Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 8, issue 7
Biogeosciences, 8, 1901–1910, 2011
https://doi.org/10.5194/bg-8-1901-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 8, 1901–1910, 2011
https://doi.org/10.5194/bg-8-1901-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jul 2011

Research article | 18 Jul 2011

Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

W. Huang1,2, J. Liu1, G. Zhou1, D. Zhang1, and Q. Deng1,2 W. Huang et al.
  • 1South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • 2Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Abstract. Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

Publications Copernicus
Download
Citation
Final-revised paper
Preprint