Articles | Volume 11, issue 16
Biogeosciences, 11, 4289–4304, 2014
Biogeosciences, 11, 4289–4304, 2014

Research article 19 Aug 2014

Research article | 19 Aug 2014

The amount and timing of precipitation control the magnitude, seasonality and sources (14C) of ecosystem respiration in a polar semi-desert, northwestern Greenland

M. Lupascu1, J. M. Welker2, U. Seibt3,4, X. Xu1, I. Velicogna1,5, D. S. Lindsey1, and C. I. Czimczik1 M. Lupascu et al.
  • 1Department of Earth System Science, University of California, Irvine, Irvine, California 92697-3100, USA
  • 2Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, Alaska 99508, USA
  • 3Department of Atmospheric and Oceanic Science, University of California, Los Angeles, Los Angeles, California, 90095, USA
  • 4Bioemco, University Pierre Marie Curie Paris 6, Thiverval-Grignon, 78850, France
  • 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, CA, USA

Abstract. This study investigates how warming and changes in precipitation may affect the cycling of carbon (C) in tundra soils, and between high Arctic tundra and the atmosphere. We quantified ecosystem respiration (Reco) and soil pore space CO2 in a polar semi-desert in northwestern Greenland under current and future climate conditions simulated by long-term experimental warming (+2 °C, +4 °C), water addition (+50% summer precipitation), and a combination of both (+4 °C × +50% summer precipitation). We also measured the 14C content of Reco and soil CO2 to distinguish young C cycling rapidly between the atmosphere and the ecosystem from older C stored in the soil for centuries to millennia.

We identified changes in the amount and timing of precipitation as a key control of the magnitude, seasonality and sources of Reco in a polar semi-desert. Throughout each summer, small (<4 mm) precipitation events during drier periods triggered the release of very old C pulses from the deep soil, while larger precipitation events (>4 mm), more winter snow and experimental irrigation were associated with higher Reco fluxes and the release of recently fixed (young) C. Warmer summers and experimental warming also resulted in higher Reco fluxes (+2 °C > +4 °C), but coincided with losses of older C.

We conclude that in high Arctic, dry tundra systems, future magnitudes and patterns of old C emissions will be controlled as much by the summer precipitation regime and winter snowpack as by warming. The release of older soil C is of concern, as it may lead to net C losses from the ecosystem. Therefore, reliable predictions of precipitation amounts, frequency, and timing are required to predict the changing C cycle in the high Arctic.

Final-revised paper