Articles | Volume 13, issue 18
Research article
20 Sep 2016
Research article |  | 20 Sep 2016

Greenhouse gas emissions from fen soils used for forage production in northern Germany

Arne Poyda, Thorsten Reinsch, Christof Kluß, Ralf Loges, and Friedhelm Taube

Abstract. A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2–C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2–C eq. ha−1 a−1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2–C eq. (GJ net energy lactation; NEL)−1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean  ≤  20 cm below the surface).

Short summary
Fen soils in northwest Germany are mainly intensively utilized for dairy farming. To estimate their climatic impact, the greenhouse gas exchange of four sites with different management intensity was measured using closed manual chambers. Results showed that long-term drainage intensity is more important for the global warming potential of fen soils than the type of management. Lowest yield-related emissions were achieved on a three-cut grassland with a high mean groundwater level.
Final-revised paper