Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 11, issue 16
Biogeosciences, 11, 4521–4528, 2014
https://doi.org/10.5194/bg-11-4521-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 11, 4521–4528, 2014
https://doi.org/10.5194/bg-11-4521-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Aug 2014

Research article | 27 Aug 2014

Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat

H. Pleijel1, H. Danielsson2, D. Simpson3,4, and G. Mills5 H. Pleijel et al.
  • 1University of Gothenburg, Biological and Environmental Sciences, P.O. Box 461, 40530 Gothenburg, Sweden
  • 2Swedish Environmental Research Institute Inc., P.O. Box 53021, 40014 Gothenburg, Sweden
  • 3Norwegian Meteorological Institute, PB 43 Blindern, 0313 Oslo, Norway
  • 4Chalmers University of Technology, 412 96 Gothenburg, Sweden
  • 5Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK

Abstract. Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under- or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (−9%) and grain yield (−14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint