Articles | Volume 7, issue 11
https://doi.org/10.5194/bg-7-3851-2010
https://doi.org/10.5194/bg-7-3851-2010
Research article
 | 
26 Nov 2010
Research article |  | 26 Nov 2010

Air-Sea CO2 fluxes on the Scotian Shelf: seasonal to multi-annual variability

E. H. Shadwick, H. Thomas, A. Comeau, S. E. Craig, C. W. Hunt, and J. E. Salisbury

Abstract. We develop an algorithm to compute pCO2 in the Scotian Shelf region (NW Atlantic) from satellite-based estimates of chlorophyll-a concentration, sea-surface temperature, and observed wind speed. This algorithm is based on a high-resolution time-series of pCO2 observations from an autonomous mooring. At the mooring location (44.3° N and 63.3° W), the surface waters act as a source of CO2 to the atmosphere over the annual scale, with an outgassing of −1.1 mol C m−2 yr−1 in 2007/2008. A hindcast of air-sea CO2 fluxes from 1999 to 2008 reveals significant variability both spatially and from year to year. Over the decade, the shelf-wide annual air-sea fluxes range from an outgassing of −1.70 mol C m−2 yr−1 in 2002, to −0.02 mol C m−2 yr−1 in 2006. There is a gradient in the air-sea CO2 flux between the northeastern Cabot Strait region which acts as a net sink of CO2 with an annual uptake of 0.50 to 1.00 mol C m−2 yr−1, and the southwestern Gulf of Maine region which acts as a source ranging from −0.80 to −2.50 mol C m−2 yr−1. There is a decline, or a negative trend, in the air-sea pCO2 gradient of 23 μatm over the decade, which can be explained by a cooling of 1.3 °C over the same period. Regional conditions govern spatial, seasonal, and interannual variability on the Scotian Shelf, while multi-annual trends appear to be influenced by larger scale processes.

Download
Altmetrics
Final-revised paper
Preprint