Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 13, issue 5
Biogeosciences, 13, 1705–1715, 2016
https://doi.org/10.5194/bg-13-1705-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 13, 1705–1715, 2016
https://doi.org/10.5194/bg-13-1705-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Mar 2016

Research article | 18 Mar 2016

Net soil–atmosphere fluxes mask patterns in gross production and consumption of nitrous oxide and methane in a managed ecosystem

Wendy H. Yang1,a and Whendee L. Silver1 Wendy H. Yang and Whendee L. Silver
  • 1Ecosystem Sciences Division, Department of Environmental Science, Policy, and Management, 130 Mulford Hall #3114, University of California, Berkeley, CA 94720, USA
  • anow at: Departments of Plant Biology and Geology, 265 Morrill Hall, 505 South Goodwin Ave, University of Illinois, Urbana, IL 61801, USA

Abstract. Nitrous oxide (N2O) and methane (CH4) are potent greenhouse gases that are both produced and consumed in soil. Production and consumption of these gases are driven by different processes, making it difficult to infer their controls when measuring only net fluxes. We used the trace gas pool dilution technique to simultaneously measure gross fluxes of N2O and CH4 throughout the growing season in a cornfield in northern California, USA. Net N2O fluxes ranged 0–4.5 mg N m−2 d−1 with the N2O yield averaging 0.68 ± 0.02. Gross N2O production was best predicted by net nitrogen (N) mineralization, soil moisture, and soil temperature (R2 = 0.60, n = 39, p< 0.001). Gross N2O reduction was correlated with the combination of gross N2O production rates, net N mineralization rates, and CO2 emissions (R2 = 0.74, n = 39, p< 0.001). Overall, net CH4 fluxes averaged −0.03 ± 0.02 mg C m−2 d−1. The methanogenic fraction of carbon mineralization ranged from 0 to 0.27 % and explained 40 % of the variability in gross CH4 production rates (n = 37, p< 0.001). Gross CH4 oxidation exhibited a strong positive relationship with gross CH4 production rates (R2 = 0.67, n = 37, p< 0.001), which reached as high as 5.4 mg C m−2 d−1. Our study is the first to demonstrate the simultaneous in situ measurement of gross N2O and CH4 fluxes, and results highlight that net soil–atmosphere fluxes can mask significant gross production and consumption of these trace gases.

Publications Copernicus
Download
Short summary
Nitrous oxide and methane are potent greenhouse gases that are both produced and consumed in soil. Using stable isotope tracers, we found that 68 % of nitrous oxide produced in soil was emitted to the atmosphere throughout the growing season in a cornfield despite variable soil conditions. Gross methane production and consumption were tightly coupled, resulting in near-zero net fluxes. Our results challenge our understanding of controls on nitrous oxide and methane dynamics in upland soils.
Nitrous oxide and methane are potent greenhouse gases that are both produced and consumed in...
Citation
Altmetrics
Final-revised paper
Preprint