Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF 5-year value: 4.194
IF 5-year
CiteScore value: 6.7
SNIP value: 1.143
IPP value: 3.65
SJR value: 1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
h5-index value: 60
Volume 8, issue 2
Biogeosciences, 8, 365–385, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 8, 365–385, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Feb 2011

Research article | 15 Feb 2011

Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: the Po prodelta as a study case

T. Tesi1,2, S. Miserocchi1, M. A. Goñi2, M. Turchetto3, L. Langone1, A. De Lazzari3, S. Albertazzi1, and A. Correggiari1 T. Tesi et al.
  • 1Istituto Scienze Marine CNR – Sede di Bologna, Via P. Gobetti, 101 40129 Bologna, Italy
  • 2College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, OR 97331, USA
  • 3Istituto Scienze Marine CNR – Sede di Venezia, Castello 1364/A, 30122 Venezia, Italy

Abstract. From November 2008 through May 2009, the Po river (Italy) experienced several floods exceeding 5000 m3 s−1. This long series of events ended with a large flood in early May 2009 (~8000 m3 s−1). An event-response sampling was carried out in the Po prodelta in April–May 2009 to characterize the preservation of this series of floods in the sediment record and to describe the event-supply and deposition of riverborne particulate material during the May 2009 flood. The water sampling was carried out early in the event under conditions of moderate river flow (~5000 m3 s−1) and 24 h later during the peak discharge (~8000 m3 s−1). Sediment cores were collected in the prodelta before and after the peak flood. At each station, profiles of conductivity, transmittance, and fluorescence were acquired. Surface and bottom waters were sampled to collect sediments in suspension. In addition, a few days before the May 2009 event, suspended sediments were collected at Pontelagoscuro gauging station, ~90 km upstream from the coast. Biogeochemical compositions and sedimentological characteristics of suspended and sediment samples were investigated using bulk and biomarker analyses. Furthermore, 7Be and radiographs were used to analyze the internal stratigraphy of sediment cores.

During moderate flow, the water column did not show evidence of plume penetration. Stations re-occupied 24 h later exhibited marked physical and biogeochemical changes during the peak flood. However, the concentration of terrestrially-derived material in surface waters was still less than expected. These results suggested that, since material enters the Adriatic as buoyancy-driven flow with a reduced transport capacity, settling and flocculation processes result in trapping a significant fraction of land-derived material in shallow sediments and/or within distributary channels.

Although numerous discharge peaks occurred from November 2008 through April 2009 (4000–6000 m3 s−1), sediment cores collected in late April 2009 showed lack of event-strata preservation and reduced 7Be penetrations. This suggested that only a small fraction of the sediment supply during ordinary events reaches the deepest region of the prodelta (12–20 m water depth). As a result, these event-strata have a thickness not sufficient to be preserved in the sediment record because of post-depositional processes that destroy the flood signal.

Stations in the northern and central prodelta were re-occupied after the peak of the May 2009 flood. Based on 7Be and radiographs, we estimated event layers of 17 and 6 cm thickness, respectively. Selective trapping of coarse material occurred in the central prodelta likely because of the geomorphologic setting of the central outlet characterized by an estuary-like mouth. Despite these settling processes, lignin-based parameters indicated that the composition of the terrigenous OC was fairly homogenous throughout the network of channels and between size-fractions.

Publications Copernicus
Final-revised paper