Supplement of

Source-to-Sink Pathways of Dissolved Organic Carbon in the River-Estuary-Ocean Continuum: A Modeling Investigation

Jialing Yao^{1,2}, Zhi Chen¹, Jianzhong Ge¹, and Wenyan Zhang²

¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.

²Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany.

Correspondence to: Jianzhong Ge (jzge@sklec.ecnu.edu.cn), Wenyan Zhang (wenyan.zhang@hereon.de)

Text S1. DOC cycle module

The equations for the conservation of dissolved carbon in all pools are provided as follows. The labile DOC (R_1) is affected by bacteria mortality and uptake, phytoplankton mortality, and zooplankton excretion and mortality:

$$\begin{split} \frac{\partial R_{1}}{\partial t} &= f^{t} r_{mort} B_{c} - min(1, \frac{G_{env}}{G_{sub}}) n_{1} R_{1} + (1 - min(\frac{q p_{min}}{q_{P:C}}, \frac{q n_{min}}{q_{N:C}}, 1.0)) f_{lysis} P_{c} + q_{R_{1}} q_{dis} (1.0 \\ &- a_{e}) q_{exc} r_{ass} f^{t} \frac{F_{c}^{total}}{F_{c}^{total} + h_{f}} Z_{c} + q_{R_{1}} q_{dis} ((1 - eO_{2}) r_{mortox} + r_{mort}) Z_{c} \end{split}$$

where f^t is a temperature-dependent growth function (Blackford et al., 2004). r_{mort} represents the basal mortality rate, and B_c is the bacterial carbon. The bacterial uptake depends on the magnitude of both maximum potential uptake G_{env} and substrate availability G_{sub} . n_1 signifies the fraction of R1 available to bacteria. Within the phytoplankton lysis term, qp_{min} and qn_{min} represent the minimal P/C and N/C ratio, respectively. $q_{P:C}$ and $q_{N:C}$ are the instantaneously calculated P/C and N/C cellular ratios, respectively. f_{lysis} is the nutrient-stress lysis rate which occurs proportionally to the current biomass. P_c is phytoplankton biomass. In the last two terms, q_{R_1} is the labile fraction of produced dissolved organic carbon. q_{dis} is the dissolved fraction of excreted/dying matter. a_e is the assimilation efficiency, q_{exc} is the fraction of unassimilated prey that is excreted. r_{ass} is maximal assimilation rate at reference temperature. F_c^{total} signifies the carbon of total food available. h_f is the food concentration where uptake is 0.5. Z_c is the biomass of zooplankton. eO_2 is an oxygen limitation factor, r_{mortox} represents the mortality rate at low oxygen concentrations.

The semi-labile DOC (R₂) is affected by bacteria release and uptake, phytoplankton excretion:

$$\frac{\partial R_2}{\partial t} = max \left[0, \max \left(1 - \frac{q_{P:C}}{p^{opt}}, 1 - \frac{q_{N:C}}{n^{opt}} \right) \right] B_c v - \min \left(1, \frac{G_{env}}{G_{sub}} \right) n_2 R_2 + (p_{ex} + (1 - iNI)(1 - p_{ex})) f_{phosyn} P_c$$

where p^{opt} and n^{opt} are maximum phosphorus to carbon ratio and maximum nitrogen to carbon ratio. ν is the characteristic time-scale of the process (supposed to be 1 d). n_2 denotes the fraction of R_2 available to bacteria. p_{ex} signifies the portion of primary production released as activity-dependent excretion. iNI is co-limitation of inorganic nitrogen and phosphorus (Droop, 1974). f_{phosyn} represents the gross photosynthetic activity rate.

The semi-refractory DOC (R₃) is influenced by bacteria excretion and uptake:

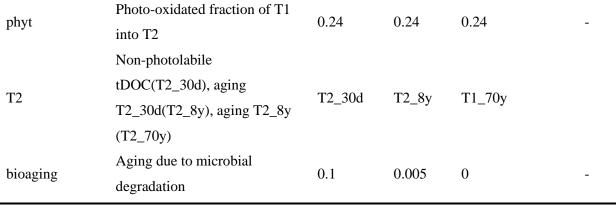
$$\frac{\partial R_3}{\partial t} = q_{R_3}(1 - r_{resp}O_{rel} - r_{respox}(1 - O_{rel}))min(1, \frac{G_{env}}{G_{sub}}) - min(1, \frac{G_{env}}{G_{sub}})n_3R_3$$

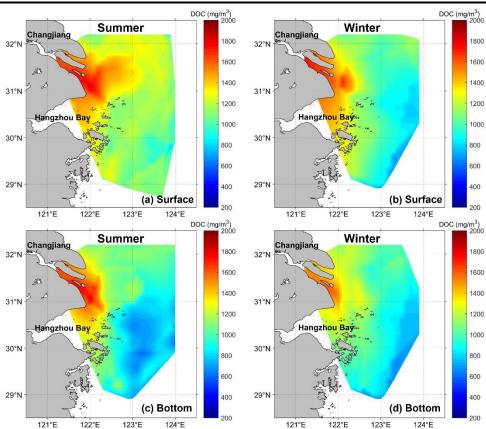
It is assumed that the proportion of recalcitrant carbon released in the form of semi-refractory material is determined by a factor q_{R_3} related to the metabolic cost of uptake activity. r_{resp} and r_{respox} represent the efficiency of the respired fraction of carbon uptake under high and low oxygen conditions, respectively. O_{rel} is relative oxygen saturation. n_3 is fraction of R3 available to bacteria.

The T_1 includes river input, photo-oxidation, bacterial uptake, and flocculation. The photo-oxidation process is only considered in the surface layer.

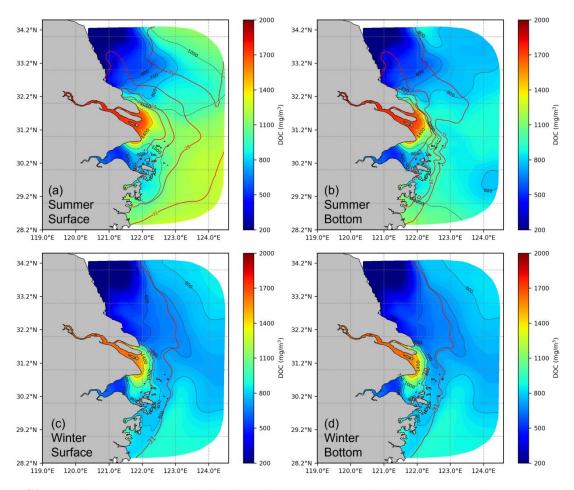
$$\begin{split} \frac{\partial T_{1}}{\partial t} &= \frac{\partial T_{1}}{\partial t} \Big|_{river} - (1 + q_{a}) r_{phooxi} \frac{Iq_{scaling}}{I_{ref}} T_{1} - min\left(1, \frac{G_{env}}{G_{sub}}\right) n_{T1} T_{1} \\ &- r_{floc} e^{\frac{-(ln(Sal) - i_{flocmax})^{2}}{2i_{PAR}^{2}}} T_{1}^{2} \end{split}$$

where q_a is fraction of tDOC aging due to photo-oxidation, r_{phooxi} is reference surface photo-oxidation rate. I and I_{ref} are instantaneous irradiance and reference surface photo-oxidation rate, respectively. $q_{scaling}$ is the scaling factor for incoming radiation activating photochemical reaction. n_{T1} is fraction of T_1 available to bacteria. r_{floc} is the maximum flocculation rate, $i_{flocmax}$ represents the logarithm of salinity at the point of maximum flocculation. i_{PAR} is the salinity function parameter.


The T_2 includes river input, transformation from T_1 , and bacterial uptake.


$$\frac{\partial T_2}{\partial t} = \frac{\partial T_2}{\partial t}\Big|_{riner} + q_{T_1T_2}(1+q_a)r_{phooxi}\frac{Iq_{scaling}}{I_{ref}}T_1 - min\left(1, \frac{G_{env}}{G_{sub}}\right)n_{T2}T_2$$

where $q_{T_1T_2}$ is photo-oxidated fraction of T_1 going into T_2 . n_{T_2} is fraction of T_2 available to bacteria. The key configuration of parameters related to DOC cycling are listed in Table S1.


Table S1. Key parameters configuration related to DOC cycling in the FVCOM-ERSEM model.

Notation	Description	Value				Unit
Bacteria		B1				
rR2	Availability of R2	0.04				-
rR3	Availability of R3	0.002				-
rTD1	Availability of T1 pool1	0.00282				-
rTD2	Availability of T1 pool2	0.000501				-
rTD3	Availability of T1 pool3	0.00022				-
rTD4	Availability of T2 pool1	0.00848				-
rTD5	Availability of T2 pool2	0.001508				-
rTD6	Availability of T2 pool3	0.000661				-
	Diatoms (P1),					
Phytoplankton	nanophytoplankton (P2),	P1	P2	P3	P4	
	picoplankton (P3), and					
	microphytoplankton (P4)					
sum	Assimilation rate at 10 °C	0.825	0.975	1.2	0.675	1 d-1
	Mesozooplankton(Z4),					
Zooplankton	microzooplankton (Z5),	Z 4	Z 5	Z 6		
	heterotrophic flagellates (Z6)					
sum	Assimilation rate at 10 °C	1	1.75	2.1		1 d-1
	Photolabile tDOC(T1_30d),					
T1	aging T1_30d(T1_8y), aging	T1_30d	T1_8y	T1_70y		
	T1_8y (T1_70y)					
photoaging	Fraction of tDOC aging	0.5	0.025	0		-
bioaging	Aging due to microbial	0.5	0.025	0		
	degradation	0.3	0.023	U		
surf_phyref	Reference photooxidation rate	0.05175	0.0092	0.00404		1 d-1
floc	Maximal flocculation rate	0.000002	0.00000 0.00000			d-1
				0.000002		mg-1
						C

Figure S1. The observational average distribution of DOC concentration for both the surface and bottom layer in summer and winter.

Figure S2. The simulated average distribution of DOC concentration for both the surface and bottom layer in summer and winter.

References

Blackford, J. C., Allen, J. I., and Gilbert, F. J.: Ecosystem dynamics at six contrasting sites: a generic modelling study, Journal of Marine Systems, 52, 191-215, doi: 10.1016/j.jmarsys.2004.02.004, 2004.

Droop, M. J. J. o. t. M. B. A. o. t. U. K.: The nutrient status of algal cells in continuous culture, 54, 825-855, 1974.