24
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 0.33 0.17 0.23
Elevation, aspect, NDVI, GNDVI, NDMI 2 0.33 0.19 0.24
Aspect, NDVI, GNDVI, NDMI 2 0.33 0.23 0.23
Aspect, NDVI, NDMI 2 0.33 0.19 0.24
Aspect, NDVI 2 0.33 0.26 0.23
NDVI 2 0.36 0.19 0.24
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 0.31 0.24 0.23
Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 0.31 0.23 0.23
Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.31 0.24 0.22
Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 11 0.31 0.25 0.22
Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 10 0.31 0.25 0.22
Temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 9 0.31 0.25 0.22
Temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 8 0.31 0.25 0.22
Temperature, moisture, bulk density, NO3-N, DOC, silt, clay 7 0.30 0.26 0.22
Temperature, moisture, bulk density, NO3-N, silt, clay 6 0.31 0.26 0.22
Moisture, bulk density, NO3-N, silt, clay 2 0.31 0.27 0.22
Moisture, bulk density, silt, clay 2 0.32 0.20 0.23
Moisture, silt, clay 2 0.33 0.19 0.24
Silt, clay 2 0.35 0.17 0.25
Silt 2 0.36 0.16 0.26

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 0.30 0.25 0.22
Elevation, slope, aspect, TWI, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 0.30 0.25 0.22
Elevation, slope, aspect, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 20 0.30 0.25 0.22
Elevation, slope, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 19 0.30 0.25 0.22
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 18 0.30 0.25 0.22
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 17 0.30 0.25 0.22
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 16 0.30 0.26 0.22
Aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 15 0.30 0.26 0.21
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 14 0.30 0.26 0.21
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, sand, silt, clay 2 0.30 0.28 0.21
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 0.30 0.28 0.21
Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, sand, silt, clay 2 0.30 0.26 0.22
Aspect, NDMI, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 2 0.30 0.25 0.22
Aspect, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 5 0.30 0.25 0.22
Aspect, temperature, moisture, bulk density, NO3-N, DOC, silt, clay 2 0.30 0.26 0.22
Aspect, temperature, moisture, bulk density, DOC, silt, clay 7 0.30 0.25 0.22
Aspect, temperature, moisture, DOC, silt, clay 6 0.29 0.26 0.21
Aspect, temperature, moisture, DOC, silt 5 0.28 0.29 0.21
Aspect, temperature, moisture, silt 3 0.29 0.26 0.21
Aspect, moisture, silt 2 0.30 0.27 0.22
Moisture, silt 2 0.32 0.22 0.23
Silt 2 0.36 0.16 0.26

10-fold cross validation

Site 
measured 
soil 
parameters

Remote 
sensing
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B5b): Grassland N2O-N positive fluxes only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 0.50 0.26 0.38
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 4 0.51 0.26 0.39
Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 0.51 0.27 0.38
Elevation, slope, aspect, NDVI, NDMI 2 0.50 0.27 0.37
Elevation, aspect, NDVI, NDMI 4 0.51 0.25 0.38
Elevation, NDVI, NDMI 3 0.50 0.25 0.37
Elevation, NDMI 2 0.49 0.28 0.37
Elevation 2 0.49 0.35 0.37
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.51 0.18 0.38
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.51 0.19 0.38
Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.50 0.19 0.37
Temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.50 0.20 0.37
Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.50 0.19 0.38
Moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, clay 2 0.50 0.22 0.38
Moisture, pH, NO3-N, NH4-N, TDN, SN, CN, clay 2 0.50 0.22 0.37
Moisture, pH, NH4-N, TDN, SN, CN, clay 2 0.50 0.23 0.37
Moisture, NH4-N, TDN, SN, CN, clay 2 0.49 0.25 0.37
Moisture, NH4-N, TDN, CN, clay 2 0.49 0.26 0.37
Moisture, TDN, CN, clay 2 0.47 0.33 0.35
Moisture, TDN, clay 2 0.45 0.37 0.33
Moisture, clay 2 0.49 0.31 0.36
Moisture 2 0.51 0.25 0.35

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.21 0.37
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.22 0.37
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37
Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.24 0.37
Elevation, slope, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37
Elevation, aspect, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.23 0.37
Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, sand, silt, clay 2 0.49 0.21 0.37
Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, SN, CN, silt, clay 2 0.49 0.22 0.37
Elevation, NDVI, NDMI, temperature, moisture, pH, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 0.49 0.23 0.36
Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, SOC, CN, silt, clay 2 0.49 0.24 0.36
Elevation, NDVI, NDMI, temperature, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 0.48 0.24 0.35
Elevation, NDVI, NDMI, moisture, NO3-N, NH4-N, TDN, CN, silt, clay 2 0.48 0.23 0.36
Elevation, NDVI, NDMI, moisture, NH4-N, TDN, CN, silt, clay 2 0.48 0.26 0.35
Elevation, NDVI, NDMI, moisture, TDN, CN, silt, clay 2 0.47 0.28 0.35
Elevation, NDVI, NDMI, moisture, TDN, CN, clay 2 0.46 0.31 0.34
NDVI, NDMI, moisture, TDN, CN, clay 2 0.47 0.31 0.34
NDMI, moisture, TDN, CN, clay 2 0.46 0.33 0.34
NDMI, moisture, TDN, clay 2 0.45 0.37 0.33
NDMI, moisture, TDN 2 0.46 0.31 0.33
NDMI, moisture 2 0.42 0.38 0.31
NDMI 2 0.58 0.11 0.43

Site 
measured 
soil 
parameters

10-fold cross validation

Remote 
sensing
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B5c): Arable N2O-N positive fluxes only

Category Predictor variables mtry RMSE R2
MAE

Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 0.43 0.63 0.34
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 4 0.42 0.64 0.34
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 4 0.41 0.65 0.33
Elevation, aspect, NDVI, GNDVI, NDMI 2 0.41 0.66 0.32
Elevation, NDVI, GNDVI, NDMI 2 0.42 0.65 0.33
NDVI, GNDVI, NDMI 2 0.42 0.65 0.33
GNDVI, NDMI 2 0.44 0.63 0.34
GNDVI 2 0.52 0.51 0.40
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 0.55 0.39 0.46
Temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.55 0.40 0.45
Temperature, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.54 0.41 0.45
Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 2 0.54 0.42 0.45
Temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.54 0.42 0.44
Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 0.54 0.41 0.44
Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 0.55 0.38 0.45
Moisture, NO3-N, NH4-N, TDN, SOC, SN, CN 2 0.56 0.39 0.45
Moisture, NO3-N, NH4-N, SOC, SN, CN 4 0.56 0.37 0.46
Moisture, NO3-N, NH4-N, SN, CN 2 0.56 0.39 0.45
Moisture, NO3-N, NH4-N, SN 2 0.55 0.40 0.45
Moisture, NO3-N, SN 2 0.56 0.38 0.46
Moisture, SN 2 0.58 0.34 0.48
Moisture 2 0.65 0.29 0.52

Combined     Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 0.43 0.62 0.34
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 0.43 0.62 0.34
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 11 0.43 0.62 0.34
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 0.43 0.62 0.34
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 0.42 0.63 0.33
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, silt 9 0.43 0.63 0.34
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 9 0.42 0.63 0.33
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.42 0.64 0.33
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 8 0.42 0.64 0.33
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, NH4-N, DOC, TDN, SOC, CN 7 0.41 0.65 0.32
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 7 0.41 0.65 0.33
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, DOC, TDN, SOC, CN 6 0.42 0.65 0.33
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 6 0.41 0.65 0.32
NDVI, GNDVI, NDMI, temperature, moisture, NO3-N, TDN, SOC, CN 5 0.41 0.66 0.32
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, CN 5 0.41 0.66 0.32
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, CN 4 0.40 0.68 0.31
NDVI, GNDVI, NDMI, moisture, TDN, CN 6 0.40 0.68 0.31
GNDVI, NDMI, moisture, TDN, CN 5 0.40 0.68 0.31
GNDVI, NDMI, TDN, CN 3 0.39 0.69 0.31
GNDVI, NDMI, TDN 3 0.37 0.72 0.30
GNDVI, NDMI 2 0.44 0.63 0.34
GNDVI 2 0.52 0.51 0.40

Site 
measured 
soil 
parameters

10-fold cross validation

Remote 
sensing
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Table B6: The minimum, maximum, mean, standard deviation, and standard error of the measured fluxes at all the sampling points 540 
and the predicted landscape fluxes using remote sensing (RS), soil properties (SP), and combined data (CD).  541 

 542 

 

 

 

Land use Flux type Min Max Mean STDEV SE Min Max Mean STDEV SE
Forest 60 589 210 111 12.0 10 446 74 53 5.5
Grassland 136 693 350 123 14.1 9 419 131 82 8.6
Arable 78 877 431 192 23.3 14 238 84 51 6.1

Forest -201 176 -62 47 5.1 -214 7 -68 48 4.9
Grassland -84 221 -9 43 5.2 -100 28 -23 21 2.4
Arable -133 157 8 74 12.3 -43 11 -17 10 1.4

Forest -13 117 14 24 2.9 -17 78 5 11 1.3
Grassland -17 281 32 57 7.0 -18 154 12 30 3.7
Arable 13 282 84 65 8.4 -15 54 12 12 1.6

Forest 37 327 171 51 0.03 38 288 74 26 0.01
Grassland 59 484 294 70 0.10 39 477 186 89 0.13
Arable 35 668 324 111 0.08 28 559 102 86 0.06

Forest -147 65 -70 21 0.01 -148 65 -72 25 0.01
Grassland -60 50 -15 17 0.02 -64 32 -18 11 0.02
Arable -60 89 -5 23 0.02 -60 75 -16 11 0.01
Forest -8 38 7 5 0.003 -6 27 4 4 0.002
Grassland -8 144 26 34 0.05 -9 69 12 8 0.01
Arable 0 190 60 33 0.02 -1 183 18 17 0.01

Forest 55 343 194 34 0.02 41 214 70 14 0.01
Grassland 72 470 320 38 0.05 52 319 128 44 0.06
Arable 36 733 266 90 0.06 28 733 124 60 0.04

Forest -123 54 -51 11 0.01 -138 -29 -51 10 0.01
Grassland -65 37 -8 8 0.01 -65 13 -10 6 0.01
Arable -87 85 -7 26 0.02 -67 85 -13 17 0.01

Forest -9 49 9 7 0.00 -9 23 6 4 0.00
Grassland -6 124 20 8 0.01 -7 54 7 7 0.01
Arable 12 157 45 10 0.01 0 150 19 9 0.01

Forest 82 325 185 31 0.02 42 195 66 14 0.01
Grassland 155 496 322 47 0.07 52 349 145 61 0.09
Arable 68 694 321 105 0.08 29 568 110 59 0.04
Forest -125 55 -57 18 0.01 -136 -27 -59 19 0.01
Grassland -69 36 -6 9 0.01 -69 13 -11 6 0.01
Arable -72 78 0 24 0.02 -72 53 -17 11 0.01
Forest -9 49 9 7 0.00 -9 23 6 4 0.00
Grassland -9 152 25 31 0.05 -8 83 6 7 0.01
Arable 16 168 58 21 0.02 1 128 16 12 0.01

N2O-N (µg m-2 h-1)

Predicted landscape fluxes (RS data)

SR/ER-CO2-C (mg m-2 h-1)

CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

Predicted landscape fluxes (SP data)

SR/ER-CO2-C (mg m-2 h-1)

CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

Predicted landcsape fluxes (CD data)

SR/ER-CO2-C (mg m-2 h-1)

CH4-C (µg m-2 h-1)

N2O-N (µg m-2 h-1)

Measured fluxes at sampling points Summer Autumn 

SR/ER-CO2-C (mg m-2 h-1)

CH4-C (µg m-2 h-1)
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Table B7: Description of the sampling locations within the common hotspot patches of all three GHG fluxes.  543 

 544 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site ID Land use Site description and observed soil properties 
Q10 Forest Riparian forest with alder (Alnus ) trees, higher soil moisture, nitrate, 

ammonium and DOC concentrations

Q73 Grassland Riparian grassland with higher soil moisture, ammonium and DOC 
concentrations

Q80 Grassland Riparian grassland with Clover (Trifolium ) and higher soil moisture

C23 Grassland Higher soil moisture, nitrate, ammonium and DOC concentrations
C79 Grassland Higher ammonium and DOC concentrations
C45 Grassland A lot of Clover (Trifolium )
C37 Grassland A lot of Clover (Trifolium )
E7 Grassland A lot of Clover (Trifolium)
C3 Arable land Barley crops 
C13 Arable land Barley crops and the soils had higher nitrate concentrations
Q20 Arable land Barley crops 
C12 Arable land Barley crops and the soils had higher soil moisture
C56 Arable land Wheat crops and the soils had higher soil moisture
C97 Arable land Wheat crops and the soils had higher nitrate concentrations
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Plain text summary 

Agricultural landscapes act as sinks or sources of the greenhouse gases (GHG) CO2, CH4 or N2O. Fluxes of these 

GHGs between ecosystems and the atmosphere are controlled by various physico-chemical and biological 

processes. Therefore, fluxes depend on environmental conditions such as moisture, temperature, or soil 

parameters, which results in large spatial and temporal variations of GHG fluxes. Here we describe an example 

how this variation may be studied and analysed.  
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