Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF 5-year value: 4.194
IF 5-year
CiteScore value: 6.7
SNIP value: 1.143
IPP value: 3.65
SJR value: 1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
h5-index value: 60
Volume 10, issue 1
Biogeosciences, 10, 23–38, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 10, 23–38, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Jan 2013

Research article | 04 Jan 2013

Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

R. Zurbrügg1,2, S. Suter1, M. F. Lehmann3, B. Wehrli1,2, and D. B. Senn1,2 R. Zurbrügg et al.
  • 1Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
  • 2Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and Management, Seestrasse 79, 6047 Kastanienbaum, Switzerland
  • 3Institute of Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Abstract. Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69–119 kg OC km−2 d−1 and 3.8–4.7 kg ON km−2 d−1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of −25‰ to −21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (−29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500–22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our study shows that the Kafue Flats are a significant local source of OC and ON to downstream ecosystems and illustrates how the composition of riverine OM can be altered by dams and floodplains in tropical catchments.

Publications Copernicus
Final-revised paper