Articles | Volume 6, issue 12
Biogeosciences, 6, 2733–2741, 2009
https://doi.org/10.5194/bg-6-2733-2009
Biogeosciences, 6, 2733–2741, 2009
https://doi.org/10.5194/bg-6-2733-2009

  01 Dec 2009

01 Dec 2009

Optimization of the seasonal cycles of simulated CO2 flux by fitting simulated atmospheric CO2 to observed vertical profiles

Y. Nakatsuka and S. Maksyutov Y. Nakatsuka and S. Maksyutov
  • National Institute for Environmental Studies, Tsukuba, Japan

Abstract. An inverse of a combination of atmospheric transport and flux models was used to optimize the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model properties such as light use efficiency and temperature dependence of the heterotrophic respiration separately for each vegetation type. The method employed in the present study is based on minimizing the differences between the simulated and observed seasonal cycles of CO2 concentrations. In order to compensate for possible vertical mixing biases in a transport model we use airborne observations of CO2 vertical profile aggregated to a partial column instead of surface observations used predominantly in other parameter optimization studies. Effect of the vertical mixing on optimized net ecosystem production (NEP) was evaluated by carrying out 2 sets of inverse calculations: one with partial-column concentration data from 15 locations and another with near-surface CO2 concentration data from the same locations. We confirmed that the simulated growing season net flux (GSNF) and net primary productivity (NPP) are about 14% higher for northern extra-tropical land when optimized with partial column data as compared to the case with near-surface data.

Download
Altmetrics
Final-revised paper
Preprint