Articles | Volume 10, issue 6
Biogeosciences, 10, 3793–3807, 2013
Biogeosciences, 10, 3793–3807, 2013

Research article 13 Jun 2013

Research article | 13 Jun 2013

Mercury dynamics in the Rocky Mountain, Colorado, snowpack

X. Faïn1,3, D. Helmig2, J. Hueber2, D. Obrist3, and M. W. Williams2 X. Faïn et al.
  • 1UJF – Grenoble 1 / CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble 38041, France
  • 2Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, Colorado, USA
  • 3Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada 89512, USA

Abstract. Gaseous elemental mercury (GEM) was monitored at the Niwot Ridge (NWT) Long-Term Ecological Research (LTER) site (Colorado, USA, 40° N) from interstitial air extracted from the snowpack at depths ranging from the snow surface to 10 cm above the soil. A highly dynamic cycling of mercury (Hg) in this mid-latitude snowpack was observed. Patterns were driven by both GEM production in surface snow and GEM destruction in the deeper snowpack layers. Thorough mixing and vertical transport processes were observed through the snowpack. GEM was photochemically produced near the snow-air interface throughout the entire winter, leading to enhanced GEM levels in interstitial air of surface snow of up to 8 ng m−3. During low-wind periods, GEM in surface snow layers remained significantly above ambient air levels at night as well, which may indicate a potential weak GEM production overnight. Analyses of vertical GEM gradients in the snowpack show that surface GEM enhancements efficiently propagated down the snowpack, with a temporal lag in peak GEM levels observed with increasing depth. Downward diffusion was responsible for much of these patterns, although vertical advection also contributed to vertical redistribution. Destruction of GEM in the lower snowpack layers was attributed to dark oxidation of GEM. Analysis of vertical GEM / CO2 flux ratios indicated that this GEM destruction occurred in the snow and not in the underlying soil. The strong, diurnal patterns of photochemical GEM production at the surface ultimately lead to re-emission losses of deposited Hg back to the atmosphere. The NWT data show that highest GEM surface production and re-emissions occur shortly after fresh snowfall, which possibly resupplies photoreducible Hg to the snowpack, and that photochemical GEM reduction is not radiation-limited as it is strong even on cloudy days.

Final-revised paper