Articles | Volume 11, issue 24
Biogeosciences, 11, 7179–7192, 2014
Biogeosciences, 11, 7179–7192, 2014

Research article 17 Dec 2014

Research article | 17 Dec 2014

Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

E. M. Thaysen1, D. Jacques2, S. Jessen3, C. E. Andersen4, E. Laloy2, P. Ambus3, D. Postma5, and I. Jakobsen6 E. M. Thaysen et al.
  • 1Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
  • 2Institute for Environment, Health, and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
  • 3Department of Geosciences and Natural Resource Management, Copenhagen University, 1350, Copenhagen, Denmark
  • 4Centre for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark
  • 5Department of Geochemistry, Geological Survey of Denmark and Greenland, 1350, Copenhagen, Denmark
  • 6Department of Chemical and Biochemical Engineering, Centre for Ecosystems and Environmental Sustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark

Abstract. The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechanisms. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software.

The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol C m−2 s−1, respectively, and grossly exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m−2 s−1. Plant biomass was high in the mesocosms as compared to a standard field situation. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one-third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Modeling suggested that increasing soil alkalinity during plant growth was due to nutrient buffering during root nitrate uptake.

Final-revised paper