Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF 5-year value: 4.194
IF 5-year
CiteScore value: 6.7
SNIP value: 1.143
IPP value: 3.65
SJR value: 1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
h5-index value: 60
Volume 8, issue 10
Biogeosciences, 8, 3077–3092, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Stable isotopes and biogeochemical cycles in terrestrial...

Biogeosciences, 8, 3077–3092, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Oct 2011

Research article | 31 Oct 2011

Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment

L. Taneva and M. A. Gonzalez-Meler L. Taneva and M. A. Gonzalez-Meler
  • Ecology and Evolution Group, Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street M/C 066, Chicago IL 60607, USA

Abstract. Soil respiration (RS) is a major flux in the global carbon (C) cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR) and heterotrophic components (RH). The contribution of RH to RS was further partitioned into litter decomposition (RL), and decomposition of soil organic matter (RSOM) of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS), especially at night. The contribution of heterotrophic respiration (RSOM and RL) to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54%) than during the day (44%). The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr) originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr) did not vary diurnally. None of the diurnal variations in components of RH could be explained by only temperature and moisture variations. Our results indicate that the variation observed in the components of RS is the result of complex interaction between dominant biotic controls (e.g. plant activity, mineralization kinetics, competition for substrates) over abiotic controls (temperature, moisture). The interactions and controls among roots and other soil organisms that utilize C of different chemistry, accessibility and ages, results in the overall soil CO2 efflux. Therefore understanding the controls on the components of RS is necessary to elucidate the influence of ecosystem respiration on atmospheric C-pools at different time scales.

Publications Copernicus
Final-revised paper